
AUTONOMOUS DECENTRALIZED COMMUNITY COMMUNICATION

TECHNOLOGY FOR ASSURING INFORMATION DISSEMINATION

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY OF SCIENCE

(COMPUTER SCIENCE)

Supervised by

Professor Kinji Mori

GRADUATE SCHOOL OF INFORMATION SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

TOKYO INSTITUTE OF TECHNOLOGY

Preseneted by

Khaled Ragab Abd Eltawab Sayed Ahmed

September 2004

ABSTRACT

The enormous growth and the dynamism of the Internet initiated various new

trends that reflects the need for powerful communication methods than the simpler

client/server and Peer-to-Peer architecture. Despite their great potential, these sys-

tems still lack efficient data dissemination mechanisms. They deliver the information

considering the users’ demands regardless of their situations. There is no discern-

ment between differences in place and time; users in any situation receive the same

contents. However, situation and context-aware dissemination-oriented cooperative

services motivate an increasing interest for evolving both the social and economic en-

vironments. Therefore, this thesis proposes the following community communication

architecture and two community technologies to assure information dissemination

by realizing the Timeliness, Scalable online-expansion and Fault-tolerance require-

ments in the large-scale and dynamic environment. The dissertation proposes an

Autonomous Decentralized Community Communication System (ADCCS) and il-

lustrates the concept, system architecture and technology of the ADCCS that per-

mits to efficiently disseminate data according to the current situations of the system.

Considered changing situations are changes of the community members’ demands

and situations (location, time), and the status of community nodes and logical links.

The leading concept of autonomous community communication is the autonomy of

the community nodes in recognizing members from non members, organizing the

Community Overlay Network (CON) and achieving an efficient community commu-

nication based on local data, so that self-organized and self-adaptable ADCCS can

be procured. Two techniques are proposed to satisfy the requirements mentioned

before. First, Service-Oriented multilateral community communication technology

is proposed to permit an autonomous determination of the neighbor to disseminate

the community information. Thus, community information is disseminated only to

its members and network congestion due to replicated messages is avoided. Second,

an autonomous decentralized community overlay network construction technology is

ii

proposed to construct CON under both homogenous and heterogeneous node-node

latency assumptions. It constructs CON as single community so-called Flat-CON

under homogenous node-node latency assumption. Flat-CON composed of disjoint

Hamilton cycles (HC). HC forms Flat-CON with short network diameter and then

achieves timeliness. HC allows nodes to autonomously join/leave CON with only lo-

cal changes and then achieves online-expansion. HC maintains Flat-CON connected

and non-partition able and then fault-tolerance is achieved. However under hetero-

geneous node-node latency assumption Flat-CON cannot satisfy timeliness. Thus,

this thesis organizes CON into a multilayer of Sub-communities (Flat-CON) so-called

Multilayer-CON. It is aware by the node-node latency to optimize the community

communication delay and then satisfy timeliness. Moreover, it dynamically adapts to

the network changes and reconstructs itself. Simulations on large-scale environment

confirm that ADCCS achieves the requirements in rapid and realistic Internet set-

tings and give evidence of the existence of the tradeoff relation between timeliness and

fault-tolerance. Thus the proposed ADCCS achieves the requirements to establish a

High Assurance information dissemination system to the right users, at right time

and location under the changing of users’ preferences and situations.

iii

ACKNOWLEDGMENTS

My foremost thank goes to my thesis advisor Prof. Dr. Kinji Mori . Without

him, this dissertation would not have been possible. I thank him for his patience and

encouragement that carried me on through difficult times, and for his insights and

suggestions that helped me to shape my research skills. I believe that my personal

life in Japan would not have been possible without his support.

I would like to express my thanks to my thesis committee members: Professor

E. Fujiwara, Professor M. Saeki, ProfessorY. Sakai and Professor H. Yokota. Their

valuable feedback helped me to improve the dissertation.

I thank all the former and current members in Mori laboratory for their useful

support along the course of this thesis. I thank Moriyama for his support to me and

other students as well. Moreover, my thanks to S. Sudo, N. Oohara, Y. Ishikawa,

Y. Kido and Y. Mitsuhashi for their kind help. I also thank the former and current

members of Community research group: T. Ono, N. Kaji, K. Anwar, Y. Horikoshi,

H. Kuriyama, Y. Sugiyama and T. Masuishi. I enjoyed all vivid discussions we had

on various topics and had lot of fun being a member of this fantastic group. Moreover,

my thanks have to go to other students Lu, Carlos and Ivan for helping me along the

way of writing and proof reading of my thesis.

I am beholden to Ministry of Education, Science, Sports, and Culture Government

of Japan for awarding me financial support for carrying out this research.

The last but not least, I thank my beloved parents, my brother, my sister and my

wife’s family for encouraging me and taking care of me and my family from a great

distance. Special thank to my wife and kids for always being there when I need them

most, and for supporting me and their patience through all these years.

Khaled Ragab

Tokyo Institute of Technology in Tokyo, Japan.

September 2004

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introduction . 1

1.1 Research Field: Large-Scale information-dissemination Systems 1

1.2 Problem Statement . 2

1.3 Contribution . 3

1.4 Outline . 5

2 Background: Information Systems 9

2.1 History, Changes and Challenges . 9

2.1.1 History . 9

2.1.2 Changes . 10

2.1.3 Challenges . 10

2.2 Architectures . 12

2.2.1 Master-Slave model . 13

2.2.2 Client-Server model . 13

2.2.3 Peer-to-Peer model . 14

2.2.4 Group model . 16

2.3 Related Works . 17

2.3.1 Messaging: Basic Terms and Concepts 17

2.3.2 Communication Protocols . 19

2.3.3 Information Delivery Alternatives 21

2.3.4 Dissemination Systems’ Structures 22

2.4 Summary . 29

3 Research Objectives . 31

3.1 Problem Statement . 31

v

Page

3.2 Application Requirements . 33

3.3 System Requirements . 33

3.4 Autonomous Decentralized Systems (ADS) 34

3.4.1 ADS Concept . 34

3.4.2 ADS Architecture . 36

3.5 Summary . 37

4 Autonomous Decentralized Community Communication System . 39

4.1 ADCCS: Concept . 41

4.2 ADCCS: Architecture . 43

4.2.1 System Architecture . 43

4.2.2 Node Architecture . 45

4.3 ADCCS: Community Overlay Network 49

4.3.1 Overlay Networks . 49

4.3.2 Why Overlay Network? . 49

4.3.3 Community Overlay Network (CON) 51

4.4 Summary . 53

5 Autonomous Decentralized Community Communication Technology 55

5.1 Service-oriented and Multilateral Community Communication 56

5.2 1→ N Community Communication 57

5.3 Community Communication Protocols 59

5.4 Performance Verification . 61

5.5 Summary . 64

6 Autonomous Decentralized Community Overlay Network Construc-
tion Technologies . 65

6.1 Single Community Construction/Maintenance Techniques 65

6.1.1 Goals and Requirements . 65

6.1.2 Organizing Flat-CON: Regular Graph 66

6.1.3 Online Expansion and Construction: Join Process 67

6.1.4 Maintenance and Fault-tolerance 69

vi

Page

6.1.5 Performance Verification . 72

6.2 Multiple Communities Construction/Maintenance Techniques 77

6.2.1 Goals and Requirements . 78

6.2.2 Sub-Community: Definition and Structure 79

6.2.3 Organizing Multilayer-CON 82

6.2.4 Joining Process: Bottom-up & Top-down 84

6.2.5 Maintenance and Fault-tolerance 86

6.2.6 Community Communication over Multilayer-CON 88

6.2.7 Performance Verification . 89

6.3 Community Overlay Network Reconstruction Techniques 98

6.3.1 Self-Adaptable Multilayer-CON 98

6.3.2 Sub-Communities Division/Integration 100

6.4 Summary . 104

7 Evaluation . 107

7.1 Qualitative Analysis . 107

7.1.1 Approaches . 107

7.1.2 Discussions . 109

7.2 Quantitative Analysis . 111

7.3 Summary . 112

8 Conclusions . 113

8.1 Summary . 113

8.2 Future Work . 115

REFERENCES . 120

A Multilayer-CON: Recursive Joining and Reconstruction 125

A.1 Multilayer-CON: Join Recursive Function 125

A.2 Multilayer-CON: Sub-Community Division and Integration Technology 127

A.2.1 Sub-Community Division Technology 127

A.2.2 Sub-Community Integration Technology 128

vii

LIST OF TABLES

Table Page

4.1 Multicast Overlay Network: Underlying Layer vs Application Layer . 50

5.1 Communication comparison . 62

7.1 A comparison of data dissemination systems 109

viii

LIST OF FIGURES

Figure Page

2.1 Number of Internet hosts Worldwide 11

2.2 Information Systems Architecture: Layered Approach 12

2.3 Master-slave model. 14

2.4 Client-Server model. 15

2.5 Peer-to-Peer model: C, Client function; S, Server function. 15

2.6 Group model. 16

2.7 Unicast versus Multicast . 19

2.8 A taxonomy of information delivery methods 21

2.9 SIENA: distributed event notification architecture. 24

3.1 Event-based dissemination example: Earthquake 32

3.2 ADS Architecture . 36

4.1 Autonomous Decentralized Community Communication System Archi-
tecture . 44

4.2 ADCCS: Node Architecture . 45

4.3 Filtering and Forwarding of received Messages 47

4.4 Network-layer and application layer overlay multicast. 51

5.1 Community communication message format 56

5.2 1→ N Communication: Node work flow diagram 58

5.3 Hybrid Pull/push based protocol . 60

5.4 Messages flow in request/replay-all based protocol 61

5.5 Optimal 1→ N Community communication 63

5.6 Trade-off: Communication Delay & Network traffic/link 63

6.1 Add node A in the i-th Hamilton cycle. 67

6.2 Joining Process. 68

6.3 Leave node from the i-th cycle. 69

6.4 Leaving Process. 70

6.5 One-to-one communication simulation model based on caching proxies 72

ix

Figure Page

6.6 Scalable information-dissemination system 73

6.7 Flat-CON traffic with multiple senders 74

6.8 Flat-CON construction and maintenance overhead. 76

6.9 Flat-CON Fault-tolerance verification. 77

6.10 An example of sub-community structure (αij = 10ms). 79

6.11 Step by step sub-community construction. 81

6.12 Multilayer-CON: architecture. 82

6.13 Step-step construction multi-layer community structure. 83

6.14 Example: Join process in control tree. 84

6.15 Community communication through Multilayer structure. 89

6.16 Simulation setup: transit-stub network model. 90

6.17 MCD: Comparison. 91

6.18 RMDP: Comparison. 92

6.19 Variation of Community Overlay network size per time. 93

6.20 MCD: Comparison (Random community overlay network). 93

6.21 Physical link stress. 94

6.22 Multilayer-CON: Network traffic . 95

6.23 Trade-off. 96

6.24 Comparison: Flat-CON, Multilayer-CON and Random logical overlay
network. 97

6.25 Timeliness and Fault-tolerance Tradeoff. 98

6.26 Comparison: Adaptable and non-adaptable Multilayer-CON. 100

6.27 Relationship between Communication Delay and Construction over-
head with various β0. 101

6.28 Sub-Community division. 102

6.29 Sub-Community integration. 103

7.1 Application level multicast: Overlay Construction approaches. 108

7.2 Comparison: ALMI and ADCCS-Multilayer. 111

x

In the name of ALLAH, the Most Gracious, the Most Merciful.

Oh my LORD increase me in knowledge. [Quran: 20-144.]

To my dear

Respective parents, beloved wife and kids.

xi

xii

1 INTRODUCTION

1.1 Research Field: Large-Scale information-dissemination Systems

With the extensive advances in communication technologies and network comput-

ing, the Internet has become essential for information exchange around the world.

The enormous growth of the Internet is due to two reasons. First, the expected

number of worldwide Internet and mobile users by the end of 2005 is more than one

billion [1]. Second, the world publishes online about 300 terabytes of information

every year [2]. This extreme proliferation, blended with dynamic users’ and service

providers’ (SP) requirements, is pushing the development of new forms of e-social

and e-business such as dissemination-oriented applications that should efficiently de-

liver contents to their users. The development of the communication technologies,

and the availability of asymmetric, high-bandwidth links to the home, have sus-

tained the development of a wide range of new dissemination-oriented applications.

The information-dissemination systems are characterized by tremendous scale of the

number of information flows must be delivered to users having high degree overlap

not only of their demands, but also situations in terms of time and location. Cheriton

coined dissemination-oriented communication systems [3]. These systems involve the

delivery of data from one or more sources to a large set of receivers. Deering [4, 5]

proposed the IP Multicast architecture that efficiently performs group data dissem-

ination. However, more than a decade after the initial proposal, deployment of IP

Multicast has been limited and sparse due to a variety of technical and non-technical

reasons such as the overhead and complexities at the routers in the underlying network

layer are increased [6]. As a result, most of the dissemination-oriented applications

are still little developed or are only supported in very limited scales. In that re-

gards, recently the research turned to implement the multicasting functionality at

the application layer. In addition, the basis of the current information-dissemination

systems is to provide their services to anyone, at anywhere and anytime based only

on the users’ demands without considering their situations. Moreover, they posed

1

the users to be passive and non-cooperative actors in the systems. Situation and

context-aware dissemination-oriented cooperative services have motivated an increas-

ing interest for evolving both the social and economic environments. In that aspect,

there is a number of research and development undertaken in this field. For example,

in our research group we have proposed a service-oriented community system that

provides sale information when a particular Mall holds a sale at a specific time [7,8].

1.2 Problem Statement

The subsequent growth and the evolving in social and economic environments

promote more severe and complex requirements for the information-dissemination

service systems. The dissemination model for information delivery has motivated

an increasing interest. In this model, the user subscribes the desired information

and then passively receives new information. The traditional forms of data distribu-

tion rely on dedicated message servers that can be setup, maintained and accessed

within an enterprise infrastructure relatively easy. SonicMQ and SwiftMQ emerged

as the best performing Sun’s Java Message Service (JMS) [9] based message servers.

However, such infrastructures are seldom available outside enterprises. The need for

alternatives to these traditional forms of data distribution (client-server model) has

been identified in modern large-scale and very dynamic networks. Peer-to-Peer (P2P)

systems offer an alternative to traditional client-server systems for some application

domains. Despite their great potential, P2P systems still lack efficient data dissem-

ination mechanisms. Current P2P networks suffer from several problems. First, the

overlay network is more or less random. Peers with long latencies to their neighbors

slow down entire network branches. Second, the overlay network is static and pro-

hibits dynamic adjusting to alternatives that would be more efficient. Third, P2P

communications use the destination address to send the data. In very changing envi-

ronment, the state of the peer and the stability of the connections are so unpredictable.

This exhibits a non-continuous service provision. Fourth, the disseminated data has

to traverse peers that are not interested by such data and are not group members

but happened to be on the group communication route. This results in consuming

2

bandwidth of not involved peers and it slow down the communication performance, as

additional nodes have to be traversed. Finally, P2P systems deliver the information

considering the users’ demands regardless of their situations. There is no discern-

ment between differences in place and time; users in any situation receive the same

contents. Thus, it is highly required to propose new information-dissemination sys-

tem that provides users what they want, when they want, where they want and how

they want. Moreover these system must realize the requirements/constraints of the

large-scale and dynamic environment.

The goal of this thesis is to deal with these problems and provide an efficient

solution to disseminate the information among end-users with considering their het-

erogeneous and dynamic characters. Inspired from both the social community and

the Autonomous Decentralized (ADS) concepts [10,11], an Autonomous Decentralized

Community Communication System (ADCCS) is proposed. It performs a communica-

tion over a proposed Community Overlay Network(CON). The main idea is to form an

autonomous decentralized CON of end-users having not only same demands, but also

same situation. Moreover, the CON is a self-organized network that is constructed

and maintained with latency-awareness and dynamically adapts to network changes.

It only consumes the bandwidth of the involved end-users (community members).

This results in realizing customized and high performance information-dissemination

services.

1.3 Contribution

The main contribution of this thesis is to offer tenable solutions that enable

the dissemination-oriented services. This research work explicates the Autonomous

Decentralized Community Communication System (ADCCS) concept, architecture,

communication technique and community overlay network construction/maintenance

techniques. The proposed ADCCS is a flexible framework that has been specifically

designed for providing a solution to information-dissemination to a large set of users

having same demands and situation under changing environment. It can serve as

the basis for development of information systems that have in common some charac-

3

teristics, such as the distribution of information sources to a potentially large set of

users. These users are in same situation in terms of time and location and have same

demands.

The aim of the proposed ADCCS concept is to customize the dissemination service

to the end-users. It is proposed to provide service to the right users, at the right

location and the right time. More precisely, ADCCS provides what we want, when we

want, where we want and how we want type of services autonomously and continually.

To address the challenges of the current information systems (e.g. large-scale and

dynamic environment) an autonomous decentralized architecture is proposed. Each

node has autonomy in controlling its own processes and coordinating with other nodes

their own resources. Moreover, each node has locality by keeping track of only local

information (neighbor members’ list). Locality is the key of the system scalability. In

addition, by autonomy and locality the ADCCS can achieve scalable online-expansion,

online-maintenance and fault-tolerance requirements of the information service. Thus

it is possible to assure the service continuity and to cope with the dynamic changes.

The autonomous decentralized community communication technique is proposed

to address the problems of the conventional communication technologies. For flexible

communication, the proposed communication technique separates the logical com-

munity service’s identifier from the physical address. Nodes autonomously recognize

community members from non-members and only route community information to

only small number of neighbor members. A multilateral community communication

protocol is proposed for timely communication to achieve timeliness.

For flexible, continuous and efficient dissemination service, we design the com-

munity overlay network without support from the network level. The community

overlay network (CON) is constructed under two assumptions: node-node has ho-

mogeneous latency and node-node has heterogeneous latency. A single community,

FLAT-CON, is constructed under the node-node homogeneous latency assumption to

maintain the network diameter short. This results in decreasing the data dissemina-

tion delay. Join/leave/fault-tolerance processes with low complexities are proposed

for continuous service provision and utilization. The proposed fault-tolerance process

4

maintains the FLAT-CON as 2d-regular graph composed of d edge-disjoint Hamilton

cycles(non partition-able network) [12]. Multiple communities, Multilayer-CON, is

constructed under the node-node heterogeneous assumption. It organizes the CON

as multi-layer architecture of sub-communities (Flat-CON) considering node-node la-

tency. Sub-communities are added, disappeared, integrated or divided, layers are

added or disappeared and nodes are moved to appropriate sub-community, in order

to adapt and robust the dynamic changes of the networks (e.g. frequent join/leave)

and latencies. This results in achieving high performance (e.g. Timeliness) of the

data dissemination service over the CON.

