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A Parallelization of State-of-the-Art Graph Bisection

Algorithms on the Grid

Nan Dun,† Kenjiro Taura† and Akinori Yonezawa†

We have parallelized Reactive Randomized Tabu Search (RRTS) graph partition algorithm
and adapted it to the grid environment. Speedup is achieved by parallelizing scoring phase of
RRTS. We also introduced two techniques: multilevel scoring and parallel initialization. By
using multilevel scoring, tabu lengths are highly tuned to adapt large graphs. And by parallel
initialization, dispersed computing efforts are centralized to output more consistent graph
partitions. Experiments show that our approach significantly outperformed state-of-the-art
heuristics by partitioning large graphs with higher quality and efficiency.

1. Introduction

Given a graph G = (V, E) with V as its ver-
tices set and E as edge set. The k-partition
problem is defined as follows: To partition V
into k subsets V1, V2, . . . , Vk, such that:

Vi ∩ Vj = φ for i 6= j

|Vi| = |V |/k for
⋃

Vi = V

C = {(vi, vj)|(vi, vj) ∈ E, vi ∈ Vi, vj ∈ Vj}
and |C|, or edgecut of partitions, is minimized.
When k = 2, we come on to bipartition, or bisec-
tion problem, the basic case of graph partition.

Graph partition problem has been extensively
investigated over years. A k-partition problem
is NP-complete1), so is a bisection problem. To
find approximate solution is also NP-hard2).

The importance of graph partition lies not
only in mathematics, such as sparse matrix-
vector multiplication and Gaussian elimination,
but also in many practical applications, such
as mesh distributing, load balancing, VLSI and
large network designs.

2. Related Works

Before presenting our work, we briefly intro-
duce several graph partition algortihms that are
popularly used nowadays.

2.1 Kernighan-Lin Heuristic (KL)
The Kernighan-Lin heuristic3) start from an

initial partition bisected by randomly selecting
or other algorithms. Then KL searches pairs of
vertices that will yield smaller edgecut if they
were swapped. In KL, the reduction of edgecut
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is indicated by gain of a vertex when it is moved
from partition to the other, as follows,

Given a bisected graph V and its partitions
V1, V2.

gain of moving: For vi ∈ V1,

g(vi) =
∑

vj∈V1

ω(vi, vj)−
∑

vk∈V2

ω(vi, vk)(1)

where, for vi, vj ∈ V ,

ω(vi, vj) =
{

0 (vi, vj) /∈ E
1 (vi, vj) ∈ E

(2)

gain of swapping: For vi ∈ V1, vj ∈ V2,
g(vi, vj) = 2ω(vi, vj) + g(vi) + g(vj) (3)

This algorithm iteratively searches through
all vertices by computing and comparing theirs
gains to maximize reduction of edgecut. It
stops when no pair of vertices can satisfy
edgecut-reducing criteria. Native KL3) costs
O(|E|log|E|) time for each iteration. And we
refer to one improved version4), leading to a
less complexity as O(|E|).

2.2 Region Growing Partition (RGP)
Region Growing Partition (RGP) stands for

a class of heuristics to initialize partitions of
original graphs. Intuitively, RGP starts to grow
a region from a vertex in breath-first-search way
and stops until bisections reach the equal size.

Greedy Graph Growing Partitioning (GGGP)
algorithm5) improves partitioning performance
by using the same idea of gain as in KL. In-
stead of growing one region, Min-Max Greedy
Partitioning (MMGP) algorithm7) initials two
partitions from two seeds by repeatedly adding
vetices to them. RGP algorithms are sensitive
to the choice of beginning vertex7). In our ex-
periments, comparing to GGGP, MMGP not
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only produces better bisections in less running
time, but also shows less dependency to initial
seeds.

2.3 Tabu Search (TS)
The Tabu Search heuristic is also known as

prohibition-based search algorithm. As in KL
algorithm, Tabu Search incrementally refines
initial bisections by swapping pairs of vertices
to decrease edgecut. However, unlike KL, in
which previously swapped vertices are locked,
TS prevents swapped vertices from moving
again only for a period of time. And this pro-
hibition period is referred as Tabu Length, de-
noted by a fraction of the number of vertices,
as follows,

Ltabu = ftabu × |V | (4)
where ftabu ∈ [0.01, 0.02, · · · , 0.25]. Experience
suggests that these 25 candidates are sufficient
for most graphs7).

