ML**演習第**4回 課題

末永,遠藤,大山

問題 4 (optional)

- 1. 環 (ring) を表す signature RING を定義せよ.
- 2. RING によって制限のかけられたモジュールを一つ定義せよ.
- 3. 環を受け取って、その要素を係数に持つ多項式の環を返す functor MakePolyを定義せよ. MakePolyを2で定義したモジュールに適用して、その結果に RING で制限をかけても型エラーにならないことを確認せよ.

補足 集合 R は以下の条件を満たす演算子 + と * が定義されているとき環と呼ばれる.

- 1. + と * は結合的. すなわち、任意の $a,b,c \in R$ について a*(b*c) = (a*b)*c かつ a+(b+c)=(a+b)+c.
- 2. + に関して可換群をなす¹.
- 3. * に関してモノイドをなす2
- 4.*は + に対する分配則を満たす. すなわち、任意の $a,b,c \in R$ について a*(b+c)=(a*b)+(a*c) かつ (a+b)*c=(a*c)+(b*c).

RING は

- 1. 実装を隠蔽した環のデータ型 t.
- 2. * に相当する関数 mul.
- 3. * **の**単位元 one.
- 4. + に相当する関数 add

¹可換群の定義は自分で思い出すこと.

²モノイドの定義は自分で思い出すこと. なお * に関しては半群で良いとする定義もあるが、この課題ではモノイドということにする.

- 5. + **の単位元** zero.
- 6. t 型の値を受け取って + に関する逆元を返す関数 neg
- 7. 型 t の値を受け取って表示する関数 print

が正しい型で定義されていることを保証する signature にすればよい. (「mulが実際に結合的」や、「one が実際に mul に対して単位元になっている」などの性質は ML の型システムでは保証できない.)