1.4 Outline

The evolution and challenges of the distributed information systems are illustrated

in chapter 2, Background: Information Systems. It discusses the current distributed

information system architectures and structures and highlights their explosion of the

scales along with the dynamic environments. It explicates the tight requirements

to re-assess how to develop large-scale decentralized information systems under this

emerging computing landscape. Chapter 2 introduces the messaging basic terms and

concepts, communication protocols and then information delivery alternatives. A

literature review of related works that tackles the problem of efficient information-

dissemination services is presented. Most of these related works fail to cope with

users requirements in a large-scale and dynamic environment.

Chapter 3, Research Objectives, presents the research objectives, including the

problem formulation and the application domains. It clarifies the application and

system requirements of the decentralized information-dissemination systems. At the

end of this chapter, a brief description of our approach is illustrated. This approach is

inspired from both the Social Community and the Autonomous Decentralized Systems

to realize High Assurance to the dissemination information systems.

Autonomous Decentralized Community Communication System , Chapter 4, clar-

ifies the concept of Autonomous Decentralized Community Communication and the

architecture of the proposed Autonomous Decentralized Community Communication

5

System (ADCCS). Autonomous Decentralized Community Communication is defined

as the ability to allow users (Community members) that have same demands and

situations (time and place), under large-scale and changing environment, to coop-

erate and share the information-dissemination penalties and benefits as well. This

goal is realized through loosely connected, loosely control, self-organizing and self-

adapting Autonomous Decentralized Community Architecture. In that aspect, node

architecture contains five Autonomous Control Processor(ACP) sub-systems (mod-

ules) and Node Data Field (NDF) that assures communication between connected

modules. These autonomous subsystems are in charge of autonomous membership

management, service customization and information-dissemination communication

service. This chapter presents concept, requirements and design issues of the Com-

munity Overlay Network (CON). To assure the efficient communication among the

autonomous nodes the CON is constructed in Chapter 6.

Chapter 5 presents the autonomous decentralized community communication tech-

nology. In this chapter, the 1→ N community communication is proposed to permit

cooperative users to disseminate information timely. Each community node receives,

filters and then routes the received messages to only its neighbors. The evaluation

of the 1→ N community communication is provided. The robustness of community

communication techniques should account for the nodes heterogeneity, autonomy,

relying on self-inspection and adaptation to exploit the differences in the nodes’ char-

acteristics, behavior, and incentives.

Chapter 6 elucidates the construction technology of the CON. A single community

so-called Flat-CON is self-organized autonomous overlay network that sustains the

online-expansion and fault-tolerance of the community network. Flat-CON composed

of disjoint Hamilton cycles. This chapter clarifies the Flat-CON’s construction, fault-

tolerance and maintenance techniques. It ensures that these techniques process with

low complexities. Furthermore, Chapter 6 studies the effectiveness of the proposed

community communication delay, network traffic and fault-tolerance associated with

Flat-CON. The results confirm that ADCCS, which operates over Flat-CON, can

achieve the fault-tolerance, timeliness and scalability of the large-scale information-

6

dissemination systems under the homogenous end-node to end-node latency assump-

tion. However, in the realistic Internet environment the node-to-node latency is

heterogeneous. The question then is: can ADCCS support large number of members

with different communication cost? Then this chapter answers this question by con-

sidering the latency between community nodes as an important criterion that need

to be optimized. In that regards, multi-layer of multiple community overlay networks

(Multilayer-CON) is proposed. Multilayer-CON organizes the community overlay

network into a number of homogeneous sub-communities (Flat-CON) thereby reduc-

ing the communication delay and join overhead. Each sub-community has two special

members: Leader and Disseminator. The latency from any node to the leader and

the disseminator is bounded by specific value α. Furthermore, this chapter defines the

sub-community and then describes how to step by step construct and maintain sub-

communities and the multi-layer structure too. To cope with the dynamic changes of

the network (frequent join/leave) and latency this chapter presents two technologies:

Sub-Community Division/Integration technology and Self-Adapting Multilayer-CON

technology. Finally, this chapter presents the simulation results that demonstrate the

effectiveness of the proposed techniques in realistic Internet settings. The results

confirm that ADCCS-Multilayer that operates over Multilayer-CON achieves the

fault-tolerance, timeliness and scalable online-expansion of large-scale information-

dissemination systems under the heterogeneous node-to-node latency assumption. In

addition the results give an evidence of the existence of the trade-off relation between

fault-tolerance and timeliness along with the number of Hamilton cycles.

Chapter 7 presents a comparative analysis between ADCCS and the other con-

ventional application level communication systems. Finally, Chapter 8 draws the

conclusion and then describes some potential future works to address.

Finally the thesis manifests that the proposed autonomous decentralized commu-

nity communication system achieves the requirements to establish a High Assurance

information dissemination system.

7

8

2 BACKGROUND: INFORMATION SYSTEMS

2.1 History, Changes and Challenges

2.1.1 History

Information System (IS) is defined as a system that manipulates data and normally

serves to collect, store, process and exchange or distribute data to the users within

or between enterprises or to users within narrow or wider society [13]. In a rapidly

changing social and business environment these users need to work cooperatively and

share information in a convenient way without being bothered by geography or phys-

ical distribution of users, data and machines. Information science developers applied

computers to manipulate documents and document records in information storage

and retrieval systems. This began almost as soon as computers became available

in the 1950s. Computers were large and expensive. Starting in the mid-1980s two

advances in technology began. The first was the development of the powerful mi-

croprocessors. The second development was the invention of high-speed network [14]

and Open System Interconnection model (OSI) [15,16]. These technologies realize the

users’ needs by establishing computing systems that are composed of large number

of CPUs connected by a high-speed network. These system are usually called dis-

tributed information systems in contrast to the centralized information systems. The

Internet topology was developed in 1960s by DoD1. It is a powerful example of a suc-

cessful distributed system environment. The digital data in the information systems

are formed as documents. Ordinarily the word ”document” denotes a textual record

that contains digital information [17]. Moreover, the formats of the digital informa-

tion are varied from text to rich multimedia. Multimedia and hyperlinked objects on

the World Wide Web (WWW) represent some of the new kinds of information and

new ways of knowing in the digital realm that bring together the traditional forms

of information and transform their use. The development of computer hardware and

1US Department of Defense

9

software has also generated other new kinds of information objects, including the

products of simulation, remote sensing, computer-aided design (CAD) and geographic

information (GIS) systems. These objects come into being and exist as creatures of

the digital environment; if developed well, digital technologies will certainly produce

still other kinds of information objects, which we can now only anticipate.

2.1.2 Changes

The industrial era was rapidly replaced by the new information age and technolo-

gies. In this new phase, science and knowledge are becoming the critical vectors of the

so-called value-added economy. The world of communications is gradually changing

from an economy of scarcity and government-structured controls to a free economy

oriented towards abundant supply and diversity. This change quickens the place of the

elimination of monopolies in the delivery and distribution of information in telecom-

munications. Moreover, both technology and economy are radically modifying the

ways in which we use communication, both at work and in the home. Users now

have powers of transmitting and receiving information undreamed of even ten years

ago. The accelerating progress in new information and communication technology is

essentially based on three fundamental changes: digitization of images, sounds and

data; digital data compression; the growing of the power of the electronic compo-

nents. Three driving forces have served to propel distributed information systems as

the key development for the 2000s and beyond: advances in computer and commu-

nication technology, growing applications requirements and rapidly changing social

and business environment.

2.1.3 Challenges

Over the last few years, there have been dramatic changes in the computing and

communication landscape. The phenomenal growth of the Internet, the WWW and

the availability of high-bandwidth links into home and on the road via satellite have

revolutionized the way data is delivered and distributed between computers. The

Internet Systems Consortium(ISC) advertised in January 2004, the worldwide number

10

Figure 2.1. Number of Internet hosts Worldwide

of hosts touted in the DNS was 171,6 million [18], in contrast it was about 3,2 million

in 1994 and 1000 in 1984, as shown in Figure 2.1. According to Forrester Research [19],

it is anticipated that online advertising will reach $33 billion by 2004, one-third of

which will be spent outside of the United States. Consequently, the world publishes

online about 300 terabytes of information every year [2]. In addition, recent reports

estimate that the number of the worldwide Internet and mobile users will exceed

1 billion by the end of 2005 [1]. This explosion in the scale of the Internet along

with the dynamic data and the advances in processing power and communication is

beginning to test the limit of many assumptions traditionally made when designing

distributed information systems. Current distributed information systems does not

benefit from the Internet’s collaborative potential that resides at the edge nodes.

The trend is to head towards decentralized information systems that benefit more

from the computing at the edge paradigm. Moreover, in a large-scale systems users’

preferences and situations change dynamically thus these systems cannot customize

the service the right users at right time and location. The combination of these

factors is bringing forth a number of new and interesting challenges forcing us to re-

evaluate how to design and implement large-scale decentralized information systems.

In this thesis, the developments of large-scale decentralized information-dissemination

system and the issues that they raise are illustrated to adapt to the new tradeoffs in

this emerging computing landscape.

11

Data Source
Infrastructure

Communication
Infrastructure

Information Service
Infrastructure

Information Service
Architecture

Application

1st layer

4th layer

Figure 2.2. Information Systems Architecture: Layered Approach

2.2 Architectures

The layered approach has been adopted as conceptual framework for the design

and maintenance of the information systems. Figure 2.2 illustrates such an approach

where each layer is founded on the infrastructure provided by the lower layers. A

short description of each of the layers is as follows:

• Data Source Infrastructure consists of various methods for managing the data

quality of a single data source by using either syntactic (e.g. data mining [20])

or semantic (e.g. metadata) tools such as DAML-S [21].

• Communication Infrastructure consists of the seven layers of the OSI reference

model [16]. The higher information service layers build on the existing telecom-

munication technology.

• Information Service Infrastructure assumes the existence of communication and

data source tools and provides mechanisms for handling information from het-

erogeneous distributed data sources. Existing tools and standards developed at

this layer include HTTP requests [22], Java virtual machines [23] and Remote

Procedure Call (RPC) [24] protocols.

12

• An Information Service Architecture provides an overall architecture for han-

dling the semantic issues involved in it.

• The top layer, the Application layer consists of particular classes of services

such as e-commerce, intranet applications, and others.

The layered structure is useful in offering a useful method for integrating technolo-

gies. The particular interest in this thesis is second and fourth layers. Consequently,

the following subsections will illustrate four models that are commonly used to struc-

ture an information system [25].

2.2.1 Master-Slave model

In computer networking, master/slave is a model for a communication protocol in

which one device or process (known as the master) controls one or more other devices

or processes (known as slaves). Once the master/slave relationship is established,

the direction of control is always from the master to the slave(s). Slaves exhibit

very little intelligence, responding to a command from a single master and exchange

messages only when invited by the master. The master defines the command set and

appropriate responses associated with the dialogue. The slave merely compiles the

dialogue rules. An example configuration is given in Figure 2.3. This was the model

on which online centralized machines running time-sharing information systems were

based. The model has limited application in a distributed information technology

infrastructure because it does not make best use of distributed resources and the

master represents a single point of failure.

2.2.2 Client-Server model

The client/server model has become one of the central ideas of network computing.

Most business applications being written today use the client/server model. It is

widely used paradigm for structuring distributed information systems. Services are

accessed via a well-defined interface that is made to the clients. A client requests a

particular service. One or more servers are responsible for the provision of a service

13

Master

Slave

Slave

Slave

Figure 2.3. Master-slave model.

to clients. A server is normally persistent and provides services to more than one

client. Obviously, client-server interaction is based on a request/reply protocol as

illustrated in Figure 2.4. Both client programs and server programs are often part of

a larger program or application. In the Internet, Web browser is a client program that

requests services (e.g. Web pages or files) from a Web server that technically is called

a Hypertext Transport Protocol [22] or HTTP server. The main distinction between

master-slave and client-server models lies in the fact that client and server are on an

equal footing with distinct roles and functionalities. Other client/server relationship

models included master/slave, with one program being in charge of all other programs,

and peer-to-peer, with either of two programs able to initiate a transaction.

2.2.3 Peer-to-Peer model

Peer-to-Peer(P2P) [26] is a communications model in which each party has the

same capabilities and either party can initiate a communication session. In some

cases, peer-to-peer communications is implemented by giving each communication

node both server and client capabilities and functionalities as illustrated in Figure 2.5.

In recent usage, peer-to-peer has come to describe applications in which users can use

the Internet to exchange files with each other directly or through a mediating server.

Gnutella [27] and Chord [28] are two examples of products that support the peer-to-

14

Server

Client

Client

Client
Interface

Request
Reply

Figure 2.4. Client-Server model.

C

S

C

C
S

SS

C

Figure 2.5. Peer-to-Peer model: C, Client function; S, Server function.

peer communication model. Corporations are looking at the advantages of using P2P

as a way for employees to share files without the expense involved in maintaining a

centralized server and as a way for businesses to exchange information with each other

directly. The P2P model evades many problems of client-server systems but results

in considerably more complex searching, node organization, security, and so on. P2P

networking offers unique advantages that will make it a more effective solution to

several existing client-server e-commerce applications if it can mature into secure and

reliable technology [29].

15

A

B

C

X

Interface

Message

Y

Z Join

Leave

A

B

C

X

(a)

A

B

C

X

Interface

(b)

A

B

C

X

(c) (d)

Figure 2.6. Group model.

2.2.4 Group model

A group is a collection of computers or processes that cooperate in such a way

that one process may need to send a message to all other processes in the group

and receive response from one or more members. A worldwide-distributed discussion

system USENET [30] is an example. When a subscriber sends a message to a news

item, all other subscribers receive it. The group model is illustrated in Figure 2.6-(a).

When a message sent to the group interface, all members of the group receive it.

There are three main approaches [31] to route the message to every member. First

approach is unicasting, a sender sends a separate copy of the message to each member

as shown in Figure 2.6-(b). Second approach is broadcasting, a sender broadcasts a

single message to all members with a broadcast address as shown in Figure 2.6-(c).

Every members receive the message and determine whether they should take action or

discard it. This is not appropriate mechanism to use over the Internet and may lead to

Broadcast Storm. A Broadcast Storm is an undesirable network event in which many

broadcasts are sent at once. Broadcast storms use substantial network bandwidth and

may cause network time outs. Therefore, the broadcast-based group communications

16

do not scale well. Third approach is Multicasting, a sender sends a single message to a

group address that can be used for routing purposes as shown in Figure 2.6-(d). This

is an efficient mechanism since the number of network transmissions is significantly

less than for unicasting. It relies on an underlying network facility. The IP multicast

was proposed over a decade ago [5]. However, the use of multicast in applications

has been limited because of the lack of wide scale deployment and the issue of how

to track the membership management. An alternative to router-dependent multicast

service is to let end-nodes that form a multicast group replicate and forward messages

on behalf of the group. The basis of the communication in this thesis is based on this

alternative (independent of the underlying network).

2.3 Related Works

Several available centralized or distributed message/event systems aim at easing

the development of communication-intensive distributed applications. This section

presents the messaging basic terms and concepts, communication protocols, informa-

tion delivery alternatives and then reviews some systems that have been developed

to solve the problem of efficient information-dissemination services. The communi-

cation approaches of these conventional dissemination systems are client/server and

Peer-to-Peer. We review their basic concepts and focus on important aspects for their

communication model like efficiency, topology, scalability and robustness.

2.3.1 Messaging: Basic Terms and Concepts

The terms message and event describe a segment of data that is sent from one

user and received by others to communicate with each other. The message contains

some text, a picture, multimedia data, etc. The term message is more general than

the term event. Event is triggered by some incidents for sending a segment of data.

The difference between them might be slight, thus along the context of this thesis we

will use the term message.

Asynchronous versus Synchronous Communication Asynchronous communi-

cation model is the transmission of message between two nodes that are not

17

synchronized with one another via a clocking mechanism or other technique.

Basically, the sender can transmit message at any time, and the receiver must

be ready to accept information when it arrives. FIFO (first-in, first-out) mes-

sage queues are used to develop this model. Queues allow processing messages

independently from the time when they were stored. In contrast, synchronous

communication model is a precisely timed stream of data. The RPC [24] con-

cept provides this model. The protocols that assume the system is synchronous

exhibit performance degradation as the delivery delays increases [38].

Publishers/Subscribers A publisher is a sender of a message to multiple receivers,

called the subscribers. They subscribe the desired information on a specific topic

and then passively receive all new messages that are related with this topic. In

addition, the subscribers may use message filters to decide whether messages are

relevant within a specific context or not. If not, they don’t have to be processed

any more in this context. Often a one-to-many communication model is used

to support publish/subscribe concept. In some cases, many-to-many commu-

nication model is used, if multiple publishers are taking a part of information

provision. Messaging systems usually support the publish/subscribe concepts.

Most of these systems rely on dedicated message servers that can be setup,

maintained and accessed within an enterprise. These systems can be developed

by using JMS specification [9].

Messaging Systems Messaging systems offer interfaces to send, receive, filter and

route messages. They are considered as special types of middleware and are

called Message Oriented Middleware (MOM) [39]. They reduce the complexity

of developing applications that span multiple operating systems and network

protocols by insulating the application developer from the details of the various

operating system and network interfaces. MOM has recently received consider-

able attention because of its decoupled nature that nicely solves asynchronous

one-to-many communications in highly dynamic distributed environments. In

contrast to RPCs, MOMs do not model messages as method calls; instead they

18

Internet

InternetR

R

Sender

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Sender

Receiver

R Routers

Unicast

Multicast

Figure 2.7. Unicast versus Multicast

model them as events in an event delivery system. Messages generated by ap-

plications are meaningful only to other clients, because the MOM itself is only

a message router.

