
Extension of Type-Based Approach to
Generation of Stream-Processing Programs by
Automatic Insertion of Buffering Primitives

Kohei Suenaga∗, Naoki Kobayashi∗∗, and Akinori Yonezawa∗∗∗

∗University of Tokyo, kohei@yl.is.s.u-tokyo.ac.jp
∗∗Tohoku University, koba@kb.ecei.tohoku.ac.jp

∗∗∗University of Tokyo, yonezawa@yl.is.s.u-tokyo.ac.jp

Abstract. In our previous paper, we have proposed a framework for au-
tomatically translating tree-processing programs into stream-processing
programs. However, in writing programs that require buffering of input
data, a user has to explicitly use buffering primitives which copy data
from input stream to memory or copy constructed trees from memory to
an output stream. Such explicit insertion of buffering primitives is often
cumbersome and worsens the readability of the program. We overcome
the above-mentioned problems by developing an algorithm which, given
any simply-typed tree-processing program, automatically inserts buffer-
ing primitives. The resulting program is guaranteed to be well-typed un-
der our previous ordered-linear type system, so that the program can be
further transformed into an equivalent stream-processing program using
our previous framework.

1 Introduction

There are two ways for processing tree-structured data such as XML [1]: one is to
manipulate data using a tree representation (e.g., DOM API [16], XDuce [4, 5],
CDuce [15] in the case of XML processing), and the other is to use a stream
representation (e.g., SAX, in the case of XML processing). Since large tree-
structured data are typically stored in files using the stream representation,
the former approach requires that the data be first loaded into memory and
converted into the tree representation. On the other hand, the former approach
has an advantage that it is easier to read and write programs.

To take the best of both approaches, in our previous paper [7], we have
proposed a framework in which a user can write a tree processing program,
which is then automatically transformed into an equivalent stream processing
program. For example, consider the programs in Figure 1. A user writes the tree-
processing program, which takes a binary tree t as an input, and returns the tree
whose leaf values are incremented by 1. A system then automatically transforms
the program into the stream-processing program, which is more efficient for data
stored in the stream representation since there is no need to construct trees on
memory. We have implemented a generator of XML stream processing programs

node

1

5 3

2

6 4

leaf leaf leafnode1 5 3 node leaf leaf leafnode2 6 4

parse

f

g

unparse

Tree-Processing Program:
fix (f, t, case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2))
Stream-Processing Program:
fix(g, t, case read() of

leaf ⇒ let x = read() in write leaf ;write; (x + 1)
| node ⇒ write node; g (); g ())

Fig. 1. Tree-processing and stream-processing

based on the framework, and confirmed that the approach works well for certain
programs [6].

Our previous framework [7], however, imposes a severe restriction on tree-
processing programs. The framework can deal with only programs that access
each node of an input tree only once, in the depth-first, left-to-right order. For
example, consider the program swap deep′ in Figure 2. It swaps the children of
nodes whose depth is more than n. Stream-processing would be effective since
the program traverses the input tree mostly in the depth-first, left-to-right or-
der, but our previous framework simply rejects it. In principle, a user can write
any tree-processing by explicitly inserting primitives for copying data from an
input stream to memory or copying constructed trees from memory to an output
stream (both of which are called buffering primitives below). For example, one
can rewrite the program swap deep′ to the program swap deep by inserting a
buffering primitive s2m, which copies data from the input stream to memory.
Our previous framework can then be applied to obtain a stream-processing pro-
gram, which constructs only deep sub-trees on memory. Such explicit insertion
of buffering primitives is, however, often cumbersome and worsens the readabil-
ity of the program. Moreover, whether a program conforms to the access order
restriction is checked by using a static type system with ordered linear types
(inspired by ordered linear logic [12]), so a programmer has to understand the
type system to insert buffering primitives in appropriate places.

We overcome the above-mentioned problems by developing an algorithm
which, given any simply-typed tree-processing program (without the access or-
der restriction), automatically inserts buffering primitives. The resulting pro-
gram is guaranteed to be well-typed under our previous ordered-linear type sys-

Ill-typed tree-processing program:

swap deep′
def≡

let swap =
fix (f, t, case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node (f x2) (f x1)) in
λn.fix (swap deep, t,

if n = 0 then swap (t)
else case t of

leaf x ⇒ leaf x
| node x1 x2 ⇒ node (swap deep (n− 1) x1) (swap deep (n− 1) x2))

Well-typed tree-processing program:

swap deep
def≡

let swap =
fix (f, t,

mcase t of mleaf x ⇒ leaf x | mnode x1 x2 ⇒ node (f x2) (f x1)) in
λn.fix (swap deep, t,

if n = 0 then swap (s2m t)
else case t of

leaf x ⇒ leaf x
| node x1 x2 ⇒ node (swap deep (n− 1) x1) (swap deep (n− 1) x2))

Resulting stream-processing program:

swap deep strm
def≡

let swap =
fix (f, t,mcase t of mleaf x ⇒ write leaf ; write x

| mnode x1 x2 ⇒ write node; f (); f ()) in
λn.fix (swap deep, t,

if n = 0 then swap (s2m t)
else case read() of

leaf ⇒ let x = read() in write leaf ; write x
| node ⇒ write node; swap deep (n− 1) (); swap deep (n− 1) ())

Fig. 2. A program which swaps children of nodes whose depth is more than n

tem [7], so that the program can be further transformed into an equivalent
stream-processing program using our previous framework [7].