The motivation of temporary prohibiting in
TS is to exceed local minimum cases that will
not lead to any improvement by current local
search. Experiments also shows that graphs in
different structure require differenet appropri-
ate tabu lengths to yield good bisections. More
specific, denser random graphs tend to pre-
fer smaller tabu lengths, while denser geomet-
ric graphs tend to prefer larger tabu lengths7).
And we further point out that graphs having
uniform distribution of vertex degree tend to
have unique appropriate tabu length, where the
vertex degree is defined as follows,

degree of vertex: For any v ∈ V ,

d(v) =
∑

v′∈V

ω(v, v
′
). (5)

Accordingly, choosing right tabu length has a
crucial effect on partition quality.

Now we present three variants7) of TS in their
developing sequence. They all start from an
initialized graph by MMG heuristic.

Fixed Tabu Search (FTS) iteratively applies
passes of tabu search on bisection with a fixed
tabu length. Since we are not able to tell what
tabu length will lead to a better bisection before
we obtaining any results, tabu lengths should
be tuned by programmers.

Randomized Tabu Search (RTS) performs TS
with several randomly choosed tabu lengths,
and finally returns the best result found in over-
all runs. Similarily, there is no assurance of

proper tabu length fitting current graph.
Reactive Randomized Tabu Search (RRTS)

first evaluates how each possible tabu length fits
current graph by a scoring routine, and high-
scored (most appropriate) tabu length is em-
ployed to perform deeper search. Thus, RRTS
is adaptive to graphs in various structures.

2.4 Multilevel Partition
The multilevel partition technique5) is mainly

used to reduce the partitioning time of large-
scale graphs. It coarsens a graph down to a
few hundreds vertices first, bisects this shrunk
small graph, and then uncoarsens partitionss
to original graph. During each stage of un-
coarsening, previously collapsed edges are re-
leased, and local searches are tried to refine
partition. METIS12) is a high-quality and
high-speed graph partition library of using this
scheme.

3. Evaluation of Heuristics

In this section, we check different aspects of
graph bisection in order to demonstrate some
issues need to be addressed.

3.1 Quality vs. Time
In our first experiement, we evaluated each

heuristic with two criteria in practical usage,
partition quality and partitioning time, over
a set of ”real-world” benchmark5)7)13). Since
RRTS and METIS are more advanced heuris-
tics evolving from other elementary ones and
they perform almost the same for small graphs,
we primarily compare them for relative larger
problems (|V | > 10, 000) on a single machine
with 2.53GHz P4 processor, 1GB of memory,
and 120GB 5400rpm disk. As a follow up of
this comparison, we tested native FTS with
those best-scored tabu lengths obtained by for-
mer RRTS runs. The results are as Table 1
shows. METIS is referred as its serial version
4.0.112). RRTS100 indicates 100 iterations of
heuristic, while FTS10000 means 10000 itera-
tions. Time is measured in seconds and we set
timeout as 3600 seconds.

Although running fastest, due to limited
free degrees during coarsen-uncoarsen stages,
MEITS fell behind his competitor RRTS in bi-
section quality. However, RRTS suffers from
the longest running time, since its adaptive fea-
ture requires more effort to score each tabu
length. And from FTS10000 column, we learn
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Fig. 1 Distribution of edgecuts obtained by running
RRTS on 400-node grid

that if we know proper tabu length in advance,
FTS can lead to high-quality partitions in a
much more efficient way.

3.2 Chance to Reach the Best
Our second experiment simply repeats identi-

cal heuristic independently on the same graph
for multiple runs, with a purpose of illustrate
how best a bisection can be obtained and how
often the best one occurs. To do it more ef-
ficiently, we had concurrently run indepent in-
stantces of heuristc, say RRTS, on a 400-nodes
grid15). The distribution of edgecuts appears in
Fig. 1. A peaked distribution remains similar
even when different graphs or heuristics being
applied. Detailed analysis of this phenomenon
can be found in Schreiber and Martin’s paper8),
which suggests an issue that the incidence of
best edgecut only shares a small fraction of
whole trials.

4. Basic Design

4.1 Design Goals
Our design aimed at taking advantage of com-

puting capability of girds to produce ever best
partitions for a variety of large-scale graphs and

Table 1 A Comparison of METIS, RRTS and FTS
on large-scale graphs

METIS RRTS100 FTS10000
cut time cut time cut time

G1 130 0.01 130 168.11 130 1.22
G2 366 0.07 353 696.49 354 13.85
G3 311 0.10 311 935.56 306 32.85
G4 6337 0.04 6257 353.45 6316 3.77
G5 950 0.17 timeout 929 31.55

Graph |V | |E| fbest
tabu

G1:fe 4elt 11143 32818 0.02
G2:fe pwt 36519 144794 0.02
G3:fe body 45087 163734 0.02
G4:mem 17758 54196 0.14
G5:wing 62032 121544 0.01

overcoming two main issues mentioned in 3.
The overall design goals are:
High-quality Partitioning
To partition graphs with high-quality not

worse than state-of-the-art libraries, such as
METIS and native RRTS, is basic requirement.
Fortunately, the grids provide us abundant
resources to achieve this computation-costing
goal.