2.3.2 Communication Protocols

1. Unicast is a communication protocol between a single sender and a single re-

ceiver over a network as shown in Figure 2.7. An earlier term, one-to-one com-

munication, is identical in meaning to unicast. The Internet protocols (IPv4)

and (IPv6) support unicast. Unicast is performed over two transmission pro-

tocols User Datagram Protocol2 (UDP) and Transmission Control Protocol

(TCP). UDP does not need membership and offers unreliable message delivery.

In contrast, TCP provides an explicit conversation based-model that requires

synchronous rendezvous and explicit membership. Thus, TCP offers reliable

source-ordered message delivery.

2UDP used a self-contained, independent entity of data (Packet) carrying sufficient information to
be routed from the source to the destination.

19

2. Broadcast, in general, is to cast or throw forth something in all directions at

the same time. It is sometimes used in e-mail or other message distribution for a

message sent to all members, of a group such as a department or enterprise. It is

supported by most local area network (LAN) technologies, such as Ethernet and

Token Rings. Senders direct an IP broadcast to 255.255.255.255 to indicate all

nodes on the local network (LAN) should pick up that message. This broadcast

is limited in that it does not reach every node on the Internet, only nodes on

the LAN.

3. Multicast is a communication protocol between a single sender and multi-

ple receivers on a network as shown in Figure 2.7. Multicast is also used for

programming on the MBone3 [40] systems that allow users at high-bandwidth

points on the Internet to receive live video and sound programming. In addition

to using a specific high-bandwidth subset of the Internet, Mbone multicast also

uses a protocol that allows signals to be encapsulated as TCP/IP packet when

passing through parts of the Internet that cannot handle the multicast protocol

directly. Deering [4] proposed the IP Multicast architecture in 1990. IP Multi-

cast is a networking transmission protocol that allows packets to simultaneously

transmitted over the MBone to a selected set of destinations. This is faster than

sending packet to each individual node by using unicast. In March 1992, the

MBone carried out its first event with 20 nodes worldwide-received multicast

audio streams from a meeting of the Internet Engineering Task Force (IETF) in

San Diego [41]. Since the initial proposal and the deployment of IP Multicast,

it has been limited and sparse due to a variety of reasons. For example, the

overhead and complexities at the routers are increased [6]. In addition, IP Mul-

ticast requires additional mechanisms for congestion control (e.g. MTCP [42]

and PGMCC [43]) and reliability (e.g. RMPTP [44]).

3It is a multicast Internet that is an arranged use of a portion of the Internet for Internet Protocol
(IP) multicasting. It was set up in 1994.

20

Push

AperiodicPeriodic

Pull

Periodic Aperiodic

Send: Polling
Reply: Explicit

Unicast

Send: Polling
Reply: Implicit

One-to-Many

Send: Request
Reply: Explicit

Unicast

Send: Request
Reply: Implicit

One-to-Many

Prompt

Unicast

Trigger

Unicast

Broadcast

One-to-Many

Publish/Subscribe

One-to-Many

Figure 2.8. A taxonomy of information delivery methods

2.3.3 Information Delivery Alternatives

This section classifies some existing information delivery techniques. Figure 2.8

clarifies the information delivery methods according to the pull-based or push-based

protocols. With pull-based delivery, a user sends a request to a server. When a request

is received at the server, it sends the required information to the user. In contrast,

with push-based delivery, the server initiates the transfer to the users. Both push and

pull can be performed aperiodically or periodically. Periodic delivery is performed

according to some schedules that had arranged in advance. Contrary, the aperiodic

delivery is event-driven. The event can be either data update for push or user request

for pull. For example, stock prices’ server sends out stock information on either

regular basis (periodic-push) or only when information is updated (aperiodic-push).

The periodic push has been widely used for data dissemination in many systems, such

as TeleText, VideoTex [45] and Datacycle [46]. In thesis system, the periodic push

uses two communication models: one-to-one (Unicast) or one-to-many. Two types

of one-to-many data delivery can be distinguished: broadcast and multicast as were

described in section 3.4.2. Some leaves in Figure 2.8 show an interesting classification

of the information delivery techniques that will be discussed as follows.

21

Request/Polling Users aperiodically send their requests to the server. In the other

hand, the system may periodically poll the other sites to detect updated values

(e.g. remote sensing systems).

Explicit-reply/Implicit-reply They are two types that can be used to reply users’

requests. First, the server explicitly replies only to the requester by using one-to-

one communication model. Second, the server replies not only to the requester,

but also to the other users in the system by using one-to-many communication.

Thus, users implicitly obtain information that they did not ask for. The partic-

ular interest in this thesis is the Implicit-reply information delivery technique.

Publish-subscribe The demand for publish/subscribe protocols is growing at an

incredible rate. Publish/subscribe is push-based; data flow is initiated by the

data source, and is a periodic, as there is no predefined schedule for sending data

as shown in Figure 2.8. It is typically performed on one-to-many communication

model but other systems are performed on one-to-one communication model

(unicast), as is done for triggers in active database systems. For example, the

Stanford Information Filtering Tool (SIFT) is a tool for wide area information-

dissemination [47]. To customize the service to the SIFT users, the connection

between SIFT server and user is push-based, unicast, and aperiodic.

2.3.4 Dissemination Systems’ Structures

During the past decade, much work has been done in demonstrating the use-

fulness of publish and subscribe event infrastructures to large distributed systems.

The publish and subscribe model is powerful because it provides a named handle

on a conversation between any number of distributed parties. The structures of the

information-dissemination systems are classified into client-server and peer-to-peer as

follows.

22

Client/Server

A very large number of publish and subscribe systems have been developed, are

almost universally structured as client-server and are in use today in commercial

distributed systems. However, in wide-area settings these platforms clearly suffer

from scalability problems. Several of these systems are presented briefly hereafter.

1. Information Bus. The Information Bus [48] was developed as a commercial

distributed system infrastructure in the early nineties. The system provides

publish and subscribe style distribution to applications requiring zero down time

and upgradeability. Sample applications cited by the authors are stock floor

systems and integrated circuit manufacturing plant systems. The architecture

was built on TCP/IP, and used specialized servers to handle message queuing.

Ethernet broadcast was used as an optimization for group communication in

local subnets. Information Bus provides appropriate performance only within

an enterprise infrastructure.

2. SIFT. The SIFT [47] system was developed at Stanford University as a way

to disseminate documents to a user community. It combines data management

ideas from information retrieval with a publish/subscribe model for dissemina-

tion. SIFT has three components: the document source, the SIFT server and a

SIFT client (one of potentially many). The document source component aperi-

odically pushes the document to the SIFT server using unicast communication

protocol. Then the SIFT server aperiodically pushes the new document to each

client using unicast. In this case, the client profile that is held at the SIFT

server is customized for each client. It consists of a series of keywords that

describes the documents interest to that client. The SIFT server is responsible

to index client profiles. The index technique should allow the server to accom-

modate a large client population with reasonable performance. Clearly, SIFT

is not scalable solution for information-dissemination. Increasing the number

of clients increases the overhead to store and index the clients’ profiles.

23

Advertise

Publish

Subscribe

Publisher:
Object of interest

Subscriber:
Interested party

Access point

Acyclic servers network

Servers

Notify

Figure 2.9. SIENA: distributed event notification architecture.

3. SIENA. It is a distributed content based publish/subscribe system that was

developed at the University of Colorado [49]. It is composed of interconnected

servers (brokers, proxies), each one serving some subset of the clients of the

service as shown in Figure 2.9. The clients are of two kinds: objects of interest,

which are the generator of events, and interested parties, which are the con-

sumers of the event notifications. Clearly, a client can act as both an object of

interest and an interested party. Both kinds of clients interact with a locally

accessible server that functions as an access point to the network-wide service.

Creating network of servers, routing algorithms and processing strategy are the

main issues having been studied in SIENA. The servers are organized into an

acyclic peer-to-peer architecture. However, the external clients of the service

use the standard client/server protocol. The network of servers is not able to

cope with failures because of the static logical topology. SIENA relies on a

global broadcast operation to disseminate advertisements through the entire

network, which limits its scalability.

4. Java Message Service (JMS). Enterprise messaging is now recognized as

an essential tool for building enterprise applications. JMS [9] is a specification

developed by Sun Microsystems. By combining Java technology with enterprise

messaging, the JMS API provides a new, powerful tool for solving enterprise

24

computing problems. IBM’s MQSeries and Talarian’s SmartSockets are two

message systems have been implemented based on JMS. Java Message Service

was originally developed to provide a common Java interface (API) to legacy

Message Oriented Middleware (MOM) [39] products. This API brings portabil-

ity of Java code which facilitates the replacement of underlying message service

without affecting exiting code. JMS offers two models for messaging among

clients: one-to-one (using a queue) and publisher/subscriber (by means of top-

ics). The publishers and subscribers communicate indirectly with each other

to achieve a high degree of decoupling. To do so, an application server is in

control of setting up the connections among publishers and subscribers. JMS

was incorporated as an integral part of the Enterprise Java Beans (EJB) com-

ponent model in the EJB 2.0 specification by defining a new bean type, known

as message-driven bean (MDB). This new bean acts as a message consumer

providing asynchrony to EJB-based applications.

Peer-to-Peer (P2P)

Some number of publish and subscribe systems have been developed based on

the peer-to-peer architecture. They deliver the information to the subscribers using

multicast. In P2P architecture, the multicast functionality is pushed to the end-nodes

(end-hosts) actually participating in the multicast group. The communication in this

group is performed over an overlay network. This section will clarify motivation,

overview, architecture and discussion of two well-known application level-multicast

systems, ALMI [50] and Narada [51]. Both are dedicated for collaborative applications

with a small number of group members.

1. Application Level Multicast Infrastructure (ALMI)

Motivation There exist some applications whose requirements are substan-

tially different from the design point of IP multicast. Such applications

25

include shared white-board, video-conferencing, multi-party games and

private chat rooms. These applications usually contain a small number

of group members, and the groups (e.g. multi-party games) are often cre-

ated and destroyed relatively dynamically. The number of such groups

that are concurrently active can be fairly large. ALMI is motivated by

the need to support group communication among small group of nodes

without relying on the IP-Multicast mode.

Overview To meet the requirements of such emerging applications, ALMI of-

fered a solution for multi-sender communication that scales for groups with

small number of members, and did not depend on multicast support of the

routers. It provided a multicast middleware that is implemented above the

socket layer. The participants of ALMI multicast session were connected

via a virtual multicast tree. The tree was formed as a Minimum Spanning

Tree (MST), where a cost of each link is the round-trip application level

delay between nodes.

Architecture An ALMI session consists of two kinds of sessions. First, Con-

troller session is a program instance located at a special purpose server

that is easily accessible by all members. This server can be installed within

a corporate or an Internet Server Provider (ISP) network. The controller

session handles membership management and maintains of the multicast

tree. Moreover, it ensures the efficiency of the multicast tree by periodi-

cally constructing the MST. Second, Members’ sessions are organized into

a multicast tree. A member session in charge of receiving/sending data

as it would be in IP multicast session. In addition, it also forwards data

to designated adjacent members. Thus, data reaches all session members

through this communication technique in a cooperative fashion. The mul-

ticast tree is a shared-tree amongst members with bidirectional links.

Discussion Despite ALMI great potential, it takes a centralized approach to

the tree creation problem. Even this approach may reduce the overhead

during a change of membership or a recovery from a node failure; clearly, it

26

constitutes a single point of failure for all control operations related to the

group. The choice to have multiple backup controllers, operating in stand-

by mode may address the controller fault problem, but raise other problems

like non-consistency of membership data among them. In addition, the

required network traffic for control messages near to the controller increases

with increasing the control operations. Thus, ALMI fails to distribute the

network traffic evenly across the physical links.

2. Narada: End System Multicast

Motivation End system multicast, Narada, shares with ALMI the application

domain. Contrary to ALMI, it takes a distributed approach for member-

ship management. The participants end-nodes of Narada multicast session,

join, leave or fail relatively dynamic. That leads to either network partition

or degradation of data dissemination performance. Narada shares much of

the motivation of ALMI. Moreover, it is motivated by the need to construct

a self-organized overlay network for achieving efficient data dissemination

and fault-tolerance.

Overview Narada challenges the appropriateness of using IP Multicast for

all forms of group communication. It argues the need for nodes to con-

struct overlay networks for efficient data dissemination and fault-tolerance.

Thus, Narada constructs an overlay structure among participating end-

users’ nodes in a self-organizing and fully distributed manner. It is robust

to the failure of end-users’ nodes and to dynamic changes in group mem-

bership. Narada continually refines the overlay structure, as more network

information is available.

Architecture Narada constructs the overlay network based on the mesh-first

approach. In this approach, end-nodes first organize themselves into over-

lay mesh4 topology in a distributed fashion. Multiple paths exist on the

mesh between a pairs of end-nodes. Second, Narada construct spanning

4Richer connected graph

27

trees of the mesh, each tree rooted at the corresponding source using well-

known routing algorithms (e.g. Reverse Path Forwarding [52]). This mesh-

first approach is motivated by the need to support multi-source applica-

tions. To keep the mesh connected, every end-node maintains a list of the

other end-nodes in the multicast group. Every end-nodes’ list needs to be

updated when a new end-node joins or an existing node leaves or fails.

To handle this, Narada requires that each end-node periodically generate

refresh message with monotonically increasing sequence number, which is

disseminated along the mesh. These refresh messages are the key point

to repair the mesh partitions. Distribution of refresh message to all other

end-nodes leads to relatively high control overhead (O(N2) aggregate con-

trol overhead, where N is the group size). In addition, Narada improves

the mesh quality by adding and/or dropping of overlay links. It performs

data delivery as follows. Each end-node not only maintains the routing

cost to every other end-nodes, but also maintains the path that leads to

such a cost.

Discussion The overall results of Narada suggests that it can achieve good per-

formance for small and medium sized groups involving tens to hundreds

of end-nodes [51]. The self-organizing and improving overlay approaches

incur overhead due to the network traffics and active measurements re-

spectively. While maintaining full group membership information helps

to achieve Narada goals, it leads to the concern that the cost of main-

taining such information may be prohibitively expensive for large sized

groups. As multicast group size increases, it is not clear whether Narada

can keep probe overhead low and construct efficient overly quickly or not.

Thus, Narada is not scalable for data dissemination for large number of

end-nodes.

The membership management of these previous related works varied from cen-

tralized to decentralized. In the client/server structure, clients have to subscribe in

a dedicated server. Similarly, some peer-to-peer information-dissemination systems,

28

such as ALMI and Bayux have some sub-entities are able to grasp the total system for

membership management. In addition, other peer-to-peer systems, such as Narada,

each sub-entity has to know the total system. In large-scale and rapidly changing

environments, it is potential that system scalability and adaptability can only be

obtained by assuring the locality and autonomy of the all entities constituting the

system. The trend is to head towards decentralized models that benefit more from

the computing at the edge paradigm. Thus, our research work sustains the same di-

rection as previous researches on Autonomous Decentralized Systems (ADS). In

addition, this thesis extends the concepts of autonomy, locality and decentralization

to large-scale information-dissemination services. The following chapter will briefly

introduces autonomous decentralized systems.

2.4 Summary

This chapter illustrated the evolution and the challenges of the communication in

the information systems. Then, it discussed the system architecture and structures

of the current information systems. The explosion of the Internet scale along with

the dynamic environments manifests a number of challenges. They enforce us to re-

assess how to develop large-scale decentralized information systems. The messaging

basic terms and concepts, communication protocols and then information delivery

alternatives are introduced. Some systems that have been developed to solve the

problem of efficient information-dissemination services have reviewed. We classified

these systems into two categories: based on client-server approach and peer-to-peer

approach. We have shown that most of these systems are still the subject of important

research efforts. Most of these systems are fail to cope with users’ requirements in a

large-scale and dynamic environment. We believe that this trend will continue, since

information-dissemination system required many important needs. Finally, this the-

sis will illustrate the development of a large-scale information-dissemination system

under this emerging computing landscape.

29

30

3 RESEARCH OBJECTIVES

The previous chapters asserted that the decentralized and dynamic natures of the

information services exhibits severe technical challenges for any technology that at-

tempts to provide coherent and compact information. One of these challenges is in

a rapidly changing environment how the information service systems provide what

users want, when they want, where they want and how they want. In other words,

information needs to be efficiently disseminated to the right users at right time and

right location. The problem becomes therefore how to provide a continuous and ef-

ficient information-dissemination services along with customizing the services to the

right users, at right time and right location. This chapter illustrates the problem

statement and clarifies the application and system requirements of the decentralized

information-dissemination systems. Moreover, it presents the Autonomous Decentral-

ized system’s concept and architecture that are the basis of this research.

3.1 Problem Statement

Recent studies have shown that an increasing fraction of the data on the WWW

is dynamic. Dynamic data can be defined by the way the data changes. The main

issue in the dissemination of dynamic data is the deliver of the right information

to the right users in a right location and time. Data changes rapidly, changes can

even be of the order of one change every few seconds; it also changes unpredictably,

making it very hard to use simple prediction techniques or time-series analysis. Some

examples of the applications that disseminate dynamic data are stock prices, sports

scores, national election results and traffic or weather data. A scenario of an example

of unpredictable dynamic data as shown in Figure 3.1 is as follows. A major event,

such as an earthquake happen in a specific location says Tokyo, at specific time.

All residences in Tokyo are involved in this event. They have critical demands to

know information such as: Where to gain water?, Where to gain food?, Where to

find health-care?, etc. The changes of this information are unpredictable. Such kinds

31

SP

Earthquake Area

Figure 3.1. Event-based dissemination example: Earthquake

of data are generally used in decision-making (for example, earthquake event, stock

trading or weather forecasting) and hence the timeliness of delivery of this data to

its users becomes not only very important, but also critical. For example, the delay

to deliver health-care information on time is the cause of someone who needs health-

care to die. The problem of the current information-dissemination system is how to

timely and continuously disseminate information that meets the user’s demands and

situations. Figure 3.1 illustrates a flash crowd that is typically triggered by events of

great interest, whether planned ones such as sport events (e.g. FIFA 1998 world cup

event [32]) or unplanned ones such as, earthquake and terrorists attack in September

11, 2001 that overwhelmed major news sites such as MSNBC and CNN [33]. For

example, peoples in earthquake area send their requests to a city center’ server to

get information then a rapid and sharp surge in the volume of requests arriving at

a server often results in the server being overwhelmed and/or failed and response

time is shooting up. In contrast if the volunteers in the earthquake area cooperate in

information dissemination then they relieve the city server from this task and alleviate

a load on the server by distributing the load among them. The next section further

clarifies the application requirements.