For example, the program swap deep′ in Figure 2, which is ill-typed in the
type system in [7], is translated into the program swap deep in Figure 2 using the
algorithm presented in this paper. As swap deep is well-typed in the type system
of [7], it can be translated into a stream-processing program swap deep strm
with the framework in [7].

The rest of the paper is organized as follows. In Section 2, we briefly review
our previous framework [7]. Section 3 presents non-deterministic rules for insert-
ing buffering primitives and proves the soundness of the rules. Then, we present
a deterministic algorithm for inserting buffering primitives. We discuss related
work in Section 6, and conclude in Section 7.

Terms, values and evaluation contexts:

M (terms) ::= i | fix (f, x, M) | x | M1 M2 | M1 + M2

| leaf M | node M1 M2 | mleaf M | mnode M1 M2

| s2m | m2s | letbuf x = M1 in M2

| case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2

| mcase y of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2

τ (types) ::= Int | Treed | τ1 → τ2

d (uses) ::= 1 | ω | +

Fig. 3. The syntax of the tree-processing language and types.

2 Language and Type System for Tree-Processing

This section gives an overview of our previous framework for generation of
stream-processing programs [7]. The source language is a call-by-value λ-calculus
extended with binary trees. The framework can easily be extended to deal with
XML [6].

2.1 Language

Figure 3 gives the syntax of the tree-processing language. The operational se-
mantics is summarized in the full version [14].

The meta-variables x and i range over the sets of variables and integers
respectively. The first line of M gives standard constructs for the λ-calculus.
fix (f, x, M) is a function that takes an argument to x and evaluates M . The
whole function is referred to by f in M . We write λx.M for fix (f, x, M) when
f is not free in M . We write let x = M1 in M2 for (λx.M2) M1. Especially, if
M2 contains no free occurrence of x, we write M1;M2 for it.

The next line gives two kinds of tree constructors. leaf and node are con-
structors for non-buffered trees, which are intended to be represented in the
stream format, and can be accessed only in a restricted manner. mleaf and
mnode are constructors for buffered trees, which are stored in memory and can
be accessed in an arbitrary manner.

The third line gives primitives for changing tree representations: The primi-
tive s2m converts non-buffered trees to buffered trees, and m2s converts buffered
trees to non-buffered trees. For a technical reason, we also have a construct
letbuf x = M1 in M2, which is operationally the same as (λx.M2)M1.

The last two lines of the definition of terms gives destructors for the two
versions of trees.

2.2 Type System

As mentioned in Section 1, we use an ordered linear type system to ensure that
buffered trees are accessed in the appropriate order (i.e., the left-to-right, depth-
first order).

Γ | ∆ ` M : Int

Γ | ∆ ` leaf M : Tree+ (T-Leaf)

Γ | ∆1 ` M1 : Tree+ Γ | ∆2 ` M2 : Tree+

Γ | ∆1, ∆2 ` node M1 M2 : Tree+ (T-Node)

Γ | ∆ ` M : Int

Γ | ∆ ` mleaf M : Treeω (T-MLeaf)

Γ | ∆1 ` M1 : Treeω Γ | ∆2 ` M2 : Treeω

Γ | ∆1, ∆2 ` mnode M1 M2 : Treeω (T-MNode)

Γ, x : Int | ∆ ` M1 : τ
Γ | x1 : Tree1, x2 : Tree1, ∆ ` M2 : τ

Γ | y : Tree1, ∆ ` case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2 : τ
(T-Case)

Γ, y : Treeω, x : Int | ∆ ` M1 : τ
Γ, y : Treeω, x1 : Treeω, x2 : Treeω | ∆ ` M2 : τ

Γ | ∆ ` mcase y of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2 : τ
(T-MCase)

Fig. 4. A part of typing rules of Γ | ∆ ` M : τ

A(leaf M) = write(leaf);write(A(M))
A(node M1 M2) = write(node);A(M1);A(M2)
A(case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) =

case read() of leaf ⇒ let x = read() in A(M1)
| node ⇒ [()/x1, ()/x2]A(M2)

Fig. 5. Translation algorithm

The syntax of types is given in Figure 3. As usual, Int is the type of integers
and τ1 → τ2 is the type of functions from τ1 to τ2. We have three kinds of tree
types. Treeω is the type of buffered trees. Tree1 and Tree+ are the types of
input trees and output trees respectively.

A type judgment of our type system is Γ | ∆ ` M : τ . Here, Γ is a usual
type environment, which is a mapping from a finite set of variables to types. We,
however, impose a restriction that the codomain of Γ does not contain Tree1 or
Tree+. ∆ is an ordered linear type environment, which is a sequence of bindings
x1 : Tree1, . . . , xn : Tree1 where x1 · · ·xn are different from each other. That
environment specifies not only that x1, . . . , xn are bound to input trees, but also
that each of x1, . . . , xn must be accessed exactly once in this order and that
each of the subtrees bound to x1, . . . , xn must be accessed in the left-to-right,
depth-first order.

Figure 4 gives key typing rules. For the full rules, see the full version [14].