High-efficient Partitioning
The partitioning of graphs should not only

cost as less time as possible, but also hold a
high possibility of obtaining the best partitions.
In this context, efficient partitioning suggests
rapid and consistent outputs of high-quality bi-
sections.

Grid Optimization
Since we will partition graphs on the grid en-

vironment. It is reasonable to bring other par-
ticular factors into our consideration, such as
cost of communication, coordination among all
nodes, fault tolerance, and user operability.

4.2 Parallelization of Heuristics
Besides multilevel technique, an intuitive

way to speed up algorithms is to parallelize
them. But unfortunately, as to graph partition
problem, parallelizing swapping based heuris-
tics such as Kernighan-Lin is hard by using
message-passing model9), a dominant program-
ming model in the grid environment, similar
for Tabu Search. ParMETIS12), parallel version
of METIS, also merely parallelized the coarsen
phase, left partition phase in serial on one node.

Recalling 3, if given a proper tabu length,
FTS significantly outperforms RRTS. Based
on this fact, we suggest parallelize the scoring
phase in RRTS instead of partitioning phase.

4.3 Multilevel Scoring
Multilevel scoring is motivated by Eq. 4,

in which tabu lengths are proportional to the
number of vertices, irrelevant to graph scales.
Original scoring routine is adaptive to classes of
graphs instead of the very specific ones. Thus,
finer tabu lengths are required to perform more
precise searchings, especially for large graphs.
are required.

In multilevel scoring, level–1 scoring begins as
usual (fL1

tabu ∈ [0.01, 0.02, · · · , 0.25]) and returns
the best-scored tabu length, taking 0.02 as an
example here. Then level–2 scoring uses this
best-scored one (0.02) as median and divide its
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two adjacent section into finer segments, here
fL2

tabu ∈ [0.011, · · · , 0.019] ∪ [0.021, · · · , 0.029].
We repeat this division and stop at level–i if
comparing to level–(i-1) scores, their improve-
ment appears less than predefined threshold.

4.4 To Parallelize Starting Phase
Before looking into details in this section, we

prefer to dive into an analysis of FTS behav-
ior by investigating how individual phase con-
tributes to whole results.

As introduced before, FTS have three phases:
MMG initializing phase, tabu searching phase
and KL refinement phase. We did a partition-
ing on graph wing by FTS10000 on 50 nodes,
with profiling of each phase. Then we choose
four best runs (column) from overall runs. as
shown in Table 2. Column 1 is final edgecuts,
while column 2 is initial paritions with smallest
edgecut produced by MMG in corresponding
runs. Column 3 and 4 give the maximum edge-
cut reduction detected in passes of TS and KL,
respectively. From Table 2, it is obvious that
MMG actually contributes more than TS and
KL. Further, an important discovery is: bet-
ter initial partition yields better final edgecuts,
while reductions gained by TS and KL remain
in small difference. However, on the other side,
initial phase costs much less time than TS or
KL search.

Since initial partitions heavily concern with
the quality of final partitions, we advocate to
extract initializing phase out of FTS and par-
allelize it individually. Also noticed that initial
partitions are sensitive to seeds in MMG, it is
reasonable to take advantage of grid’s natural
distribution to assign different seeds to different
nodes in the grid environment.

5. Parallel Graph Partitioning

Our parallel partitioning employs basic
master-worker model. In this framework, a
master takes charge of assigning jobs and pro-

Table 2 Edgecut redcution by different phase of
FTS10000

MMG TS KL
edgecutfinal edgecutinit ∆edgecut ∆edgecut

912 1078 114 158
1032 1185 174 187
1075 1197 213 139
1079 1221 133 133

wing: |V | = 62032, |E| = 121544

cessing mid-way and final results, while workers
share the computing burden of scoring and par-
titioning.

5.1 Parallel Multilevel Scoring Stage
This stage intends to determine proper tabu

lengths for graphs. Note that there are initially
25 fL1

tabu candidates.
Dispatching Initially, n workers are divided

into 25 groups. Workers in the jth group are
assigned a fL1

tabu = j × 0.01, j = 1, 2, · · · , 25.
We believe that scores evaluated by groups
are more disinterested than individual nodes.

Reporting When scoring finished, each (the
ith) worker returns two items to master:
score of tabu length scri

j (belonging to group
j), ”best-so-far” edgecut cutibest.