32

3.2 Application Requirements

The situations and demands of the users formulate their requirements. The users’

situations are continuously changing; from school to home and so on. The main

characteristics of the dissemination-oriented application domains described in last

section are: large-scale number of users, dynamic environment and high degree of

overlap among the users demands and situations. Users require well-customized ser-

vice timely, continual and available information services [34]. Moreover, they require

enriching their experiences and getting to know new information without solicitation.

In that respect, an information service that does not disseminate the information to

the users at right time and location is virtually equivalent to one that is unavailable.

In short, the users’ requirements are: non-stop and continuous services, high re-

sponse time and receive the information that is aware of their demands and situation.

3.3 System Requirements

The previous section has discussed the users’ requirements. It has been observed

from the users’ requirements that there are three views of service provision: cus-

tomization, situation and quality [35]. A system that meets these requirements

is highly required. This section discusses the system requirements that must be real-

ized.

Online-Expansion The system is expanded due to some users/nodes joined into

the system. The joining process should be done with low complexity, without

stopping the system and maintained high-response for the users. In other words,

only a few already existed users in the system should be involved in the joining

process. This is the key of the system scalability.

Fault-tolerance To cope with the dynamic changes in the network a fault-tolerance

process is required that should be done with low complexity. Node failures must

not lead the network partitioning or disconnecting or severely hampering the

service provision. The fault-tolerance system provides continuous service even

if part of a system is failed.

33

Timeliness It is an essential component in modern high-assurance1 and large-scale

information systems [36]. It provides a service to the users with high-response.

To achieve the timeliness property, the system should be scalable to meet the

requirements of a large number of users without suffering any degradation of

the system performance. In addition, the system should consider the node to

node latency to optimize the communication delay.

Customization The system should fit not only the users’ demands, but also their

situations. In the Internet users have different daily life requirements such as

what to do?, what/when/where to buy or sell?, etc. Obviously, these require-

ments are influenced by their situations. For example, people during weekend

or Golden Week holidays in Japan are keen to enjoy their time by discovering

new services that are suitable to their economy, location, etc.

Finally, the system that simultaneously satisfies the online-expansion, fault-tolerance

and timeliness requirements under evolving situations is called Assurance Communi-

cation System [36, 37]. Thus, the information dissemination system that is able to

realize the online-expansion and fault-tolerance with low complexities, timeliness and

customization under changing conditions is called a High-Assurance Information

Dissemination Service System .

3.4 Autonomous Decentralized Systems (ADS)

Motivated from the molecular biology and the remarkable progress of microelec-

tronics in LSI and communication technology, the autonomous decentralized sys-

tem [11] has been proposed.

3.4.1 ADS Concept

The constantly evolving system contains entities (subsystems) that are dynami-

cally added, modified and others failed. This results in the total system cannot be

1A system is a high-assurance system if it does what it is supposed to do all of the time and when
it cannot do so, it fails in a safe way.

34

known in advance. A system, Autonomous Decentralized System that needs to pro-

vide non-stop and continuous services in a rapidly evolving environment must satisfy

the following properties:

• Autonomous Controllability Each entity is able to manage itself, carry out

its functions and continue its operations regardless to the other entities.

• Autonomous Coordinability If an entity added, failed, repaired or modified,

the other entities are able to coordinate among themselves to satisfy their goals.

The evaluation of these properties has been shown in [53]. In order to achieve

autonomous controllability and autonomous coordinability each entity must satisfy

both three conditions and three on-line properties as following respectively:

I. Conditions

• Equality All entities in the system are equal without having master-slave re-

lationships.

• Locality Each entity manages itself and coordinates with others entities only

on the base of its own local information. In the sense, no entity knows the total

system. This is the key of the system scalability.

• Self-containment Each entity is self-contained in carrying out its operations.

It takes its decisions based on its local information.

II. On-line Properties

• On-line Expansion The typical example of system expansion is the addition

of application modules and entities. This process must be realized on-line with-

out stopping the system. Thus, the system maintains high degree of availability

to the service.

• Fault-tolerance Both hardware and software are faulty, thus the service

availability cannot be guaranteed. Thus, it is highly required that the system

35

ACP ACP ACP

Data Field

EntityEntity

Application Software Module

CC Data
Message

Figure 3.2. ADS Architecture

continues its operation even if a part of the system is faulty. In other words, if

parts of the system are fail to work properly, the overall dynamics can continue

to be the same or similar so that the system will not even come to a partial or

complete halt.

• On-line Maintenance The system should carry out test procedure without

stopping services to avoid failure.

3.4.2 ADS Architecture

The ADS architecture mainly relies on three main parts:

Atom Each entity has its local management system, called Autonomous Control

Processor (ACP) and its application modules. The Atom registers the contents

of data it can process to the ACP. Then, ACP filters the incoming data based

in their contents specified in the message header.

Data Field It is the communication medium that allows the participated atoms in

the system to communicate as shown in Figure 3.2. It serves as a common

environment of coordination between the Atoms. The data circulates around

the application modules in the Atom, and the data field in the atom is called

36

Atom Data Field (ADF). This results in excluding the mutual dependency

among application modules.

Content Code In the data field, each data is specified by a unique identity based on

its contents, called Content Code (CC). CC is the basis of the communication

among atoms. Any atom sends its data on the data field by attaching content

code CC to the data.

The communication on the data field relies on a data-driven mechanism. On the

other hand, the conventional communication relies on address-driven mechanisms. In

address-based protocols such as HTTP, each host sending a message must know in

advance the address of the receiver. Contrary, the message sent on the data field is

broadcasted to all atoms participated in it. Then message is then processed or dis-

carded according to the receiver Atom. Each entity decides whether or not to accept

a message. The data field architecture can satisfy the data communication require-

ments for various application domains. ADS shows a great success in transportation

control systems and manufacturing control systems such as Automated Train Control

System [54]. The main goal of this thesis is to present a proposition for large-scale

information-dissemination system with dynamic natures.

3.5 Summary

This chapter introduced the research objectives including the problem formulation

and the application domains. It clarified the application and system requirements

of the decentralized information-dissemination systems. A brief description of our

approach has been illustrated. In the following chapters, a new approach inspired from

both the social community and the Autonomous Decentralized Systems is proposed

to realize High Assurance to the information-dissemination systems.

37

38

4 AUTONOMOUS DECENTRALIZED COMMUNITY

COMMUNICATION SYSTEM

Chapters 2 and 3 investigate that a new communication model for information-

dissemination systems is required to address the issues of information-dissemination

in large-scale systems with dynamic characteristics. Most communication models il-

lustrated in the previous chapter failed to address the most important problems of

the information-dissemination systems such as system scalability, service availability

and continuity, and service customization. They show performance degradation with

the increasing of the number of the participants in the information-dissemination

service. Thus, they cannot achieve one of the essential components in modern high-

assurance and large-scale information systems, the timeliness. End-users in most of

these systems except P2P systems are passive actors (i.e. only utilize information).

Moreover, these systems including P2P systems lacked to the multilateral cooperation

among each other. In this thesis we have identified that the constructive cooperation

among end-users assures the well-customized service’s provision and utilization. Next

paragraphs will briefly demonstrate Why Cooperate?, Individual and Community, and

Cooperative Information Systems.

Why cooperate? Almost everything we use and depend on in our everyday life is

produced and brought to us by the coordinated actions of many other people.

Almost everything made by humans is produced cooperatively. We are also

totally dependent on cooperation within us. We are composed of cooperative

living processes. If the living processes that make up our bodies did not co-

operate, we would not exist. Their cooperation is us. The key to the success

of cooperation is that combinations of individuals whose activities are coordi-

nated can do things better than individuals, and can do things that individuals

cannot. Cooperation is also able to exploit the fact that combinations often

have new features that their components do not. A further very general ad-

vantage of cooperation is that it can prevent the harmful effects of destructive

39

competition. The advantage of cooperation mean that a whole world of new

adaptive opportunities is opened whenever living processes team up to form a

cooperative community.

Individuals and community The word ”Community” comes from the Latin term,

Communis, meaning fellowship or common relations and feelings. In fact there

are large number of community definitions from the social point of view. For

example, Hillery [55] and MacIver [56] pointed out that the concept of com-

munity is based on the locality of human life, and is the counter of association,

where people share a common goal. Community brings new importance to peo-

ples. It makes them actors as well as spectators. The value of the individual

is enhanced, if emphasizes each person has unique contributions. However, the

value of individual differences does not lead to violent individualism. Instead,

member-to-member relation raises the value of community. There is no such

thing as a single individual. The value of a member grows together with its ties

to all the other members on the system; thus, the member gains value insofar as

he or she contributes to a community and reaps the community’s benefits. There

are levels of cooperation among members as follows. Cooperative members who

work toward satisfying the same goal versus members that are self-motivated

and try to maximize their own benefits. Community is an intermediary case

where self-motivated members join together to work toward a common goal.

Cooperative Information Systems One of the greatest challenges for computer

science is building computer systems that can work together. The integration of

automated systems has always been a challenge, but as computers have become

more sophisticated, the demands for coordination and cooperation have become

more critical. Cooperative information system is a relatively young research area

[57]. In distributed systems and cooperative computing, the word cooperation

has a natural meaning. Cooperation presupposes users that have goals and can

act upon them. Moreover, cooperation among users entails these users having

some common goals and act forwards their fulfillment. Information systems can

40

be thought of as collections of human and computerized agents that can carry

out actions such as requesting information. Ishida, et al. [58] pointed out that

the Community computing is a research field for creating mechanisms and tools

that support social interaction via computer networks such as the Internet and

mobile computing systems.

Inspired from the cooperative models in the social communities, this thesis

will illustrate a cooperative information system that is cooperatively able to

disseminate the information efficiently.

The next section illustrates the leading concept of the Autonomous Decentralized

Community Communication System (ADCCS).

4.1 ADCCS: Concept

In large-scale and extreme dynamism of the operating environment, it is difficult

to disseminate the information efficiently. Therefore it is necessary to maintain the

locality and autonomy of the information-dissemination. To achieve so, based on

the spirit of cooperation in the social community and the autonomous decentralized

system concept [11,59], this thesis proposes the concept of Autonomous Decentralized

Community Communication System (ADCCS). In addition, the basis of the ADCCS

concept is to provide the information to specific users at specific place and specific

time. In contrast, current information systems provide the information to anyone,

anywhere and anytime. In this thesis, we define Autonomous Community as a commu-

nication environment for a coherent group of autonomous members having common

demands and interests not only in specific location, but also at specific time. The

community members are autonomous, cooperative and active actors and they mu-

tually cooperate to enhance their objectives. Each community member plays a dual

role as information sender and receiver at the same time. Furthermore, each message

from a participant is meaningful to all members and at the same time every member

is typically interested in data from all senders in the community.

The ADCCS concept is realized if the following aspects are satisfied:

41

• Autonomous Controllability Each member is able to manage himself, carry

out its functions and continue its operations (e.g. routing messages) regardless

to the other members.

• Autonomous Coordinability If a new member joined, leaved, his node failed,

his software repaired or modified, the other members are able to coordinate

among themselves to satisfy their own goals and to disseminate messages timely.

• Mutual Cooperation The constructive cooperation among members is the

vehicle of the successful community. Cooperation is not merely coordination.

Through the mutual cooperation, the community members attain the useful

information and achieve their own objectives (i.e. information-dissemination)

with low efforts (i.e. network traffic). In other word, the community benefits

have to cover its liability in order to be attractive for both its members and the

other users have intention to join it.

These aspects assert that the community structure dynamically changes, and each

member has autonomy for interactive communication and information processing.

Furthermore, the community members cooperate for utilization and provision of the

community services and information-dissemination and sharing under the evolving

situations.

The ADCCS concept can be realized with autonomous controllability, autonomous

coordinability and mutual cooperation. Moreover, each member is required to satisfy

the following conditions:

• Equality Each member must be equal and able to handle his objectives without

being directed by or giving the directions to the others. In other words, there

is no master-salve relation among the community members. All the community

members have same rights and same responsibilities (e.g. routing messages) in

the community. In fact the fairness among the community members has to be

satisfied because unfairness provokes them to leave the community.

• Locality Each member handles his objectives and coordinates with others based

only on his local information. For example, each member based on his local

42

information takes the decision whether to route the received messages to his

neighbors or not. Furthermore, he also takes the decision to continue in or to

leave such community based on his own local information (preferences).

• Self-Containment Each community member is self-contained in managing

his objectives whereas he coordinates with the others.

• Synergy Cooperation among people, and organizations would be the main

characteristic of this era. Prompted from the dictum that one for all and all

for one, each community member must cooperate with the other community

members. Furthermore, the community’s success is subjected to the mutual

and productive cooperation among its members. Owing to the synergy among

community members, a continual and timely information delivery can be im-

plemented.

ADCCS is a promising concept for information-dissemination services operating

at the edge of the network. It realizes the large-scale information-dissemination sys-

tem that successfully able to carry out and enhance the objectives of the community

members (e.g. timely information-dissemination and sharing) in a very dynamic envi-

ronment. It guarantees the constructive cooperation among the community members

with a very high degree of autonomy among them. We have developed system archi-

tecture, ADCCS that fosters the concept of the autonomous decentralized community

information-dissemination system.

4.2 ADCCS: Architecture

4.2.1 System Architecture

Applications are moving away from tightly-coupled systems towards systems of

loosely-coupled, dynamically bound components. This trend requires to integrate

autonomous, heterogenous components (nodes) into complex systems by means of

discovering and exchanging information. The architecture of the ADCCS can be

developed as follows. The nodes of the community members will be connected on a

43

Non-member Member Logical links

Autonomous Controllability

Autonomous Coordinability

Underlying Network

B

C

A

D

E
B C D E

Logical links

Figure 4.1. Autonomous Decentralized Community Communication System
Architecture

bilateral basis. The bilateral logical contact between two community nodes will occur

considering that the users of these nodes have the same interests and demands, at

specific time and location. It can be defined that in bilateral contacts, community

nodes connect each other and share information. The community network is a self-

organized and self-adaptable logical topology. It is a set V of nodes of the end-users

that considers the symmetric connectivity and the existence of loops. Each node

keeps track of its immediate neighbors in a table. The immediate neighbors set of

the community node x is defined as the set of nodes

INSx = {y;x, y ∈ V, h(x, y) = 1} (4.1)

Where h(x, y) is the number of logical hops between nodes x and y. For example,

Figure 4.1 shows that the immediate neighbors’ set of node A is INSA= {B, C, D,

E}. Each node knows its neighbor nodes and shares this knowledge with other nodes

to form a loosely connected large number of nodes. In Figure 4.1 the solid bold lines

represent the logical links among nodes. Each node judges autonomously whether

to join/leave the community network by creating/destroying its logical links with

its neighbor members based on its user’s preferences. The community’s boundaries

44

Neighbors
Sub-system

Node A

Stock Market
News

Message Format

CC:News CH Data/Request * RRM: Recent Received Messages

A
pplications

Information
Delivery

National Election
News

Utilization
Sub-system

Dest.?

Receive/Send
Sub-system

Node Data Field

CC

E

CC

C

CC

D

CC

B

Monitor Recent
Received messages

CC

Utilization
Sub-system

.

User Pref.

CC

Monitor
Sub-system

A
D

C
C

S
M

iddlew
are

C
H

1

C
H

5

C
H

9

RRM*

A
C

P M
odules

Network

Hardware

Operating System
Receive/Send
Sub-system

Fault-tolerance
Sub-system

CC

Fault-tolerance
Sub-system

Figure 4.2. ADCCS: Node Architecture

change with the dynamic change of its members’ requirements. ADCCS architecture

has no central server whatsoever, as can be seen in Figure 4.1.

4.2.2 Node Architecture

The node is an execution platform that is in charge of autonomous membership

management, service customization and information-dissemination communication

service. It contains five Autonomous Control Processor(ACP) sub-systems (modules)

and Node Data Field (NDF) that assures communication between connected modules

as shown on Figure 4.2 and as follows. For the communication among modules a

specific message format is designed and will be illustrated in the following section.

• Utilization Module It monitors the changes of the user’s preferences. A Java

utility such as, Java Developer Almanec 1.4, can be used to form and monitor

the user’s preferences and then generates XML data. As soon as it detects

any change of the preferences of its user, it generates an appropriate Content

Code (CC) and then registers it into the ACP. Then, this node will receive any

message holding the CC that is propagated in the community.

45

• Neighbors Module It is responsible for the membership management such as

node joining process, leaving process and fault detection and recovery processes.

These processes require only local changes in the community network. Thus,

this module guarantees a low complexity on-line expansion and fault-tolerance

using fault-tolerance module to the community system as will be shown in next

chapters. This allows the ADCCS to scale extremely large groups and to deal

with the rapid changes in the group membership efficiently. Furthermore, Neigh-

bors Module not only considers the node-node latency when nodes join or leave

the community, but also monitors the changes of the node-node latency to adapt

these changes, as will be shown in Chapter 6.

• Monitor Module To avoid the congestion that may happen if some of the

community nodes send simultaneously identical messages, each node keeps a

short memory (CH) of the recently routed messages in the Recent Received

Messages list (RRM). This module monitors the recent received messages and

judges autonomously to forward only one copy of the received messages to

the other neighboring nodes. Moreover, it autonomously takes the decision to

whether keep or delete the short memory of the received message, based on the

frequency of receiving such message. This enables community to avoid network

congestion and to distribute the load more evenly overall nodes.

• Receive/Send Module It is responsible to send, receive and then route the

received message to neighbor nodes except the neighbor node that delivered it.

In that respect, receive/send module coordinates with the neighbors module

and monitor module to identify the destinations of the message to be routed.

• Fault-tolerance Module It is responsible to detect the failure of neighbors

by exchanging keep alive messages with neighbor nodes. It then recovers this

failure and maintains the node connectivity with other nodes.

The communication among these modules is done through the NDF as shown on

Figure 4.2. However, the processing steps for filtering and forwarding the received

messages by each node, according its CC, is shown on Figure 4.3 and as follows.

46

Registered
CC?

Message

Received
Before?

DEST?