2.3 Translation Algorithm

If a program is well-typed in the type system presented above, the program can
be translated into an equivalent stream-processing program using a straight-
forward algorithm. Figure 5 shows the highlight of the algorithm A, which
converts tree constructors into stream output operations, and tree destructors
into stream input operations. For other term constructors, A simply works as
a homomorphism; For example, A(M1 + M2) = A(M1) +A(M2). The program
swap deep strm in Figure 2 is obtained from swap deep by using A.

The definition of stream-processing language is in our previous paper [7]. We
have proved that the algorithm preserves the semantics of programs.

3 Non-deterministic Specification for Automatic
Insertion of Buffering Primitives

Now we discuss a method for automatically inserting s2m and m2s. Let us
write Γ `λ→ M : τ for the type judgment for the usual simply-typed λ-calculus
(see the full version [14]). The goal is to transform any program M such that
∅ `λ→ M : Tree → Tree into an equivalent program M ′ such that ∅ | ∅ ` M ′ :
Tree1 → Tree+, by inserting s2m and m2s into M .

We first define correct transformations in a declarative and non-deterministic
manner. We introduce a new judgment Γ | ∆ ` M Ã M ′:τ . The judgment means
that (1) M and M ′ are equivalent if we ignore the representation of trees, and
(2) Γ | ∆ ` M ′ : τ holds.

Definition 1. Γ | ∆ ` M Ã M ′ : τ is the least relation that satisfies the rules
in Figure 6.

For example, the rule Tr-StreamToMem says that to transform M under
the assumption that x is an input tree, we can first insert the conversion s2m(x),
and then transform M under the assumption that x is a buffered tree.

Note that the rules are non-deterministic in the sense that there may be
more than one valid transformations for each source program M . We present an
algorithm that choose one from possible translations in the next section.

The following theorem guarantees the soundness of the judgment:

Theorem 1 (Soundness of Γ | ∆ ` M Ã M ′ : τ). If Γ | ∆ ` M Ã M ′ : τ
holds, then Γ | ∆ ` M ′ : τ and M ≡ erase(M ′).

Here, erase(M ′) is the term obtained by removing s2m and m2s, and replac-
ing constructors and destructors for non-buffered trees with those for buffered
trees. The first property of the lemma means that the result of the transla-
tion is well-typed (so that our previous framework can be applied to generate a
stream-processing program). The second property states that the semantics of
the program is preserved by the transformation.

The following lemma guarantees that there is at least one valid transforma-
tion for any simply-typed program.

Γ | ∅ ` i Ã i : Int (Tr-Int)

Γ | ∆1 ` M1 Ã M ′
1 : Int Γ | ∆2 ` M2 Ã M ′

2 : Int

Γ | ∆1, ∆2 ` M1 + M2 Ã M ′
1 + M ′

2 : Int
(Tr-Plus)

Γ, x : τ | ∅ ` x Ã x : τ (Tr-Var1)

Γ | x : Tree1 ` x Ã x : Tree1 (Tr-Var2)

f : τ1 → τ2, Γ, x : τ1 | ∅ ` M Ã M ′ : τ2

Γ | ∅ ` fix (f, x, M) Ã fix (f, x, M ′) : τ1 → τ2

(Tr-Fix1)

f : Tree1 → τ, Γ | x : Tree1 ` M Ã M ′ : τ

Γ | ∅ ` fix (f, x, M) Ã fix (f, x, M ′) : Tree1 → τ
(Tr-Fix2)

Γ | ∆1 ` M1 Ã M ′
1 : τ ′ → τ Γ | ∆2 ` M2 Ã M ′

2 : τ ′

Γ | ∆1, ∆2 ` M1 M2 Ã M ′
1 M ′

2 : τ
(Tr-App)

Γ | ∆ ` M Ã M ′ : Int

Γ | ∆ ` leaf M Ã leaf M ′ : Tree+ (Tr-Leaf1)

Γ | ∆ ` M Ã M ′ : Int

Γ | ∆ ` leaf M Ã mleaf M ′ : Treeω (Tr-Leaf2)

Γ | ∆1 ` M1 Ã M ′
1 : Tree+ Γ | ∆2 ` M2 Ã M ′

2 : Tree+

Γ | ∆1, ∆2 ` node M1 M2 Ã node M ′
1 M ′

2 : Tree+ (Tr-Node1)

Γ | ∆1 ` M1 Ã M ′
1 : Treeω Γ | ∆2 ` M2 Ã M ′

2 : Treeω

Γ | ∆1, ∆2 ` node M1 M2 Ã mnode M ′
1 M ′

2 : Treeω (Tr-Node2)

Γ, x : Int | ∆ ` M1 Ã M ′
1 : τ Γ | x1 : Tree1, x2 : Tree1, ∆ ` M2 Ã M ′

2 : τ

Γ | y : Tree1, ∆ ` case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2

Ã case y of leaf x ⇒ M ′
1 | node x1 x2 ⇒ M ′

2 : τ
(Tr-Case1)

Γ, y : Treeω, x : Int | ∆ ` M1 Ã M ′
1 : τ

Γ, y : Treeω, x1 : Treeω, x2 : Treeω | ∆ ` M2 Ã M ′
2 : τ

Γ, y : Treeω | ∆ ` case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2

Ã mcase y of mleaf x ⇒ M ′
1 | mnode x1 x2 ⇒ M ′

2 : τ

(Tr-Case2)

Γ, x : Treeω | ∆ ` M Ã M ′ : τ

Γ | x : Tree1, ∆ ` M Ã letbuf x = s2m(x) in M ′ : τ
(Tr-StreamToMem)

Γ | ∆ ` M Ã M ′ : Treeω

Γ | ∆ ` M Ã m2s(M ′) : Tree+ (Tr-MemToStream)

Fig. 6. Rules for the judgment Γ | ∆ ` M Ã M ′ : τ

Lemma 1. If Γ ′ `λ→ M : τ then there exist Γ, ∆, M ′ and τ ′ such that Γ | ∆ `
M Ã M ′ : τ ′ and Γ ′ = eraseuse(Γ ∪∆) and τ = eraseuse(τ ′).