Evaluating Master averages all scri
j obtained

from group j to scrj , and chooses the fL1
tabu

with the highest score as a global metric value
fg

best. Also, the overall smallest cutibest are
selected to be global threshold cutgbest.

Multilevel Scoring If problem is large-scale,
it is necessary to perform a multilevel scoring
refered in 4.3. In this case, master breaks
fg

best into fL2
tabu, and repeats dispatching, re-

porting and evaluating to update ever better
fg

best and cutgbest.
5.2 Parallel Partitioning Stage
In this stage, we have got fg

best and cutgbest

from previous scoring stage.
Parallel Initializing Before any refinement,

we simply dedicate all nodes to run MMG.
Every local best initial partiton found by each
nodes is recorded and reported back to mas-
ter. Then master selects global best five ones
as initial partition candidates.

Parallel Partitioning With fg
best, a couple

of runs of TS and KL are performed on
each initial partition candidate. Eventually,
cutgbest is recorded and returned as final re-
sult.

6. Implementation

Our C-impelmented graph partition library
includes all partition algorithms introduced
in this paper. Experience shows that graph
heuristics need careful implementation to
achieve high performance, such as proper data
structure to maintain nodes’ information and
fast indexing.
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Fig. 2 FTS10000 edgecuts for different fL1
tabu

GXP cluster shell11) provides powerful advan-
tage of simultaneously running numerous in-
stances on clusters. Besides this, we signifi-
cantly simplied communication implementation
between master and workers by making use of
GXP’s master-worker command utility14).

7. Experiements

Our experiment environment is composed of
50 computing nodes each with Xeon 2.4GHz
dual processors, 2GB memory, 40GB harddisk
and running Linux 2.4.20. And GXP cluster
shell has been installed on all nodes.

7.1 Using Multilevel Scoring
We first made a comparison of performance

between uni-level scoring and multilevel scor-
ing on large graphs. When uni-level scoring
was used, we ran FTS10000 with given ftabu

on all nodes and averaged all results. All 25
ftabu were tried to see how they fit problems.
Then in multilevel scoring, we selected the best
ftabu obtained in previous uni-level (equally
as fL1

tabu), and splited it into level-2 fL2
tabu for

FTS10000. Graph wing was used as a represen-
tative demonstration, while outcome of other
large graphs remains alike.

From Fig. 2 we can find that among 25
fL1

tabu, both average and minimum edgecuts
are reached when fL1

tabu is 0.01 (Ltabu =
620, edgecutgbest = 967). The edgecut will be-
come larger with the increasing of tabu length,
which characters dense random graphs.

However, in Fig. 3 the curve tends to be
flat. Overall average edgecuts have been
dominated under 1300, and minimum one
was obtained when fL2

tabu was 0.013 (Ltabu =

wing: |V|=62032, |E|=121544
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Fig. 3 FTS10000 edgecuts for different fL2
tabu
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Fig. 4 Distribution of edgecuts obtained by running
FTS10000 on 50 nodes

806, edgecutgbest = 936), instead of 0.01.
7.2 With Parallel Initialzation Phase
Here we compare results from two paralleliz-

ing schemes. One is parallel running FTS10000.
The other is the parallel initializing phase men-
tioned in 5.2. For consistency, we still used
graph wing as our test case and chose previ-
ously best tabu fraction, fL2

tabu = 0.013.
The distribution of edgecuts in Figure 4 have

the same property as Figure 1. Few of nodes
yield the best partition even average results
were good.

However, situation significantly changed in
Figure 5. During the initializing phase, we
obtained four best initial partitions with edge-
cut 1078, 1156, 1185 and 1197. These four par-
titions are further sent to TS and KL refining
phase and finally lead four unique best edgecuts
915, 985, 1000, and 987, correspondingly. This
result not only demonstrats our judgement of
initial-final relationship, but also suggests that
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Fig. 5 Distribution of edgecuts obtained by feeding
”best-so-far” initial partitions

once we have obtained a good initial partition,
we are able to assure it will lead to better re-
sults. Further, rigorous line-distribution in Fig-
ure 5 also implies refinement could be done on
only one node without losing quality. There-
fore, more computation effort should be de-
voted to initilizing phase to find better initial
partitions, especially by using computing capa-
bility of grids.

8. Conclusions

In this paper, we have introduced two
schemes to parallelize RRTS graph partition al-
gorithms: multilevel scoring and parallel ini-
tializing. Experiements on “real-world” bench-
mark illustrated that our approach significantly
outperformed state-of-the-art graph partition
heuristics by partitioning large graphs with
higher quality and efficiency.
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