Discard MessageForward Message

YES

NO

YES

NO

YES

NO

Monitor
Module

Neighbors
Module

Receive/Send
Module

Arrived

Figure 4.3. Filtering and Forwarding of received Messages

When node A received a message, it calls the receive/send module to check the CC

and then takes a decision to accept such message or not. If CC was registered then A

calls the monitor module that checks if the message was received before or not. If the

message does not received before then A calls the neighbors module. The neighbors

module determines the neighbor nodes that were registered the CC. Then A forwards

the message to these neighbor nodes.

Node’s Autonomy This node architecture supports two system properties, the au-

tonomy and locality of the node as follows. Each node recognizes autonomously

a member from a non-member and cooperatively forwards the community infor-

mation to only its neighbor members. Community node does not forward the

community information/request out of the community. Moreover, each node

”think globally and act locally” by taking a decision autonomously based on its

local information to store the relevant received information. The decision is

taken not only according to the node situation (e.g. limited resources) and the

importance of the offered information, but also according to the requirements

of the other members. Each community node keeps a short memory of the

recently routed messages to avoid the congestion in the community network.

47

Each node autonomously cooperates with others for locating, and/or provid-

ing the information in the community. If any node leaves, fails and joins the

community, the other community members still can coordinate their individual

objectives among themselves. Consequently, each member is able to operate in

a coordinated fashion.

Thus, both the ADCCS architecture and its node architecture fulfill the follow-

ing important four features. We believe that the system, which realizes the follows

features, will assure an efficient real time and cooperative content delivery service,

regardless of the extreme dynamism of its operating environment.

• Loosely-Connected Each node keeps a short memory about its neighbors as

shown in Equation 4.1 and Figure 4.2. Each node shares the neighborhood

information with its neighbors. Thus, a loosely connected mass of nodes can be

constructed.

• Loosely-Control Figure 4.1 shows that no node is responsible for either mem-

bership management or central service provision.

• Self-organizing Each node judges autonomously to join or leave the commu-

nity based on its user demands and situation.

• Self-adapting The system must be adaptable to meet the constantly and

dynamically changes of the members’ interests and demands. In addition, it

should cope with the dynamic network changes such as member-member latency

as will be shown in chapter 6.

The ADCCS architecture is a fully decentralized model, where each participated

node has equal responsibilities, and does not rely on any central authority to organize

the network. Thus, it does not load up any single node excessively and enables the de-

velopment of the high assurance information-dissemination systems with adaptability,

flexibility and high availability characteristics.

48

4.3 ADCCS: Community Overlay Network

4.3.1 Overlay Networks

The Internet itself was developed as an overlay on the telephone network. Several

Internet overlays have been designed in the past for various purposes, easing IP

multicast deployment using MBone [40] and providing IPv6 connectivity using the

6-Bone. In the broadest sense, the Overlay Network can be defined as a set of tunnels

formed among network edges to support a common packet processing function other

than the ones supported in the conventional network.

One of the important goals of overlay networks is to implement multicast services.

In deciding whether to implement the multicast overlay networks at the IP layer

(underlying layer) or at end-nodes, there are two conflicting considerations that we

need to overcome. According to the end-to-end arguments [60], the functionality

should be pushed to higher layers if possible; unless implementing it at the lower layer

can achieve large performance benefits that outweigh the cost of additional complexity

at the lower layer. The IP Multicast requires routers to maintain per group state that

not only violates the stateless architectural principle of the Internet original design,

but also introduces high complexity and serious scaling constraints at the IP layer.

Even with Moore’s law’s prediction in 1965 [61] that the processing speeds double

every 18 Months, it still falls short of the speed that bandwidth capacity is growing

at. So not only it is not cost-effective to add new software to router platforms in

order to meet new application demands, the limited processing power at core routers

also leaves little room for additional processing functions.

4.3.2 Why Overlay Network?

The most cited problems preventing Internet Service Providers (ISPs) from de-

ploying a multicast-enabled network (Mbone) include: the complexity of most multi-

cast routing protocols and their implementations; the lack of a scalable inter-domain

routing protocol; and the lack of support in access control and transport services. In

addition, the Mbone topology is not optimized and grows randomly. It also tends to

49

Table 4.1
Multicast Overlay Network: Underlying Layer vs Application Layer

Underlying Layer Application layer

Global Address Yes (IP-Multicast

Address)

No

Internet Stateless

Architectural Principle

No Yes

Scalability Low High

Congestion and Flow

Control

Difficult Easy

End-to-End Latencies Low High

Bandwidth Usage Low High

trigger miss-configurations and consequently to disrupt services. Despite these diffi-

culties, it is undeniable that multicast is an efficient transmission mechanism to reduce

network load for very large groups and to save transmission time and bandwidth of

data sources even in small multicast groups as shown in Table 4.1. Moreover, there

is a deficit of experiences with additional mechanisms such as congestion and flow

control on top of the IP multicast overlays, so ISPs are wary of enabling multicasting

service at the network layer. Thus, it is highly required to build overlay networks

that enable the efficient multicast at the application layer without any support from

routers.

The basic idea of the multicast overlay at the application layer as shown in Figure

4.4-(b) is that data packets are replicated at the end-nodes. Contrary, in the network

layer multicast shown in Figure 4.4-(a), data packets are replicated at the routers.

Logically, end-nodes form an overlay network to construct and maintain an efficient

overlay for information-dissemination. In addition, the prime advantage of the overlay

network architecture in application layer is that it does not require universal network

support. This enables faster deployment of desired network functions and adds flexi-

50

R Routers

Internet

Sender Receiver

Receiver
Receiver

R
R

R

R

R

(a) Network Layer Overlay Multicast

Internet

Sender Receiver

Receiver
Receiver

R
R

R

R

R

(b) Application Layer Overlay Multicast

Figure 4.4. Network-layer and application layer overlay multicast.

bility to the service infrastructure. In addition, it allows the co-existence of multiple

overlay networks each supporting a different set of service functions.

4.3.3 Community Overlay Network (CON)

An autonomous Community Overlay Network (CON) is one type of overlay net-

works that are formed over the application layer. The nodes comprising a CON reside

in a variety of routing domains and cooperate with each other to forward data. CON

provides information-dissemination services to end-users (community members) hav-

ing same demands at specific time and location. It performs the multilateral and

content-code 1 → N community communication that will be illustrated in next sec-

tion on top of the general Internet unicast infrastructure. Thus, CON will have a

continuing role in preserving service flexibility and customization over the Internet.

Despite the advantages of building the multicast overlay network at application, layer

there are some disadvantages. Such that it is impossible to completely prevent multi-

ple overlay edges from traversing the same physical link and thus same data will pass

multiple of times over the same link. Moreover, communication between end-nodes

involves traversing other end-nodes, potentially increasing latency. A comparison

between multicast overlay networks over underlying layer and application layer is

tabulated in Table 4.1. The questions then are: How to efficiently construct the

51

community overlay network for efficient information-dissemination?. Second, How

to construct the community overlay network at application layer with efficient that

converges to the high performance of the overlay networks at underlying layer?. This

thesis answers these questions in the following sections. The main goal of CON is to

enable community nodes to communicate with each other (i) in face of problems at

the underlying Internet paths connecting them; (ii) in high performance even without

underlying network supports. The following section discusses the existing discovering

techniques to discover the overlay network.

Discovering CON

When an end-user wants to join a CON, he/she has to discover at least one

community node X. The end-user’s node can either use information from an out-

of-band bootstrap mechanism similar to Narada [51] and CAN [62], employ network

broadcasting and discovery techniques such as IP multicast or employ network random

walk. In bootstrap technique, the new node look up the CON domain name in DNS

to retrieve a bootstrap node’s IP address. This node maintains a partial list of

CON nodes it believes that they are currently in the community. Thus, bootstrap

techniques prone to scalability problems and the bootstrap nodes represent single

point of failures. IP multicast technique is scalable but leads to high network traffics.

We believe that the random walk is efficient technique but may take long time to find

a community node. In this thesis we do not address this issue.

CON: Design Issues

A community service that should be deployed and operated in the CON faces the

problem of constructing a least-cost network that will meet the needs of the com-

munity members. Then, several questions in order to construct the CON should be

answered. How many connections should be assigned to each node? How do nodes

join efficiently to the CON for efficient multicast under two assumptions: Homoge-

neous node-to-node latency and Heterogeneous node-to-node latency? How do nodes

leave the CON with low complexity? How does CON achieve service continuity re-

52

gardless of the failure of its nodes? How can CON be self-organized and self-adaptable

to the network changes?. Each of these questions leads to a subproblem in the CON

design problem. The coupling and interaction of these problems results in a complex

network design. This dissertation studies these problems and provides efficient solu-

tions. The thesis proposes an autonomous decentralized community overlay network

construction/maintenance technologies in Chapter 6.

4.4 Summary

Autonomous Decentralized Community Communication is the concept proposed

to allow users have same demands and situations, under large-scale and changing

environment, to cooperate and share the information-dissemination penalties and

benefits as well. This goal is realized through the Autonomous Decentralized Com-

munity System Architecture. This architecture is characterized by loosely connected,

loosely controlled, self-organized and self-adaptable properties. In addition, this chap-

ter introduced the community overlay network concept and structures for providing

customized, flexible and efficient information-dissemination services. It argued that

this overlay network is well-suited for the emerging trends in the Internet architecture.

53

54

5 AUTONOMOUS DECENTRALIZED COMMUNITY

COMMUNICATION TECHNOLOGY

The conventional communication, typically through Web browsers, has been built

on the one-to-one communication protocol. In one-to-one, data travels between two

users, e.g., e-mail, e-talk. This protocol misspends the network bandwidth and makes

the real time services unresponsive. Caching most popular web pages on the proxy

server reduces the network bandwidth consumption and the access latency for the

users. However, the web cache techniques have some disadvantages as follows. First,

a single proxy server is a single point of failure. Second, the limited number of users

per proxy manifests bottleneck affects. Third, data does not updated automatically.

Finally, cache misses increase in the latency (i.e. extra proxy processing). In the

conventional one-to-many group communication the message travels primarily from a

server to multiple users, e.g., software distribution. For very large groups (thousands

of members) or very dynamic multicast groups (frequent joins and leaves), having

a single group controller might not scale well. Currently, there is no design for the

application-level multicast protocol that scales to thousands of members. For exam-

ple, Overcast [63] builds a mesh per group containing all the group members, and

then constructs a spanning tree for each source to multicast information. The mesh

creation algorithm assumes that all group members know one another and therefore,

does not scale to large groups. Bayeux [64] builds a multicast tree per group. Each

request to join a group is routed to a node acting as the root. This root keeps a list

of all the group members. All group management traffic must go through that root.

It generates more traffic for handling a very dynamic group membership. Bayeux

ameliorates these problems by splitting the root into several replicas and partitioning

members across them. But this only improves scalability by a small factor. Chapter

7 will show comparative analysis with other application level multicast systems.

This thesis proposes the Autonomous Decentralized Community Communication

Technique. The main ideas behind this communication technique are: content-code

55

CC CH Data/RequestCC CH Data/Request

Figure 5.1. Community communication message format

communication (community service-based) and multilateral communication. It is pro-

posed to realize a flexible, a timely and a productive cooperation among members. It

is illustrated in the following subsections.

5.1 Service-oriented and Multilateral Community Communication

Conventional communication techniques use the destination address (e.g. unicast

address, multicast address) to send data. In constantly and rapidly changing oper-

ating environment likes ADCCS, the status of nodes (i.e. end-users are frequently

joins and leave) and the stability of connections are unpredictable. Therefore, these

conventional communication techniques cannot guarantee the high assurance of the

information-dissemination service. Instead of the destination address, this thesis en-

capsulates a service identifier and detailed contents of the requested/disseminated

service to assure a flexible communication among members.

The first main idea behind the autonomous decentralized community communica-

tion technique is the separation of the logical community service identifier from the

physical node address. In this communication technique, the sender does not specify

the destination address but only sends the content/request with its interest Content

Code (CC) to its neighbor nodes. CC is assigned on a type of the community service

basis and enables a service to act as a logical node appropriate for the community

service. Figure 5.1 shows the community communication message format. CC is

uniquely defined with respect to the common interest of the community members

(e.g. politic, news, etc.). The information content is further specified by its Charac-

teristic Code (CH). For example, CC is ”Iraq news” and CHi is the ”prisoners abuse

scandal” at the Abu Ghraib prison in Baghdad, Iraq on first of May 2004. The CH is

the hash of the message content. It is uniquely specified with respect to the message

56

content (e.g. data or request). It can be computed by the collision resistance hash

function (e.g. SHA-1 [65]) that ensures a uniform distribution of CH.

The second main idea behind the autonomous decentralized community commu-

nication technique is multilateral communication for timely and productive cooper-

ation. Multilateral communication occurs among the community members that are

already networked on a bilateral basis. All members communicate productively for

satisfaction of all the community members, as follows.

5.2 1→ N Community Communication

To disseminate information within the community, this thesis presents a commu-

nication technology so called 1 → N community communication. A scenario of the

1 → N community communication is described as follows. The community node

asynchronously sends a message to its N neighbor nodes. Then, each node from

these N nodes forwards the same message to another N neighbor nodes in the next

layer, except the node that delivered the incoming message, and so on gradually until

all the community nodes have received the message. This technique handles as the

model like Viral propagation. Each community node executes the following instance

of pseudo-code.

Listen (CC) {
// Installed in the Receive/Send module

// CC is the community communication content code

// The self-variable means the calling node id.

do {
if (received message.cc == CC) then

self.Forward message(received message);

} while(1);

}
Forward message(m) {
// m is the message structure contains the CC, CH and data

// The self-variable means the calling node id.

57

Received messages
from neighbor node B

CC CHi Data

Received
Queue

D

C

E

B

Neighbors
List

Node A

C

Check

D

E
RRM

CH1 CH5 CH9..

CC CHi Data

Forward
Message

Received_mess()

Check_mess()

Forward_mess()

E

D

C

Forward
List

Figure 5.2. 1→ N Communication: Node work flow diagram

If (self.Not received(m)) then

for k ∈ self.Neighbors in asynchronously do

self.SendTo(m, k);

}

Figure 5.2 shows the 1 → N communication flow diagram at a node. Each node

has two queues one to keep received messages and the second to keep forwarding

messages. In addition, it has two lists. The first list contains the neighbors of the

node. The second is called Recently Routed Message (RRM) list. It contains the

characteristic codes of recently forwarded messages out of the node. Each node has

four routines: Listen(), Received mess(), Forward mess() and Check mess(). The first

three routines are installed in the Receive/Send module while the last one is installed in

the Monitor module. As soon as a node joins the community, it executes the Listen()

routine and listens to all messages propagated in the community network that hold

the community content code (CC). The source of a message calls the Forward mess()

routine that sends the message to all its neighbors. When a node receives a message,

it calls the Forward mess() routine. The Check mess() routine checks the RRM if

the received message has received before or not, sets the value of the Not received

58

variable and then adds its characterized code to RRM list if not. The Check mess()

creates a volatile list that contains the neighbors nodes except the node that delivered

this message. The node running the Received mess() routine listens to all messages

has CC content code and then adds the received message to the received queue. For

example, as shown in Figure 5.2 node A has received a message from node B with

content code CC and characterized code CHi. Node A checks the message and then

takes the decision to forward this message to all neighbors nodes except node B. Thus,

we can avoid the network congestion that may happen if some of the community nodes

simultaneously send identical messages.

The 1 → N communication technique does not rely on any central controller.

Each community node has its own local information and communicates only with

specified number (N) neighbor nodes. There is no global information such as IP

multicast group address [4] or multicast service nodes [66,67].

5.3 Community Communication Protocols

The community communication technique has two protocols: Hybrid pull/push

based and request/reply-all based.

Hybrid pull/push based protocol When one of the community members has new

information, he/she publishes it to all the community members using 1 → N .

A typical application is news information sharing among users having same

interests and demanding to know specific news at specific time and or location.

This thesis addresses only non-multimedia contents (e.g. news) having moderate

size. The hybrid pull/push based protocol offers an effective solution to the

flash crowd problem as shown in Figure 5.3. The solution scenario is as follows.

When community member S downloads interesting content for the community

from the server (e.g. news server or government server), he/she publishes it to

all community members, thereby relieving the server of this task, alleviating

a load on the server and distributing the load among the community nodes.

When the number of nodes increased sharply, the load at each node is increased

59

Server Request

Community

S
A B

D C

Figure 5.3. Hybrid Pull/push based protocol

slightly. The hybrid pull/push protocol represents a scalable solution for large-

scale information-dissemination systems.

Request/reply-all based protocol When a community member wants to locate

information, he/she sends a request message. The the other community mem-

bers then cooperate to locate the requested information. When any community

node receives the requested message, it processes the request. If a node finds no

results, it forwards the request to its neighbor nodes using 1→ N . Otherwise,

the node sends its results, such as pointers to the information or the actual

content depending on its size. Then this node sends a reply message not only

to the requesting node, but also to all community members. Figure 5.4 shows

the message flow when the community node S sends a request (solid arrows)

to its neighbors and node R replies (dotted arrows) to all community members

by the required information I. The reply-all protocol affords the other com-

munity members to send the same request. Consequently, all the community

members expand their knowledge, experiences and implicitly get to know new

services without issuing specific requests, in which individually they cannot get

to know. This is in keeping with the community’s goal of multilateral benefits.

The reply-all protocol also decreases the per-node traffic by avoiding multiple

requests for the same content.

60

R

S

I

Figure 5.4. Messages flow in request/replay-all based protocol

The originality of our proposed communication technique does not come only from

the service-oriented (content-based) communication, but also from the reply-all that

satisfies the multilateral benefits. Contrary to peer-to-peer (P2P) communication

techniques, in 1 → N community communication all members cooperate on a single

request to the benefit of all members. In P2P, peers cooperate only for the unilateral

benefit of the requesting member. The comparisons between the ADCCS and the

conventional information-dissemination systems based on client/server and peer-peer

structures are tabulated in Table 5.1. From this table we conclude that the community

communication is: service-based, cooperative and multilateral benefits communica-

tion. The service-based communication is not merely content-based communication

because service-based communication considers not only the users’ demands, but also

the users’ situations.

5.4 Performance Verification

The objective of the analysis in this section is to show the effectiveness of the

proposed communication technique. Assume the number of the community nodes is

M and each node has k neighbors. The information is broadcasted in a tree as follows.