Here, eraseuse(·) removes uses (+, 1, ω) from types.
We can easily check that the relation Γ | ∆ ` M Ã M ′ : τ contains a

transformation that is optimal (in the sense that the resulting program copies
as few trees as possible to memory) among those preserving typing and the
structure of the source program. To formally state that property, let us write
M Ã M ′ if M ′ is obtained from M by inserting letbuf x = s2m(x) in and
m2s and/or replacing some occurrences of leaf , node, and case with mleaf ,
mnode, and mcase. The following theorem states that any transformation that
performs only such replacement and preserves types can be obtained by the
transformation rules in Section 3, so that an optimal transformation can also be
obtained.

Theorem 2 (Completeness of Γ | ∆ ` M Ã M ′ : τ). If Γ `λ→ M : Tree →
Tree and Γ | ∅ ` M ′ : Tree1 → Tree+ and M Ã M ′, then Γ | ∅ ` M Ã M ′ :
Tree1 → Tree+.

Note that if we allow more aggressive transformation, we may obtain a more
efficient program. For example, consider the program

fix (f, t, case t of leaf x ⇒ leaf x
| node x1 x2 ⇒ node (node (f x1) (f x1)) (f x2)).

If we allow code duplication, we would have the following program:

let g = fix(f, t,mcase t of mleaf x ⇒ leaf x
| mnode x1 x2 ⇒ node (node (f x1) (f x1)) (f x2) in

fix(f, t, case t of leaf x ⇒ leaf x
| node x1 x2 ⇒

node (letbuf x1 = s2m(x1) in node (g x1) (g x1)) (f x2)))

The program above does not buffer x2, while any programs derived by Γ | ∆ `
M Ã M ′ : τ buffers x because f must have type Treeω → Tree+. It is one of
our future work to deal with such transformation.

4 Automatic Insertion Algorithm

The transformation rules presented in the previous section are non-deterministic
in the sense that there may be more than one possible M ′ and τ that satisfy
Γ | ∆ ` M Ã M ′ : τ . We next present an algorithm for choosing one among
those possibilities.

The algorithm consists of two sub-algorithms I and P. Given a program of
type Tree → Tree, I inserts s2m and generates an intermediate program of
type Tree1 → Treeω. P takes the intermediate program as an input, inserts
m2s, and generates a program of type Tree1 → Tree+.

We focus on the algorithm I below, since P is fairly straightforward. P is
briefly discussed at the end of this section.

4.1 Algorithm I
We first give an overview of the algorithm I. We shall introduce a new form
of transformation judgment Θ ` M Ã M ′ : τ . Θ, called a semi-ordered type
environment, is a combination of a type environment Γ and ∆. The rules for
Θ ` M Ã M ′ : τ is more deterministic than Γ | ∆ ` M Ã M ′ : τ : In fact, there
is only one transformation rule for each syntactic form of M . Using the new
transformation rules, we can construct an algorithm I1, which, given Θ, M , and
τ which may contain use variables to denote unknown uses, outputs M ′ and C,
where C is a set of constraints on the use variables such that θΘ ` M Ã θM ′ : θτ
holds if and only if the substitution θ satisfies C. Using I1, the algorithm I works
as follows.

I(M) = let (M ′, C) = I1(∅,M,Tree1 → Treeω) in
let θ = solve(C) in
θM ′

Now let us look at the construction of I1 more closely. We construct I1 in
three steps. First, we introduce a judgment Θ `I M Ã M ′ : τ by combining
Γ and ∆ of Γ | ∆ ` M Ã M ′ : τ . Then, we obtain Θ ` M Ã M ′ : τ by
deriving syntax-directed rules from Θ `I M Ã M ′ : τ . Finally, we derive I1

from Θ ` M Ã M ′ : τ .
We first define semi-ordered type environments. The semi-ordered type en-

vironment is necessary since at the time of running I1, we cannot tell which
variable should be put into an ordered linear type environment Γ and which
should be put into an ordinary type environment ∆.

Definition 2. The use of a type τ , written |τ |, is defined by:

|Int| = ω |τ1 → τ2| = ω |Treed| = d

Below, we use the total order ≥ on uses, defined by ω ≥ 1.

Definition 3 (Semi-ordered type environment). A semi-ordered type en-
vironment, represented by Θ, is a sequence x1 : τ1, . . . , xn : τn where each xi is
distinct from each other and |τi| ≥ |τj | whenever i ≤ j. We write x mΘ y if x
occurs before y in Θ. We write |Θ| ≥ d for ∀x ∈ dom(Θ). |Θ(x)| ≥ d. |Θ| ≤ d is
defined in the same way.