The source node sends asynchronously a message to each one of k neighbors (children)

and then each neighbor forwards asynchronously the same message to another k-1

61

Table 5.1
Communication comparison

Client/Server Peer-to-Peer ADCCS

C
om

m
u
n
ic

at
io

n

Model Address-based Address-based &

Content-based

Service-based

Request One-to-One One-to-Many 1→ N

Reply One-to-One One-to-One 1→ N

C
h
ar

ac
te

ri
st

ic
s

Benefit Unilateral Unilateral Multilateral

Users Passive Active Active

Load Servers Congestion Peers Congestion No-congestion

(Fairness)

neighbors nodes in the next layer and so on, until all community nodes receive this

message. Thus, the number of the community nodes taking part in the broadcasting

tree can be written as follows.

M ≤ 1 +
L−1∑

i=0

k(k − 1)i (5.1)

Where L is the number of layers or depth of the tree. Then the number of layers can

be calculated as follows.

L ' d log((M−1)∗(k−2)
k

+ 1)

log(k − 1)
e (5.2)

Under the assumption that the communication cost between each node is one unit of

time then, the transmission time τ to send a message from one member to all other

members is bounded by O(N ∗ logN(M)), where N = k − 1. Consequently, we can

drive the optimal 1→ N community communication as follows.

dτ

dN
=

d

dN
(N ∗ logN(M)) = log(M) ∗ (

log(N)− 1/ln(10)

(log(N))2
) (5.3)

From Equation 5.3, we conclude that dτ
dN

= 0, d2τ
dN

> 0 ⇒ N ' 3 and τ is concave

up. For any number of nodes M, the 1 → 3 community communication technology

is the optimal. Similarly, Figure 5.5 shows that ever-increasing the number of nodes

62

�

�� ��

�� �

�� � �

�� �

�� � �

�� �

� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

	
�

� � 	 	
 � �
 � � � � � � � � � � � �

�
�

��
�
�

�
�
�
��
��
�

�
�

��
�
��
��
�

����� ������ ������� ��������

�

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

� � � � � 	
 � � �

� �
 �

�
�
��
��
�
�
�
	
�

�
�
��
�

�
��
�
�
�
�

Zoom

Figure 5.5. Optimal 1→ N Community communication

100 Nodes, Different Comm. Cost.

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1->N Communication

NMCD NMT

Figure 5.6. Trade-off: Communication Delay & Network traffic/link

the optimal communication is 1 → 3 under the assumption that the communication

cost between each node is one unit of time.

We study the 1→ N Community communication under the assumption that the

communication cost between each node is different. Figure 5.6 shows the results of

the experiment that investigates the effect of the variation of 1 → N on its perfor-

mance. In this experiment two metrics are used: normalized mean communication

delay (NMCD) and the normalized mean network traffic per link (NMT) (Mean

number of identical messages per link). Figure 5.6 shows that when 1→ N increases,

the network diameter decreases and network traffic per link increases. Consequently,

63

it verifies that the trade-off between the communication delay and the network traffic

exists. Then, several questions are raised and should be answered. Such as, how

many connections should be assigned to each node? for efficient communication and

low network traffic. This thesis will answer these questions in next chapter.

5.5 Summary

This chapter demonstrated the service-oriented and multilateral community com-

munication. It separates of the logical community service identifier from the physical

node address for flexible communication. In contrast to the conventional communi-

cation system, all community members cooperate on a single request to the benefit

of all members. Moreover, in this chapter the 1 → N community communication is

proposed to permit cooperative users to disseminate information timely. The evalu-

ation showed that the 1 → 3 community communication is optimal when the com-

munication delay between each node is one unit of time. However, under different

communication cost, the experiment results verified the existence of the trade-off be-

tween the communication delay and the network traffic. The prominent strength of

community communication techniques should account for the nodes heterogeneity,

autonomy, relying on self-inspection and adaptation to exploit the differences in the

nodes’ characteristics, behavior, and incentives.

64

6 AUTONOMOUS DECENTRALIZED COMMUNITY OVERLAY

NETWORK CONSTRUCTION TECHNOLOGIES

6.1 Single Community Construction/Maintenance Techniques

The topology design problem is how to place network nodes - routers in the con-

ventional context and end-nodes (community members) in the CON. Moreover, it

is required to decide how to connect the community nodes with respect to some

network diameter and node-to-node latency constraints. This section illustrates the

autonomous decentralized construction/maintenance technique of the CON as single

community under the assumption that node-to-node latency is homogenous. We call

this single community overlay network Flat-CON.

6.1.1 Goals and Requirements

Flat-CON is symmetric in the sense that each node in the network will have

identical capabilities and duties on the network. In addition, the node to node com-

munication cost is homogenous (i.e. latency from any end-node to the others is same).

This excludes the existence of central servers that might be involved in organizing

the network. Our first goal is to construct Flat-CON with short diameter that can

support multicast efficiently. In addition, we should avoid hotspots in Flat-CON by

distributing the network traffic evenly among community nodes during the broadcast.

Hotspots push members to give up from the community system, as a result the avail-

ability of the system is gradually decreased and the system becomes distasteful for

its users. That is required fairness among community nodes. The fairness objective

dictates that all nodes must have the same degree as possible. The second goal is

to make the construction and maintenance of Flat-CON be highly scalable. In other

words, the complexities for joining, leaving and fault-tolerating nodes should be as

low as possible. Finally, Flat-CON topology has to provide redundancy. Node failures

must not lead to community network disconnecting or severely hampering broadcast

65

properties. Next subsection presents our proposed construction technique achieving

these goals for the community topology.

6.1.2 Organizing Flat-CON: Regular Graph

Any node can join and leave the community network at any time and through a

node already exist in the community network. It has been observed that the node

degree distribution of the Internet with uncontrolled evolution mimics a power-law

[68]. It occurs when no scheme is imposed on the way nodes join and leave, thus

the network is likely to grow to become exponential network and may lead to some

hotspots in the community network. For example, some peer-to-peer systems do

not specify how many connections a peer may initiate, accept, or simultaneously

maintain. Consequently some peers may have high load than others. In that respect,

this thesis proposed an autonomous decentralized community construction technique

for making the potential hotspots very unlikely. The thesis constructs Flat-CON

as regular-graph1 for three arguments as follows. First, regular graphs are chosen

because it is required that all nodes having the same degree. Second, we construct the

community network as an intermediate of a completely ordered regular network and a

fully random network for achieving two interesting features: high clustering i.e., there

is a high density of connections between nearby nodes, which is a characteristic of

the regular topologies, and short network diameter. Finally, the community network

composed of Hamilton cycles2 having the advantage that joining or leaving processes

will require only local changes in the graph. A graph that is constructed from disjoint

Hamilton cycles is a connected graph [70]. Thus, as long as CON maintains Hamilton

cycles then CON is a non partitionable network.

Flat-CON construction polices the nodes joining and leaving the community net-

work and organizes them in a 2d-regular graph ,G = (V, E), such that V is the set of

nodes with labels [M] =1, 2,..., M and E is the set of edges. Due to frequent join and

leave, E and V are changing with time. The graph G is composed of independent d

1A graph in which all nodes have the same degree.
2A cycle that connect all nodes in a graph and visit each node only once [69].

66

A

Successor
nodeCalling

node

ith Cycleith Cycle

New edgeNew edge

Edge substitution

Substituted edge

Figure 6.1. Add node A in the i-th Hamilton cycle.

edge disjoint Hamilton cycles [69]. Assume Hn denotes the set of all Hamilton cycles

Ci on set [n], and C1, C2, ..., Cd ∈ Hn for n ≥ 3, E = (C1, C2, ..., Cd). Let Hn,2d be

the set of all 2d-regular multi-graph constructed by some C1, C2, ..., Cd ∈ Hn. To

construct Flat-CON with achieving the goals mentioned before, we shall construct

2d-regular multi-graphs in Hn,2d for d ≥ 2 and n ≥ 3. Of course if n ≤ 2 ∗ d + 1 we

might use a complete graph instead of H-graphs. Then each node has 2d neighbors

(node connectivity). Those neighbors are labeled as r(1)
p , r(1)

s , r(2)
p , r(2)

s , ..., r(d)
p ,

r(d)
s . For each i, r(i)

p denotes the neighbor node’s predecessor and r(i)
s denotes the

neighbor node’s successor on the i -th Hamilton cycle. The advantage of using the

Hamilton cycles is that nodes joining or leaving will require only local changes in the

community network as will be described as follows.

6.1.3 Online Expansion and Construction: Join Process

As soon as the end-user’s node H discovered a community node C, it sends a

join request to node C. Node C is responsible to find 2d neighbors for node H to

connect. If some joining nodes connect to the neighbors of the same node C, then

the community network diameter increases linearly (e.g. completely ordered regular

graph) [26].

67

F
E

A

B

D

C

G
φ =2

φ =1

φ =6

φ =5

φ =5φ =6

φ =5

C1: AFBCGDEA
C2: ACFGEBDA

H New Node

1.Discover CON

φ =3

φ =2

φ =6

φ =5

φ =5φ =7

φ =6

φ =1

E

A

B

D

F

C

GH

C1: AFBCGHDEA
C2: ACHFGEBDA

2. Send join request

IP-Multicast

Figure 6.2. Joining Process.

In order to avoid such situation, each node autonomously determines how many

new nodes have connected it within period t ; we call this node join-rate φ(t). Node

C broadcasts a join-request to all community nodes within O(log2d M) layers. Each

node autonomously decides based on its join rate φ(t) whether to reply by the message

”Ok to join” or not. Node C receives some ”OK to join” messages and autonomously

selects d nodes in different Hamilton cycles. The selected d nodes then call the

following add() routine to add joining node H in each i -th Hamilton cycle.

Add (H, i) {
Successor node ←−(Calling node =⇒ r(i)

s);

Edge(Calling node, H, i);

Edge (H, Successor node, i); }
Edge (B, C, i) {

(B =⇒ r(i)
s) ←− C ;

(C =⇒ r(i)
p) ←− B ; }

The expression H =⇒ Var means that we seek the value of Var from node H, the

expression (H =⇒ Var) ←− y means that we set the variable Var of node H to

value y. The add routine inserts the joining node between the calling node and the

68

Leaving
Node

Successor
NodePredecessor

node

ith Cycleith Cycle

New edge

Rs
(i)Rp

(i)

Figure 6.3. Leave node from the i-th cycle.

successor of the calling node in the i-th Hamilton cycle. The routine substitutes the

edge between calling node and its successor by two edges, one between calling node

and joining node and the other one between joining node and successor of the calling

node as shown in Figure 6.1. The Edge(B, C ,i) routine makes C the successor of B

and B the predecessor of C. It thus creates the communication session between nodes

B and C. Obviously, the join process requires only local changes in the community

network. Figure 6.2 shows an example for the joining process of new node H. Assume

H discovers node C in community network as shown in section 4.3.3. Then node

H sends join request to node C that forwards this request to all members in the

community. Each node replies to node C based on its φ(t). Then, node C selects two

nodes for example, G and F, where links (G, D) and (F, C) are from different cycles.

Then, both G and F call add() routine. For clarity, we show only two Hamilton

cycles C1 and C2. Node G has a successor node D in cycle 1 while, node F has a

successor node G in cycle 2.

6.1.4 Maintenance and Fault-tolerance

This section illustrates the leaving and fault-tolerance processes as follows.

Leaving Process When a member leaves the community, it notifies its neighbors

and calls the following leave routine to leave from each Hamilton cycle.

69

E Leave node

C2: ACEBDFA

C1: ABFCDEA

E

A

BC

D

F

A

BC

D

F

C2: ACBDFA

C1: ABFCDA

Figure 6.4. Leaving Process.

Leave () {
// LN is leaving node

For i :=1, ..., d in parallel do

Edge(LN =⇒ r(i)
p , LN =⇒ r(i)

s , i)

}

The leave routine creates edges at d cycles between the leaving node’s successor

and predecessor node as shown in Figure 6.3. For example, Figure 6.4 shows

the leaving process of node E. It substitutes the edges (E, A) and (E,D) by new

edge (D, A) in cycle 1. Similarly, it substitutes edges (E, B) and (E, C) by new

edge (C, B) in cycle 2. Obviously, the leave process requires only local changes

in the community network with O(d) messages.

Fault-tolerance Process It is also required to consider the difficult case of node

failure. For fault-tolerance, we assume that each node knows the predecessor

of its predecessor node and the successor of its successor node in each cycle.

The node failure is detected locally as follows. Each node has fault-tolerance

module that is periodically exchange keep alive message with its neighbors. For

example, the neighboring nodes of node X that belong to INSX , periodically

exchange keep-alive message with the node X. If node X is unresponsive for a

70

period T, neighbor nodes presume it has failed. All neighbors of the failed node

update their INS sets and execute the following instance of code.

FT(X, i){
// X is the failed node in cycle i.

MyPredecessor ←− (Calling node =⇒ r(i)
p);

MySuccessor ←− (Calling node =⇒ r(i)
s);

If (X == MyPredecessor) then

(Calling node =⇒ r(i)
p) ←− (MyPredecessor =⇒ r(i)

p);

if (X== MySuccessor) then

(Calling node =⇒ r(i)
s) ←− (MySuccessor =⇒ r(i)

s);

}

The FT routine connects two nodes around the failed node in same cycle and

sets the calling node’s predecessor and successor to the failing node’s predecessor

and successor, respectively. This maintains the Hamilton cycles as well as the

same number of links for all nodes. This technique scales well: a few nodes

exchange messages to detect faults, and fault recovery is local, involving only a

few nodes |INSx|. In addition, this technique maintains the community network

G composed of edge disjoint Hamilton cycles. If a Hamilton path connects

every two nodes of G, then G is Hamilton-connected [70]. Thus the Flat-CON

is unpartitionable and does not have any single point of failure node; to prove

this, we construct Hamilton cycles with (M≥5). For example, if we construct

the community network as a 4-regular, 4-connected graph (cf. Figure 6.4) then

this graph should have two edges disjoint Hamiltonian cycles [12, 71]. The

community network is thus a connected graph. Because our proposed fault-

tolerance technique maintains the Hamilton cycles, the resulting Flat-CON is

connected and un partitioned.

71

Cache
1

Server

Cache
2

Cache
S-1

Cache
S

Org. 1 Org. 2 Org. S-1 Org. S

Figure 6.5. One-to-one communication simulation model based on caching proxies

6.1.5 Performance Verification

Simulation Setup

We have developed a simulation to prove the validity of the proposed ADCCS

system. The target number of users of the ADCCS is 100,000. Thus, the simulation

ran over Flat-CON contains 100,000 members. It is based on the assumption that

the communication cost between each node is same and equal one unit of time. We

simulated the one-to-one communication based on the client/server model. The exper-

iments have been conducted over 100,000 of requests. Each client accesses the server

and sends a request simultaneously to the server (e.g. news server or e-government

server). Obviously, the surge of simultaneous requests arriving at the server results

in the server overwhelmed and response time shooting up. Caching web pages on

the proxy servers reduces the access latency for the clients. Thus, the webs caching

techniques have slightly effect in the response time.

Figure 6.5 shows the one-to-one communication simulation model based on caching

proxies as follows. We assume that each caching proxy is located at an organization

and the requests of the clients are assigned randomly to S caching proxies. It has

been proved that a caching proxy has an upper bound of 30-50% in its hit rate

[72]. In addition, we simulated the proposed community communication technique

72

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10

80
00

16
50

0

25
00

0

33
50

0

42
00

0

50
50

0

59
00

0

67
50

0

76
00

0

84
50

0

93
00

0

10
15

0

11
00

0

11
85

0

Number of Members

R
es

po
ns

e
T

im
e

[S
ec

]

one-one 1-->3 Community Comm.

one-one (Proxy-s erver, h it rate 30%) one-one (proxy-s erver, h it rate= 50%)

0

0.2

0.4

0.6

0.8

1

10 110 210 310 410 510 610 710 810

Zoom

Figure 6.6. Scalable information-dissemination system

on a network spending 4-array connectivity for each community node (Flat-CON,

2d regular graph with d=2). The experiments have been conducted over 100,000

community members, using 1 → 3 communication technique and is constituted of

communication cost between each node τcc= 10 ms. τm= 10 ms is the average time

that each node needs to monitor the recent received messages to avoid the congestion.

Thus, the transmission time τ to send a message asynchronously from any node to all

the other community nodes is bounded by L×N × (τcc + τm), where L is the number

of layers that has been determined by Equation 5.1 and N= 2d-1.

Flat-CON: Communication Delay

We concentrate in these experiments on the comparison between the conventional

one-to-one communication techniques without and with caching proxy (hit rate of

30%, 50%) and 1 → N community communication technique. As soon as one client

(community member) downloads an interesting content for the community from the

server, he/she publishes it to all the community members using 1 → N . Figure 6.6

shows the variations of the number of members in the community with the worst

transmission time of a message to all members. Figure 6.6 depicts the effectiveness of

the proposed communication technique, that is performed over Flat-CON, compared

with the conventional communication techniques. The 1 → N communication tech-

73

N o d e s = 2 0 0 0 , # L in k s = 4 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

25 75
125

175
225

275
325

375
425

475

N u m b e r o f S e n d e r s

M
ea

n
N

um
be

r
of

 I
de

nt
ic

al
 M

es
sa

ge
s

5 2 0 0

5 4 0 0

5 6 0 0

5 8 0 0

6 0 0 0

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

Zoom

N o d e s = 2 0 0 0 , # L in k s = 4 0 0 0

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

25 75
125

175
225

275
325

375
425

475

N u m b e r o f S e n d e r s

M
ea

n
N

um
be

r
of

 I
de

nt
ic

al

M
es

sa
ge

s
pe

r
L

in
k

2 . 5

2 . 6

2 . 7

2 . 8

2 . 9

3

3 . 1

3 . 2

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

Zoom

(a)

(b)

Figure 6.7. Flat-CON traffic with multiple senders

nique is able to send a message to all community members (target number 100,000)

with imprecision close to 93% compared to (one-one) unicast, 91% compared to uni-

cast with hit rate 30% and 87% compared to unicast with hit rate 50%. These results

reflect that unicast with caching proxies technologies improve the communication

performance slightly compared with the proposed communication technique. Thus,

it shows that the community communication technique is scalable of the response

time with the number of the members. As shown in the zoom part in Figure 6.6, for

small number of members (less than 1000) the proposed community communication

technique is not effective but it reveals meaningful results when the total number

of members in the community increases sharply. The results of this simulation sug-

gest that ADCCS with Flat-CON can achieve good performance for large number

of members (target number 100,000) under the assumption that the communication

cost between each node is one unit of time. The question then is: can ADCCS sup-

port large number of members with different communication cost? Next sections will

answer this question.

Flat-CON: Network Traffic

We ran an additional experiment to evaluate the Flat-CON traffic in case of many

nodes in the community send an identical message at once. Each node monitors the

74

received messages and forwards only one from the received identical messages. This

experiment ran on a community network with 2000 nodes and 4000 logical links,

which were generated as regular graph. The delay of each link was set to 10 ms.

We ran the simulation 1000 of times to determine the mean number of identical

messages (MNIM) in the community network. Each time we ran the experiment,

the senders were selected randomly. Figures 6.7-(a) and 6.7-(b) plot the variation

of both the MNIM in the community network and the MNIM carried by a logical

link with the number of senders. The number of senders is increased from one sender

to about 25% senders from the participated nodes in the community network. In

addition, zoom parts in both figures 6.7-(a) and 6.7-(b) show the variation of MNIM

with the increases of the number of senders from 1 to 125. The increase of the

number of senders reduces both MNIM in the community network and MNIM per

link. Figure 6.7-a shows about 22% improvement of MNIM when 25% nodes in the

community send identical message at once. The standard deviation of MNIM per

link is about 0.078. This result indicates that community system does an efficient job

in distributing loads over all nodes; each node is responsible for forwarding messages

only to a small number of nodes. This is important to achieve scalability with the

community system size. We conclude that Flat-CON’s network traffic is reduced

when many members send an identical message at once.

Flat-CON: Construction/Maintenance Overhead

We conducted a simulation to evaluate the community network construction and

maintenance overheads. The joining communication cost is the required communica-

tion time to forward the join request message within the community network. Each

second 100 nodes join the community network with uniform distribution. We ran this

simulation for 20 minutes as a result the community network size becomes 108,000

members and about 384ms is the required communication delay for the construction

and maintenance of the community network. In the simulation each second 10 nodes

are chosen randomly to leave the community network. Each leave node calls the

Leave() routine with maintenance cost that varies with the communication delay to

75

0

0.01

0.02

0.03

0.04

0.05

0.01 1 1.99 2.98 3.97 4.96
Time [Sec]

C
om

m
un

ic
at

io
n

co
st

 f
or

 C
om

m
un

ity

N
et

w
or

k
C

on
st

ru
ct

io
n

&
 M

ai
nt

en
an

ce

[S
ec

]

0

0.01

0.02

0.01 0.21 0.41 0.61 0.81

Time[Sec]

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 f

o
r

C
o

m
m

u
n

ity
 N

et
w

o
rk

C
o

n
st

ru
ct

io
n

 [
S

ec
]

Leaving Cost

Figure 6.8. Flat-CON construction and maintenance overhead.

its successor’s and predecessor’s neighbors. To get better understanding of the sim-

ulation results, Figure 6.8 presents part of the simulation results of 5.5 seconds and

500 members. In this figure, the peaks represent the leaving cost. The results show

that the required communication delay for the construction (joining) and mainte-

nance of the community network is increased logarithmically with standard deviation

approximately equal 0.0033. Thus, these results indicate that the construction and

maintenance techniques for the Flat-CON are scalable for large number of members.

Flat-CON: Fault-tolerance

We ran an additional experiment to evaluate the fault-tolerance process of the

Flat-CON. Each node has 4 neighbors and resides on two Hamilton cycles. In this

simulation we assume that the community node-node TCP connections provide data

reliability on a hop-by-hop basis, which implies that message losses due to network

congestion and transmission errors are eliminated. Instead, the main reason for mes-

sage losses in ADCCS are due to transient network link failures, or node failures. In

each run of the simulation, one community node randomly selected as a source of

a message. In addition, a number of nodes are randomly selected to act as failed

nodes simultaneously. Then the Functional Reliability (FR), fraction of mean num-

76

300 Nodes

0

0.2

0.4

0.6

0.8

1

1.2

0 2 3 5 1015 20 25 30 35 40 45 50 55 6065 70 75 80 85
Simultaneous Failure rate %

F
un

ct
io

na
l R

el
ia

bi
lit

y

Flat-CON: No FT Flat-CON: FT

Random logical connection: No FT Random logical connection: FT

Figure 6.9. Flat-CON Fault-tolerance verification.

ber of nodes received a message is evaluated. Figure 6.9 shows the variation of the

FR with the simultaneous failure rate. It shows that Flat-CON with fault-tolerance

improves the FR by about 18% compared to Flat-CON without fault-tolerance and

45% compared to random logical connection overlay network with fault-tolerance. In

this random overlay network each node has four neighbors. In addition, the neighbors

of the failed node recover the failure by connecting each others randomly. Moreover,

the fault-tolerance of the Flat-CON demonstrates that the catastrophic failure of

Flat-CON starts when about 65% of random nodes simultaneously failed. We argue

the improvement of the Flat-CON to the fault-tolerance process that maintains the

Hamilton cycle (i.e. connected graph). However due to the randomization of the

fault-tolerance processes of the random logical overlay network, the network suffers

from partition and could not keep the network connected.

6.2 Multiple Communities Construction/Maintenance Techniques

In the Internet environment, the communication cost from node to node is het-

erogeneous. The goal of this section is to take advantage of this heterogeneity. It

develops an autonomous community overlay network that is aware of the communi-

77

cation cost heterogeneity in order to optimize the end-to-end communication delay.

This section constructs CON as a multiple of communities so-called Multilayer-CON.

6.2.1 Goals and Requirements

The performance of the community communication could be improved if the appli-

cation level connectivity between community nodes is congruent with the underlying

IP-level topology [73], but this is not the approach we have decided to follow. The

ADCCS-Multilayer deliberates the end-to-end node latency as an important criterion

that must be optimized. Thus, we have turned to construct the autonomous com-

munity overlay network considering node-node latency awareness. The problem of

constructing an optimal overlay network is known to be NP-hard [67,74].

Designing an efficient overlay network faces several challenges. Some important

designing issues are as follows. First, the end-to-end delay from source to a receiver

may be increases because the message may have to go through a number of interme-

diate community members. The receivers with long latencies to their neighbors slow

down entire network branches. Moreover, the end-to-end delay may also be long due

to an occurrence of bottleneck at the communication tree. Therefore, it is important

to have the node degree bounded. Second, the behavior of the community nodes is

unpredictable; they are free to join and fail/leave the community at any time. Thus,

to prevent the community service interruption, a robust technique has to provide a

quick and efficient recovery when failure occurs. Third, community nodes have to

store some local information and exchange state information with small number of

neighbors in order to maintain the connectivity and to improve the efficiency of the

community overlay network. This control overhead should be kept minimum. This

is an important issue to achieve the scalability of ADCCS for a large number of

members. To address these issues above, this thesis proposes Multilayer-CON. De-

tails of construction, maintenance and adaptation techniques are described hereafter.

To take advantage of heterogeneity of the community nodes-to-nodes communication

delays, the following sections describe the details of Multilayer-CON’s construction,

maintenance and adaptation techniques. Multilayer-CON organizes the community

78

L

A

B
M

C

F
H

G

E I

J

K

P

D

O

N

2

5 3

43

233

4

23

1 2

22
1

2
3

2

3

3

2

1

Figure 6.10. An example of sub-community structure (αij = 10ms).

network into a multi-layers of sub-communities. Next subsection illustrates the sub-

community definition, structure and the step by step construction technology.

6.2.2 Sub-Community: Definition and Structure

S
(j)
i denotes the i -th sub-community at layer j. Each sub-community S

(j)
i has

two special members: Leader and Disseminator. The leader L
(j)
i is responsible for

membership management of the S
(j)
i . The disseminator M

(j)
i is responsible for trans-

mitting contents from/to the sub-community S
(j)
i . The disseminator M

(j)
i is one of

the neighbors of L
(j)
i that has the smallest communication cost to L

(j)
i . It keeps a list

of the Leader’s neighbors. In the sub-community S
(j)
i all nodes have communication

delay to the leader and the disseminator that is bounded by a selected value α
(j)
i .

Thus, the sub-community S
(j)
i can be defined as a set of nodes x0 that satisfies the

Latency Awareness Condition (LAC) as follows:

S
(j)
i =





x0;
∑m−1
Path1,k=0 δ(xk, xk+1) ≤ α

(j)
i if (xm−1 = M

(j)
i ∧ xm = L

(j)
i)

or

x0;
∑m−1
Path2,k=0 δ(xk, xk+1) ≤ α

(j)
i if (xm−1 = L

(j)
i ∧ xm = M

(j)
i)





(6.1)

Where δ(X, Y) denotes the current end-to-end delay from X to Y that is measured

by the delay of the round-trip message. The dotted line that is shown in Figure 6.10

79

represents the Path1 = {x0, x1,...,xm−1= M
(j)
i , xm = L

(j)
i } from node x0=K to L

through the disseminator node M. The gray line in Figure 6.10 represents the Path2

= {x0, x1,..., xm−1 = L
(j)
i , xm = M

(j)
i } from node x0= I to M through node A and

leader node L. Figure 6.10 shows that the communication delay from any node to the

leader and the disseminator in the sub-community is less than or equal α
(j)
i =10ms (i.e.

All nodes satisfy the LAC). The leader L
(j)
i of the sub-community S

(j)
i autonomously

determines α
(j)
i and adapts it to cope with the changing of the nodes communication

delay. We conclude that the sub-community is a set of nodes considering LAC, the

existence of loops and the node’s connectivity is bounded by π.

Sub-Community: Step by Step Construction

To construct a sub-community step by step, we have developed a join sub(X,

S
(j)
i) routine. It inserts the new node X to the sub-community S

(j)
i . The join sub()

scenario is as follows. The leader L
(j)
i of the S

(j)
i forwards join-request to its neighbor

nodes and then waits their replies. Each node receives the join-request processes the

instance of the function Node joinCheck that is given as follows. Each node then

autonomously decides whether the new node X can connect to itself or not based on

each node join-rate φ(t) that has been defined in the previous section. As soon as

the leader of the S
(j)
i received some replies, it selects the nodes that have the smallest

latency to X and then X connects to π nodes from them.

Node joinCheck (X, rf)

{
// X : new joining node and rf : received from node.

Id=my node id; // Id εSji

i= Node.getSubCommunityId;

j = Node.getSubCommunityLayer;

If (connectivity(Id) > π) then

{
Forward(join-request(X), {neighbors { Id } \ { rf } });
Return 0;

80

A

B

L

M

C

3

2

Join_sub(C, Si
(j))

A

L, M A

B

L
M

3
Join_sub(B, Si

(j))
Si

(j), αi
(j)=15ms

A

B

L

MC

3

2

Join_sub(D, Si
(j))

5

D 7

3
A

B

L

M
C

3 2

5

D 7

3

E
6

Join_sub(E, Si
(j))

(i) (ii) (iii)

(iv)(v)

Figure 6.11. Step by step sub-community construction.

}
Else {

// Path ={x0 = Id, x1, ...,xm= L
(j)
i }

τ =
∑
xi∈Path δ(xi, xi+1) + δ(Id,X)

If (τ < α
(j)
i) then

{
Send (L

(j)
i , ”Ok to join”, τ);

Return 1;

}
Else

Return 0;

}
}

Figure 6.11(i) shows that node A is the leader of the sub-community S
(j)
i with α

(j)
i

=15ms. When new node B wants to join S
(j)
i , it calls the join sub(B, S

(j)
i). Figure

6.11(ii) shows that B has joined to S
(j)
i because δ(A, B)< α

(j)
i . The new node C

joined the sub-community S
(j)
i as shown in Figure 6.11(iii) because δ(C,B) + δ(B,A)

< α
(j)
i and δ(C, A) < α

(j)
i . In addition, C becomes the disseminator of S

(j)
i instead

81

Autonomous Controllability

X

Y

ZW
S

XW

Level 0

Level 1

Level 2

Non-member
Normal Member

Leader Member
Logical Link

X

Y

Z

W

S

S1
(0)

Community

S2
(0)

S3
(0)

S4
(0)

S5
(0)

S1
(1)S2

(1)

Underlying Network

Autonomous Coordinability

α(0)

α(1)

α(2)S1
(2)

Figure 6.12. Multilayer-CON: architecture.

of B because δ(C, A)< δ(B, A) as shown in Figure 6.11(iv). Similarly, nodes D and

E satisfy the LAC of S
(j)
i and then they join it as shown in Figure 6.11(v).

6.2.3 Organizing Multilayer-CON

This section presents the proposed ADCCS-Multilayer structure that is developed

to organize N community nodes into multi-layers of sub-communities. It is recursively

defined as follows (where βj is the number of sub-communities at layer j and K is

the number of layers):

1. Layer 0 contains all nodes that are currently partaking in the community. It is

partitioned into β0 sub-communities.

2. Layer j+1 contains all leaders of the sub-communities at layer j. It is partitioned

into βj+1 sub-communities. Obviously, βj > βj+1; j = 0, 1, ..., k-1.

3. The leaders at layer j automatically become members of the sub-community

of leaders at layer j+1, if they satisfy the LAC at layer j+1. For j ≥ 0, the

number of nodes at layer j+1 is βj. Layer K consists of a few sub-communities

(e.g. one or two).

82

A A B

B join

Latency(A,B)<α1
(0) ; A is leader of B

(i)

<α1
(0) A B

<α1
(0)

C
<α1

(0)

Latency(A,C)<αs1

(ii)

A B
<α1

(0)C
Level 0

Level 1AC
Sub community
of leader

S1
(0)S2

(0)

Latency(A,C)>α1
(0) and Latency(B,C)>α1

(0)

(iii)

α1
(1)

Join_leaderSub

OK

Community

S1
(1)

C join

Figure 6.13. Step-step construction multi-layer community structure.

4. If a node belongs to layer j then it must be in one sub-community in each of

the layers 0, 1, ..., j-1. Furthermore, any node at layer j > 0 must be a leader

of the sub-community and belongs to all lower layers.

5. For any i and j, α
(j)
i < α

(j+1)
i .

This scheme is used to map the community nodes into layers as shown in Figure

6.12. This figure shows that the multi-layer community structure consists of three

layers. Layer 0 contains 14 nodes and organized into five sub-communities. The

leaders at layer 0 form layer 1 and they are organized into two sub-communities.

Finally, layer 2 contains only one sub-community that contains two nodes.

Multilayer-CON: Step by Step Online Expansion and Construction

This section illustrates the construction of the community overlay network as

multi-layer structure. Figure 6.13(i) shows that node A initiates the community of

an interest, creates a sub-community S
(0)
1 and becomes a leader of S

(0)
1 . Then, node

B has the same interest and wants to join the community. Node B sends join request

to node A. As soon as node A receives join request it checks the round-trip latency

to the joining node B. If the joining node satisfies the LAC (δ (A, B)< α
(0)
1), then A

connects B by a logical link. Similarly, the joining node C sends a join request to a

83

Yes
top-down

Bottom-up

Level 0
α0=10ms

Level 1
α1=20ms

Level 2
α2=40ms

S1
(0)

S1
(1)

S1
(2)

L1L3
L2

L2L5

L5
L6 L4

L5
L6

L4 L3 L2
L1

A

E

CFKG

B

<=10ms

<=20ms<=20ms

<=40ms

<=20ms <=20ms

<=10ms <=10ms <=10ms <=10ms
<=10ms

S6
(0)

S2
(1)

X
Join_request

No

Join_sub(S4
(0))

Figure 6.14. Example: Join process in control tree.

node in the community (e.g. B). Node B forwards the join request to the leader of

the sub-community it belongs to (i.e. node A). The leader checks whether the joining

node satisfies the LAC or not. Figure 6.13(ii) shows the join process of node C when

the LAC is satisfied. Otherwise, Figure 6.13(iii) shows that the joining node C, joins

the community and becomes a leader of its own created sub-community S
(0)
2 . Node

C then sends a join leadersub (S
(1)
1) request to the neighbor leader (e.g. node A).

Then, A checks if C satisfies the LAC at the upper level. If δ(A,C)< α
(1)
1 then C

joins the sub-community of leaders S
(1)
1 at the upper level otherwise C creates a new

sub-community of leaders S
(1)
2 at the upper level. Recursively, new nodes join the

community and consequently the community multi-layer structure is constructed.

6.2.4 Joining Process: Bottom-up & Top-down

When new node X wishes to join the community, Multilayer-CON assumes that X

is able to get at least one community node A. The joining node X sends a join request

to one community node A as shown in Figure 6.14. The join request is redirected along

the multi-layer community structure bottom-up and top-down to find the appropriate

sub-community as follows. Node X joins the community temporarily by contacting

a first contact node, FN (e.g. FN = A) that belongs to S
(j)
i at layer j=0. Thus, X

can receive community information during the joining process. X then calls the join

84

function to find an appropriate sub-community. The scenario of this function is as

follows.

1. Node X sends join request to the first contact node, FN that belongs to S
(j)
i at

layer j=0.

2. Node FN checks:

(a) If (δ(X,FN) + δ(X,L
(j)
i)) < α

(j)
i then Create link(X, FN).

(b) Otherwise, forwards join request to L
(j)
i .

3. L
(j)
i Checks:

(a) If δ(X,L
(j)
i) < α

(0)
i then Calls join sub(X, S

(j)
i); exit;

(b) Otherwise,

i. If (j == 0 && δ(X,L
(j)
i) > α

(0)
i) then forwards join request to the

leader L(j+1)
u of the sub-community S(j+1)

u at the upper layer where,

L
(j)
i ∈ S(j+1)

u .

ii. Otherwise, If (j > 0 && δ(X,L
(j)
i) > α

(0)
i) then forwards join request

to the leader L
(j−1)
d of the sub-community S

(j−1)
d at the lower layer

where, L
(j)
i ∈ S(j−1)

d .

4. Set j:= j+1 and then L(j)
u checks:

(a) If δ(X,L(j)
u) < α(0)

u then it forwards join request down.

(b) Otherwise, it forwards join request to all members zm belongs to S(j)
u except

L(j)
u .

5. Each node zm checks:

(a) If δ(X, zm) < α
(0)
i then zm sends a reply message to L(j)

u that contains

”ok to join”, δ(X, zm) and its join-rate φ(t) that has been defined in the

previous section.