In the definition of Θ ` M Ã M ′ : τ , we use two predicates, Θ1 º Θ2 and
merge(Θ, Θ1, Θ2). Θ1 º Θ2 means that Θ1 is obtained by replacing some of
Tree1 in Θ2 with Treeω.

Definition 4. We write τ1 º τ2 when either τ1 = τ2 or τ1 = Treeω and τ2 =
Tree1. The relation is pointwise extended to that on semi-ordered environment;
x1 : τ1, . . . , xn : τn º x1 : τ ′1, . . . , xn : τ ′n iff τi º τ ′i for every i ∈ {1, . . . , n}

Intuitively, merge(Θ,Θ1, Θ2) defined below means that if variables can be
accessed according to Θ, then they can be first accessed according to Θ1 and

coerceΘ⇒Θ(M) = M

coerce(Θ1,x:Tree1,Θ2)⇒(Θ1,x:Treeω,Θ′2)(M) = (letbuf x = s2m(x) in coerceΘ2⇒Θ′2(M))

Fig. 7. Definition of coerceΘ⇒Θ′().

τ = Θ(x) ∀y ∈ dom(Θ)\{x}.|Θ(y)| ≥ ω

Θ `I x Ã x : τ
(Tr-Var’)

f : τ1 → τ2, Θ, x : τ1 `I M Ã M ′ : τ2 ∀y ∈ dom(Θ).|Θ(y)| ≥ ω

Θ `I fix (f, x, M) Ã fix (f, x, M ′) : τ1 → τ2

(Tr-Fix’)

Θ1 `I M1 Ã M ′
1 : Treeω Θ2 `I M2 Ã M ′

2 : Treeω merge(Θ, Θ1, Θ2)

Θ `I node M1 M2 Ã mnode M ′
1 M ′

2 : Treeω

(Tr-Node’)

Θ′ `I M Ã M ′ : τ Θ′ º Θ

Θ `I M Ã coerceΘ⇒Θ′(M ′) : τ
(Tr-StreamToMem’)

Fig. 8. A part of rules for Θ `I M Ã M ′ : τ

then according to Θ2. For example, if Θ = x : Treeω, y : Tree1, z : Tree1, then
merge(Θ, y : Tree1, (x : Treeω, z : Tree1)) holds, but
merge(Θ, z : Tree1, (x : Treeω, y : Tree1)) does not, since the latter violates the
condition that y should be read first.

Definition 5 (Merge of semi-ordered type environments). Θ is a merge
of Θ1 and Θ2, represented by merge(Θ, Θ1, Θ2), if and only if the following
properties are satisfied:

(1) dom(Θ1) ∪ dom(Θ2) ⊆ dom(Θ) and Θ1(x) = Θ(x) for all x ∈ dom(Θ1) and
Θ2(y) = Θ(y) for all y ∈ dom(Θ2)

(2) xmΘ1 y =⇒ xmΘ y and xmΘ2 y =⇒ xmΘ y
(3) x ∈ dom(Θ)\(dom(Θ1) ∪ dom(Θ2)) =⇒ |Θ(x)| ≥ ω
(4) x ∈ dom(Θ1) ∩ dom(Θ2) =⇒ |Θ(x)| ≥ ω
(5) If y ∈ dom(Θ1), x ∈ dom(Θ2), and xmΘ y, then |Θ(x)| ≥ ω.

By the well-formedness condition of semi-ordered type environments, Θ1 and Θ2

can be decomposed into Γ1, ∆1 and Γ2,∆2, where Γi is a sequence of bindings
on types of use ω and ∆i is a linear type environment. Thus, the conditions of
merge(Θ, Θ1, Θ2) above essentially mean that Θ is of the form Γ, ∆1,∆2 where
Γ is obtained by merging Γ1 and Γ2 and adding extra bindings on types of use
ω.

Figure 8 shows a part of rules for Θ `I M Ã M ′ : τ . The definition of
coerceΘ⇒Θ′(M), which is used in the rule Tr-StreamToMem’, is given in Fig-
ure 7. It inserts s2m for each x such that Θ(x) = Tree1 and Θ′(x) = Treeω.

∀y ∈ dom(Θ′)\{x}. |Θ′(y)| ≥ ω Θ′ º Θ τ = Θ′(x)

Θ ` x Ã coerceΘ⇒Θ′(x) : τ
(Tr-SD-Var)

∀x ∈ dom(Θ′). |Θ′(x)| ≥ ω Θ′ º Θ

Θ ` i Ã coerceΘ⇒Θ′(i) : Int
(Tr-SD-Int)

Θ′1 ` M1 Ã M ′
1 : Int Θ′2 ` M2 Ã M ′

2 : Int
Θ′1 º Θ1 Θ′2 º Θ2 merge(Θ, Θ1, Θ2)

Θ ` M1 + M2 Ã coerceΘ1⇒Θ′1(M ′
1) + coerceΘ2⇒Θ′2(M ′

2) : Int
(Tr-SD-Plus)

f : τ1 → τ2, Θ
′, x : τ1 ` M Ã M ′ : τ2

f : τ1 → τ2, Θ
′, x : τ1 º f : τ1 → τ2, Θ, x : τ ′1 ∀y ∈ dom(Θ). |Θ(y)| ≥ ω

Θ ` fix (f, x, M) Ã fix (f, x, coerce(f :τ1→τ2,Θ,x:τ1)⇒(f :τ1→τ2,Θ′,x:τ ′1)(M ′)) : τ1 → τ2

(Tr-SD-Fix)

Θ′1 ` M1 Ã M ′
1 : τ1 → τ2 Θ′2 ` M2 Ã M ′

2 : τ1

Θ′1 º Θ1 Θ′2 º Θ2 merge(Θ, Θ1, Θ2)

Θ ` M1 M2 Ã coerceΘ1⇒Θ′1(M ′
1) coerceΘ2⇒Θ′2(M ′

2) : τ2

(Tr-SD-App)

Θ′ ` M Ã M ′ : Int Θ′ º Θ

Θ ` leaf M Ã mleaf coerceΘ⇒Θ′(M ′) : Treeω
(Tr-SD-Leaf)

Θ′1 ` M1 Ã M ′
1 : Treeω Θ′2 ` M2 Ã M ′

2 : Treeω

Θ′1 º Θ1 Θ′2 º Θ2 merge(Θ, Θ1, Θ2)

Θ ` node M1 M2 Ã mnode coerceΘ1⇒Θ′1(M ′
1) coerceΘ2⇒Θ′2(M ′

2) : Treeω

(Tr-SD-Node)

Θ′1 ` y Ã y′ : Treed Θ′2 ` M1 Ã M ′
1 : τ Θ′

3 ` M2 Ã M ′
2 : τ

Θ′1 º Θ1 Θ′2 º x : Int, Θ2L, Θ2R Θ′3 º Θ2L, x1 : Treed, x2 : Treed, Θ2R

merge(Θ, Θ1, (Θ2L, Θ2R)) M ′′
1 = coerce(Θ2L,Θ2R)⇒(Θ′2\{x:Int})(M ′

1)

M ′′
2 = coerce(Θ2L,x1:Treed,x2:Treed,Θ2R)⇒Θ′3(M ′

2)

Θ `
case y of

leaf x ⇒ M1

| node x1 x2 ⇒ M2

Ã
case y of

leaf x ⇒ M ′′
1

| node x1 x2 ⇒ M ′′
2

: τ

(Tr-SD-Case)

Fig. 9. Typing rules for the judgment Θ ` M Ã M ′ : τ .

Note that coerceΘ⇒Θ′(·) is an operation on terms, so that it is reduced in the pro-
gram transformation phase (when Θ and Θ′ have been completely determined),
not when the program is executed.

Next, we introduce a judgment Θ ` M Ã M ′ : τ .

Definition 6. The relation Θ ` M Ã M ′ : τ is the least relation closed under
the rules in Figure 9.

The rules in Figure 9 are syntax-directed version of the rules in Figure 8. For
example, Tr-SD-Node corresponds to applications of the rule Tr-StreamToMem’,
followed by an application of Tr-Node’.

I1(Θ, x, τ) = M, C
where Θ′, C0 = rename(Θ)

C = {|Θ′(y)| ≥ ω|y ∈ Dom(Θ′)\{x}} ∪Θ′ º Θ
∪{τ = Θ′(x)} ∪ C0

M = coerceΘ→Θ′(x)
I1(Θ, i, Int) = M, C

where Θ′, C0 = rename(Θ)
C = {|Θ′(x)| ≥ ω|x ∈ Dom(Θ′)} ∪Θ′ º Θ ∪ C0

M = coerceΘ→Θ′(i)
I1(Θ, M1 + M2, Int) = M, C

where S = dom(Θ)\(FV(M1) ∪ FV(M2))
Θ1 = Θ|FV(M1)∪{y∈S|∃z∈FV(M2).ymΘz}
Θ2 = Θ|FV(M2)∪{y∈S|∀z∈FV(M1).zmΘy}
Θ′1, C0 = rename(Θ1) Θ′2, C1 = rename(Θ2)
M ′

1, C2 = I1(Θ
′
1, M1, Int) M ′

2, C3 = I1(Θ
′
2, M2, Int)

C = C0 ∪ C1 ∪ C2 ∪ C3

∪Θ′1 º Θ1 ∪Θ′2 º Θ2 ∪merge(Θ, Θ1, Θ2)

M = (coerceΘ1→Θ′1(M ′
1)) + coerceΘ2→Θ′2(M ′

2)

...

Fig. 10. Automatic insertion algorithm. typeof (M) returns the type of M inferred by
the type reconstruction algorithm for Γ `λ→ M : τ cased means case if d = 1 and
mcase if d = ω

The following theorems describe soundness and completeness of Θ ` M Ã
M ′ : τ with respect to Γ | ∆ ` M Ã M ′ : τ :

Theorem 3 (Soundness of Θ ` M Ã M ′ : τ). If Θ ` M Ã M ′ : τ holds,
then there exist Γ and ∆ that satisfy Γ | ∆ ` M Ã M ′ : τ and Θ = Γ,∆.

Theorem 4 (Completeness of Θ ` M Ã M ′ : τ). Suppose that Γ | ∆ ` M Ã
M ′ : τ is derived without using Tr-Leaf1, Tr-Node1 and Tr-MemToStream.
Then, there exists Θ such that

– Θ = Γ,∆
– Θ ` M Ã M ′ : τ

Based on the rules in Figure 9, we construct I1 in Figure 10 that takes Θ,
M and τ as input and returns the result of translation M ′ and constraints C. C
consists of inequalities between uses and equalities between types. It is obtained
by reading the rules in Figure 9 in a bottom-up manner. In Figure 10, rename(Θ)
returns a pair of the type environment obtained by replacing the uses variables
occurs in Θ with fresh use variables, and a set of constraints for the renamed
type environment being well-formed (i.e.,|Θ(xi)| ≥ |Θ(xj)| for any ximΘ xj .) By
abuse of notations, we write Θ1 º Θ2 and merge(Θ, Θ1, Θ2) for the constraints

on uses required for Θ1 º Θ2 and merge(Θ,Θ1, Θ2) to hold respectively. The
function typeof (N) returns the simple type of N .1

The following theorem states soundness of I1.

Theorem 5. Suppose I1(Θ,M, τ) = M ′, C. Then, θ is a solution of C if and
only if θΘ ` M Ã θM ′ : θτ holds.

Unfortunately, the converse of Theorem 5 does not hold. For example, con-
sider the program M = ((f x) + 1) + (f z). M can be transformed to both
M ′

1 = ((f x) + letbuf y = s2m(y) in 1) + (f z) and M ′
2 = ((f x) + 1) +

(letbuf y = s2m(y) in 1 + (f z)) under the semi-ordered environment Θ = f :
Tree1 → Int, x : Tree1, y : Tree1, z : Tree1 by the transformation rules in
Figure 9. Only the latter derivation can, however, be derived by algorithm I1.
This is because I1(M1 + M2) divides the semi-ordered environment Θ into Θ1

and Θ2 in a fixed way (see Figure 10). This is not a problem from the viewpoint
of the optimality of the transformation result: for any term M ′ obtained from
M by using the rules in Figure 9, algorithm I1 generates a term M ′′ that is as
efficient as M ′. In the above example, M ′

1 is as efficient as M ′
2 (s2m(y) in both

terms can be replaced by skip tree. See Section 5.), so that producing only M ′
1

is sufficient.
Let (M ′′, C) = I1(M). The constraints C can be reduced to a set of con-

straints on uses of the form {u1 ≥ d1, . . . , un ≥ dn}, where u1, . . . , un are distinct
use variables and d1, . . . , dn are expressions contructed from use variables, con-
stants, and the operation max(d, d′) that takes an upper-bound of two uses d
and d′. Since d1, . . . , dn are monotonic on u1, . . . , un, we can apply the standard
algorithm [13] to obtain the least solution of C. The output of algorithm I is
the term obtained by substituting the least solution for the use variables in M ′′

and reducing coerce.

4.2 Algorithm P
We design P in a way similar to I. We first introduce a judgment Γ ` M Ã
M ′ : τ in a syntax-directed manner. Figure 11 shows a part of the rules for
Γ ` M Ã M ′ : τ . In the figure, τ1 ºP τ2 is the least reflexive transitive
binary relation that satisfies Tree+ ºP Treeω. Γ is not ordered since I already
guarantees that variables of type Tree1 are accessed in the correct order.

Based on Γ ` M Ã M ′ : τ , we construct a sub-algorithm P1 that takes
Γ , M and τ , and returns M ′ and C where C is a set of constraints on the use
variables such that θΓ ` M Ã θM ′ : θτ if and only if the substitution θ satisfies
C.

By combining I and P, we have an algorithm that transform any program M
such that ∅ ` M : Tree → Tree into M ′ such that ∅ | ∅ ` M ′ : Tree1 → Tree+.

For the definition of P, see the full version [14].
1 Here, we assume that the type reconstruction algorithm for ∅ `λ→ M : Tree → Tree

is applied, and that the type of each subterm has been already determined. The
variables whose types are not uniquely determined are not accessed, so we can safely
assume that typeof () returns Int for those variables.

coerce outTreeω⇒Tree+
(M) = m2s(M)

coerce outτ⇒τ (M) = M

Γ, f : τ1 → τ2, x : τ1 ` M Ã M ′ : τ ′2 τ2 ºP τ ′2

Γ ` fix (f, x, M) Ã fix (f, x, coerce outτ ′2⇒τ2(M ′)) : τ1 → τ2

(TO-Fix)

Γ ` M Ã M ′ : Int

Γ ` mleaf M Ã leafd M ′ : Treed
(TO-Leaf)

Γ ` M1 Ã M ′
1 : Treed1 Γ ` M2 Ã M ′

2 : Treed2

Treed ºP Treed1 Treed ºP Treed2

M ′′
1 = coerce outTreed1⇒Treed

(M1) M ′′
2 = coerce outTreed2⇒Treed

(M2)

Γ ` mnode M1 M2 Ã noded M ′′
1 M ′′

2 : Treed

(TO-Node)

Γ ` M Ã M ′ : Treed Γ, x : Int ` M1 Ã M ′
1 : τ1

Γ, x1 : Treed, x2 : Treed ` M2 Ã M ′
2 : τ2

τ ºP τ1 τ ºP τ2

Γ `
cased M of

leafd x ⇒ M1

| noded x1 x2 ⇒ M2

Ã
cased M ′ of

leafd x ⇒ coerce outτ1⇒τ (M1)

| noded x1 x2 ⇒ coerce outτ2⇒τ (M2)

: τ

(TO-Case)

Fig. 11. A part of declarative definition of the algorithm that inserts m2s

5 Post-processing to eliminate redundant buffering

Our algorithm presented so far inserts s2m and m2s, which copy trees from the
input stream to memory, and from the memory to the output stream. Therefore,
for example, the identity function λx.x of type =Tree → Tree is transformed
into λx.letbuf x = s2m(x) in m2s(x), which contains redundant buffering. We
apply the following transformation rules in the post-processing phase to eliminate
such redundant buffering, before applying our previous framework [7].

letbuf x = s2m(x) in m2s(x) =⇒ copy tree(x)
letbuf x = s2m(x) in M =⇒ skip tree(x); M if x /∈ FV(M)

Here, copy tree(x) copies a tree from the input stream to the output stream
without buffering the tree, and skip tree(x) simply ignores a tree in the input
stream. For example, the program λx.letbuf x = s2m(x) in m2s(x) is replaced
by λx.copy tree(x).

6 Related Work

Nakano and Nishimura [8–11] proposed a method for translating tree-processing
programs to stream-processing programs using attribute grammars or attribute

tree transducers [2]. In their method, programmers write XML processing as an
attribute grammar or an attributed tree transducer. Then, those are composed
with parsing and unparsing ones by using composition methods such as descrip-
tional composition [3] and translated to a grammar that directly deals with
streams. An advantage of our method is that we can deal with source programs
that involve side-effects (e.g. programs that print the value of every leaf) while
that seems difficult in their method based on attribute grammars (since the or-
der is important for side effects). We also believe that our correctness proof is
simpler than theirs. Comparison between the efficiency2 of programs generated
by our method and that of those generated by their method is left for future
work.

From the viewpoint of ordered linear logic [12], I can be viewed as an algo-
rithm that obtains a proof in a restricted fragment of ordered linear logic from
a proof in intuitionistic logic.

7 Conclusion

We have proposed a method for automatically inserting buffering primitives into
tree-processing programs; by combining it with our previous framework, any
simply-typed tree-processing program can automatically be transformed into an
equivalent stream-processing program. We have already implemented a proto-
type system to automatically insert buffering primitives. We plan to extend it
to implement a generator for XML stream-processing programs.

References

1. Tim Bray, Jean Paoli, C.M.Sperberg-McQueen, and Eve Maler. Extensible markup
language (XML) 1.0 (second edition). Technical report, World Wide Web Consor-
tium, October 2000. http://www.w3.org/TR/REC-xml.

2. Zoltán Fülöp. On attributed tree transducers. In Acta Cybernetica, volume 5,
pages 261–280, 1981.

3. Harald Ganzinger and Robert Giegerich. Attribute coupled grammars. In Proceed-
ings of the ACM SIGPLAN ’84 Symposium on Compiler Construction, 1984.

4. Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

5. Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types
for XML. In Proceedings of the International Conference on Functional Program-
ming (ICFP), pages 11–22, September 2000.

6. Koichi Kodama. Derivation of XML stream processor based on ordered linear type.
Master’s thesis, Tokyo Institute of Technology, March 2005.

7. Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. Translation of tree-
processing programs into stream-processing programs based on ordered linear type.
In Wei Ngan Chin, editor, Programming Languages and Systems: Second Asian
Symposium, APLAS 2004, Taipei, Taiwan, Proceedings, volume 3302 of Lecture
Notes in Computer Science, pages 41–56, November 2004.

2 More precisely, which part of an input tree can be processed in a stream-processing
manner and which part is copied to memory

8. Keisuke Nakano. Composing stack-attributed tree transducers. Technical Report
METR–2004–01, Department of Mathematical Informatics, University of Tokyo,
Japan, 2004.

9. Keisuke Nakano. An implementation scheme for XML transformation languages
through derivation of stream processors. In Programming Languages and Systems:
Second Asian Symposium, APLAS 2004, Taipei, Taiwan, Proceedings, volume 3302
of Lecture Notes in Computer Science, pages 74–90, November 2004.

10. Keisuke Nakano and Susumu Nishimura. Deriving event-based document trans-
formers from tree-based specifications. In Mark van den Brand and Didier Parigot,
editors, Electronic Notes in Theoretical Computer Science, volume 44. Elsevier Sci-
ence Publishers, 2001.

11. Susumu Nishimura and Keisuke Nakano. XML stream transformer generation
through program composition and dependency analysis. Science of Computer Pro-
gramming, 54:257–290, August 2004.

12. Jeff Polakow. Ordered linear logic and applications. PhD thesis, Carnegie Mellon
University, June 2001. Available as Technical Report CMU-CS-01-152.

13. Jakob Rehof and Torben Mogensen. Tractable constraints in finite semilattices.
Science of Computer Programming, 35(2):191–221, 1999.

14. Kohei Suenaga, Naoki Kobayashi, and Akinori Yonezawa. Extension of type-based
approach to generation of stream-processing programs by automatic insertion of
buffering primitives. Full paper. Available from http://www.yl.is.s.u-tokyo.

ac.jp/∼kohei/doc/paper/lopstr05-full.pdf.
15. V.Benzaken, G.Castagna, and A.Frisch. CDuce: An XML-centric general-purpose

language. In Proceedings of the ACM International Conference on Functional Pro-
gramming, 2003.

16. W3C. Document Object Model (DOM) Level 1 Specification, October 1998.