(b) Otherwise, zm does not send any reply message to L(j)
u .

85

6. L(j)
u waits for a period of time γ to gather replies from all zm nodes belong to

the sub-community S(j)
u . There exist two cases as follows:

(a) L(j)
u receives some replies and then selects one that has the smallest latency

to X. Then, it forwards the join request down (i.e. set j:= j-1) to the

selected leader that calls join sub() routine.

(b) Otherwise, L(j)
u does not receive any reply within the time-out period γ.

Thus, it forwards the join request to the upper layer (i.e. set j:= j+1) if j

is smaller than the number of layers and then repeats steps 3-6, otherwise

it forwards the join request to the lower layer (i.e. set j:=j-1 and then

repeats steps 3-6.

7. The join request is forwarded from bottom to up and then top to down until

the LAC is satisfied. Otherwise, there is no sub-community satisfies the LAC

then a new sub-community contains the joining node is created.

The join process is illustrated as a recursive function in Appendix A. It terminates

at layer 0 when the joining node either finds a sub-community (e.g. S
(0)
4 in Figure

6.14) that satisfies the LAC or not. Therefore, the join overhead is O(β0) in terms of

the number of nodes that must check the latency with the joining node. This joining

process reflects that each node autonomously takes the decision based on its local

information and there is no specific server that is responsible for membership man-

agement. Moreover, new nodes join the autonomous multi-layer community overlay

network without stopping the community service. Thus, the proposed autonomous

decentralized online expansion and construction technique is scalable for large number

of nodes.

6.2.5 Maintenance and Fault-tolerance

When node X wishes to leave the community, it notifies its neighbors in the sub-

community S
(0)
i . L

(0)
i and M

(0)
i are the leader and the disseminator of S

(0)
i respectively.

The leave algorithm is described as follows:

86

1. If ((X 6= L
(0)
i) and (X 6= M

(0)
i)) then the neighbors of X remove their links

to X. For example, nodes k and G remove their links to the leaved node N in

Figure 6.10. Node X processes the leave() procedure that has been illustrated

in the previous section.

2. If ((X == L
(0)
i) and L

(0)
i ∈ layers l0, ..., lh) then each disseminator M

(j)
i becomes

leader (i.e. L
(j)
i = M

(j)
i), where j = 0,..., h. Then, each leader selects a new

node that has the smallest latency from its neighbors and assigns it as a new

disseminator. This process is repeated on h-layers l0, ..., lh.

3. If ((X == M
(0)
i) and M

(0)
i ∈ layers l0, ..., lh) then each leader L

(j)
i selects a new

disseminator from its neighbors that has the smallest latency to L
(j)
i , where

j = 0, ..., h.

Similar to the fault-tolerance technique in Flat-CON, it is also required to consider

the difficult case of node failure in Multilayer-CON. In such case, failure should be

detected locally as follows. The neighboring nodes periodically exchange keep-alive

message with node X. If X is unresponsive for a period T, it is presumed failed. All

neighbors of the failed node update their neighbor sets. This technology scales well:

exchanging messages among small number of nodes does fault detection, and recovery

from faults is local; only a small number of nodes are involved. In Multilayer-CON,

if the leader of the sub-community fails and the disseminator is still working then

the disseminator takes the leader responsibilities, connects to the leader’s neighbors

and selects another disseminator to take its responsibilities. Therefore, the failure of

the leader does not affect the community service continuity of other nodes. Similarly,

when disseminator fails, the leader is still working and can appoint new disseminator

quickly. However, If both leader and disseminator simultaneously fail then all nodes

in the sub-community elect new node as leader. Then this new leader assigns new

disseminator.

87

6.2.6 Community Communication over Multilayer-CON

For an efficient community communication, we create a multi-layer connected

control topology. The content delivery path is implicitly defined in the way the

multi-layer is structured and no additional route computations are required. The

disseminators in this multi-layer structure play important roles in this communication

technology. Each node can send a message to its neighbors in its sub-community S
(0)
i

by using 1→ N communication. Once the disseminator M
(0)
i receives such message,

it forwards the message to all disseminators belonging to the sub-community at the

upper layer. Each disseminator forwards such message to all members in its sub-

community. Each disseminator M
(j)
i executes an instance of the following procedure.

Hcommunity comm(S
(0)
i , rf) {

// M
(j)
i forwards the message that received from rf.

If (M
(j)
i ∈ layers l0 ,..., lm in sub-communities S(0), ..., S(m))

for (p = 0; p ≤ m; p++)

If (rf /∈ S(p))

ForwardMessageTo (S(p) - { M (p)});
}

Consequently all nodes in the community will receive such message. Assume all

α
(j)
i = α

(j)
i+1 at each layer j, where i=1,.., βj−1 and j =0, ..., k. Thus, the transmission

time to forward a message from a community node to all nodes is bounded by

α(k) +
k−1∑

j=0

2 ∗ α(j) (6.2)

For example, Figure 6.15 shows the message transmission initiated from node E.

Node E sends a message to all members in the sub-community S
(0)
1 , once the dis-

seminator M
(0)
1 receives such message, it forwards the message to all members in the

S
(1)
1 . The disseminator M

(1)
1 forwards the message up to the layer 2 and so on. The

required sequence to forward the message to all members in the community through

the multi-layer structure is shown in Figure 6.15 by dotted arrows with index of

order. In this figure, the transmission time is bounded by 90ms. Clearly, the multi-

layer sub-community approach considers the heterogeneity of node-to-node latencies.

88

M1M3M5M7

M2M4M6M8

S1

S2

S3

S4

S5

S6

S7

S8

Initiating
communication

Lev
el

0

A
E

C

O

F

K

G

B

H

X

Y

Z

1

Lev
el

2M8

M5

M2

M3 3
3

4

Lev
el

1

M1M3

M2
M4M5M6

M7
M8

2

44

5

α1
�0�=10ms

α2
�0�=10ms

…
α8
�0�=10ms

α1
�1�=20ms

α2
�1�=20ms

α3
�1�=20ms

α4
�1�=20ms

α1
�2�=30ms

Community

Figure 6.15. Community communication through Multilayer structure.

It results in a community network clustering of community nodes into homogenous

sub-communities (Flat-CON) thereby reducing the communication delay.

6.2.7 Performance Verification

To evaluate the performance, we have developed a simulation over a random

generated network with different communication cost between nodes. This simulation

demonstrates that ADCCS-Multilayer architecture can perform quite well in realistic

Internet settings. In this section, we present the performance metrics and then study

the performance issues with large community size using simulation experiments.

Performance Metrics

To evaluate the communication system ADCCS over Multilayer-CON (so called

ADCCS-Multilayer) and compare it with ADCCS over Flat-CON without considering

the latency awareness and the conventional communication techniques; we used the

following metrics.

• Latency. It measures the communication delay from a community node to all

others community nodes.

89

100 routers, 354 linksStub-domain

Figure 6.16. Simulation setup: transit-stub network model.

• Relative Mean Delay Penalty (RMDP). It defines the ratio of the mean

delay between two community nodes along the ADCCS-Multilayer, ADCCS and

Unicast to the IP multicast delay between them. It is used to measure of the

increase delay that applications perceive while using ADCCS-Multilayer and

ADCCS.

• Stress. It measures the number of identical copies of a message carried by a

physical link. Obviously, we would like to keep the link stress on all links low

as possible.

Simulation Setup

The simulations ran on two underlying network models, transit-stub model and

Waxman model, with 100 routers linked by core links. The Georigia Tech [75] random

graph generator is used to create both network models. Figure 6.16 shows an example

of the transit-stub network model. Random link delay of 4-12ms was assigned to

each core link. The community end-nodes were randomly assigned to routers in the

core with uniform probability. Each community end-node was directly attached by

a LAN link to its assigned router. The delay of each LAN link was set to be 1ms.

End-nodes join the community network with joining rate 100 nodes/Sec with equal

90

0

0.2

0.4

0.6

0.8

1

0.0
6

0.2
3

0.3
9

0.5
6

0.7
3 0.9 1.0

7
1.2

4
1.4

2
1.5

7
1.7

4 1.9 2.0
8

2.2
4 2.4 2.5

7
2.7

4
2.9

1
3.0

7
3.2

5

Simulation Time [Sec]

M
ea

n
C

om
m

un
ca

tio
n

D
el

ay
 [

Se
c]

ADCCS: Waxman ADCCS: Transit-Stub
ADCCS-Multilayer: Transit-Stub ADCCS-Multilayer: Waxman
Unicast:Transit-Stub Unicast:Waxman

0

0.1

0.2

0.3

0.4

0.5

0.0
6

0.1
8

0.2
8

0.3
9 0.5 0.6

2
0.7

3
0.8

5
0.9

7

Zoom

Figure 6.17. MCD: Comparison.

distribution. Members leave the community network with leaving rate 10 nodes/Sec

with random distribution. We have conducted a simulation to compare ADCCS-

Multilayer with Unicast and ADCCS. Unicast operates over underlying network (i.e.

no overlay network). ADCCS operates over 4-regular graph overly network (Flat-

CON) that spends 4-array connectivity for each node. ADCCS-Multilayer is organized

with α(0) = 5 and α(j+1) = 2∗α(j). The number of sub-communities and layers changes

with α and the number of end-nodes. For example, 300 end-nodes are organized into

4 layers and 100 sub-communities at layer zero when α(0) = 5.

Multilayer-CON: Communication Delay

In each run of the simulation, one community node randomly is selected as a

source. Then the communication delay the source node requires to send a message

to all nodes is evaluated. In this simulation, only static latency including no process

delay is evaluated. We ran this simulation for 20 minutes as a result the commu-

nity network size becomes 108,000 members. For simplicity, Figure 6.17 shows only

the simulation results of the first 3.5 Seconds from the simulation running time. It

plots the variations of the Mean Communication Delay (MCD) that is required

to send a message from a node to all nodes participated at each instance of time

91

0
0.5

1
1.5

2
2.5

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

Number of Members
R

M
D

P
(l

og
-s

ca
le

)

ADCCS ADCCS-Multilayer Unicast

Figure 6.18. RMDP: Comparison.

during the experiment. It evaluates and compares ADCCS-Multilayer with ADCCS

and Unicast over two underlying network models. ADCCS-Multilayer has shown

about 39% improvement of the MCD compared to ADCCS and 93% compared to

Unicast. Owing to the design of the latency-awareness Multilayer-CON structure,

the ADCCS-Multilayer has about 39% imprecision over ADCCS. The MCD of the

Unicast, ADCCS and ADCCS-Multilayer over Waxman topology is small than over

transit-stub topology. That is to be expected because of the delay of the hierar-

chy of the transit-stub model. Moreover, the zoom part in Figure 6.17 shows that

the ADCCS-Multilayer is not effective for small number of end-nodes compared to

ADCCS. However, ADCCS-Multilayer is effective for large number of end-nodes com-

pared to ADCCS. In addition, Figure 6.18 plots the variation of RMDP for sequential

Unicast, ADCCS and ADCCS-Multilayer over transit-stub model. The vertical axis

represents a given value of RMDP associated with the community network size in log-

scale presentation. ADCCS-Multilayer shows about 94% improvement of the RMDP

to Unicast and about 47% imprecision to ADCCS.

It is remained to study the proposed community communication system in a ran-

domly joining/leaving network as follows. End-nodes join/leave the community over-

lay network with random distribution as shown in Figure 6.19. It shows the variations

of the community network size with the simulation time. Figure 6.20 shows only the

simulation results of the first 3.5 seconds from the simulation running time. It plots

92

0

50

100

150

200

250

300

350

0.06 0.5 0.97 1.42 1.85 2.29 2.74 3.19

Simulation Time [Sec]

N
um

be
r

of
 M

em
be

rs

Figure 6.19. Variation of Community Overlay network size per time.

0

0.2

0.4

0.6

0.8

1

0.06 0.5 0.97 1.42 1.85 2.29 2.74 3.19
Simulation Time [Sec]

M
ea

n
C

om
m

un
ic

at
io

n
C

os
t [

Se
c]

ADCCS ADCCS-Multilayer Unicast

Figure 6.20. MCD: Comparison (Random community overlay network).

93

1

10

100

1000

0 19 38 57 76 95 11
4

13
3

15
2

17
1

19
0

20
9

22
8

24
7

26
6

28
5

30
4

Stress of Phyiscal Link

N
um

be
r

of
 P

hy
si

ca
l L

in
ks

ADCCS Unicast
IP Multicast ADCCS-Multilayer

Unicast

ADCCS-Multilayer

IP-Multicast

ADCCS

0 3 6 9 12 15 18 21 24 27 30

Stress of Phyiscal Link

N
um

be
r

of
 P

hy
si

ca
l L

in
ks Zoom

Figure 6.21. Physical link stress.

the variations of MCD at each instance of time during the experiment. Similarly,

ADCCS-Multilayer has shown about 39% improvement of the MCD over ADCCS

and 93% over unicast. From these results we conclude that the ADCCS-Multilayer

enhances the community communication in realistic Internet settings compared to

the ADCCS. Thus, the timeliness is achieved.

Multilayer-CON: Network Traffic

We have conducted our experiment with a community size 300 members. We

randomly selected one member as a source and then evaluated the stress of each

physical link. We study the variation of physical link stress for ADCCS-Multilayer,

ADCCS, IP Multicast and naive Unicast as shown in Figure 6.21. The horizontal axis

represents stress and the vertical axis represents the number of physical links with a

given stress. The stress is at most one message per physical link for IP Multicast.

Under ADCCS-Multilayer, ADCCS and naive Unicast, most links have a small stress-

this to be expected. However, the significant lies in the tails of the plots. Under naive

Unicast, one link has stress 299. This because that links near the source have high

stress. However, ADCCS-Multilayer and ADCCS distribute the stress more evenly

across the physical links. ADCCS-Multilayer has about 94% improvement over naive

94

#Nodes= 300

0

4

8

12

16

20

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

Number of Senders

M
ax

 S
tr

es
s

pe
r

Ph
ys

ic
al

 L
in

k

Figure 6.22. Multilayer-CON: Network traffic .

Unicast. ADCCS has about 55% improvement over naive Unicast. The zoom part in

Figure 6.21 shows that the ADCCS-Multilayer maximum stress per physical link is

15. Thus, the stress perceived while using ADCCS-Multilayer is close to IP-Multicast.

We argue that ADCCS-Multilayer has about 87% improvement over ADCCS to the

ADCCS-Multilayer structure that is aware with the latency among the community

nodes.

We ran an additional experiment to evaluate the Multilayer-CON traffic when

many nodes in the community send an identical message at once. Each node monitors

the recent received messages and forward only one copy from the received messages.

The simultaneous senders were selected randomly and their number increased from

one sender to about 50% senders from the participated nodes in the community

network. Figure 6.22 plots the variation of maximum stress per physical link with

the number of simultaneous senders. It shows that the increase of the number of

senders does not increase the maximum stress per physical link. This result indicates

that Multilayer-CON does an efficient job in distributing loads over all links. We

conclude that the Multilayer-CON’s network traffic does not increase when multiple

nodes send an identical message at once.

95

0

0.4

0.8

5 15 25 35 45 55 65 75 85 95

 [ms]
NCO: Normalized Construction Overhead
NMCD:Normalized Mean Comm. Delay [Sec]

α(0)

Figure 6.23. Trade-off.

Multilayer-CON: Construction Overhead

The construction overhead is measured as the average number of control messages

per physical links that are required to join a new node to the ADCCS-Multilayer.

Figure 6.23 shows the variation of α(0) with the normalized mean communication

delay (NMCD) and the normalized construction overhead (NCO). It verifies that the

trade-off between the community communication delay and the construction overhead

exists. The average number of control messages per physical links to add a new node

to 300 end-nodes is 1.525 and 0.034, where α(0) is 5 and 100 respectively. The results

indicate that the proposed construction technique is scalable and does not show any

practical problem.

Multilayer-CON: Fault-tolerance

We have conducted a simulation to verify the effectiveness of the proposed fault-

tolerance process over 300 community nodes. Each node sends 20 keep alive-message

per second to its neighbors to detect neighbors nodes failure. We define Failure

Detection Frequency(FDF), the number of keep alive messages per second to detect

neighbors nodes failure. Each message size is 20 bytes.

96

300 Nodes, α=10ms

0

0.2

0.4

0.6

0.8

1

1.2

0 2 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Simultaneous Failure rate %

F
un

ct
io

na
l R

el
ia

bi
lit

y

Flat-CON: No FT Flat-CON: FT
Multilayer-CON: No FT Multilayer-CON: FT
Random logical connection:No FT Random logical connection: FT

Figure 6.24. Comparison: Flat-CON, Multilayer-CON and Random logical overlay
network.

To demonstrate the effectiveness of the proposed fault-tolerance technique we ran

an experiment as follows. One community node is randomly selected as a source

of a message and a number of nodes are randomly selected to act as failed nodes

simultaneously. The failed nodes can be a sub-community leader, disseminator or

normal member. Then the Functional Reliability (FR), fraction of mean number

of nodes received a message is evaluated. Similarly to the simulation environment

for Flat-CON at previous section, we assume that the community node-node TCP

connections provide data reliability on a hop-by-hop basis that implies that message

losses due to network congestion and transmission errors are eliminated. Instead, the

main reason for message losses in ADCCS are due to transient network link failures, or

node failures. Figure 6.24 shows the variation of the FR with the simultaneous failure

rate. It shows that Multilayer-CON improves the FR about 17% and 60% compared

to Flat-CON with fault-tolerance and random logical connection overlay network with

fault-tolerance respectively. Moreover it demonstrates that the catastrophic failure

of Multilayer-CON starts when about 75% of random nodes simultaneously failed. In

addition, Figure 6.25 shows that the Timeliness decreases along with the increasing

of the number of Hamilton cycles. The reason is the increasing of Hamilton cycles

increases the network traffic. Then the mean communication time increases. However,

the Figure 6.25 also shows that the functional reliability FR increases along with the

97

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10
Hamilton cycles

0.5

0.7

0.9

1.1

Timeliness Functional Reliabaility

Timeliness Fault-tolerance

Figure 6.25. Timeliness and Fault-tolerance Tradeoff.

increasing of the number of the Hamilton cycles. Thus, Figure 6.25 gives an evidence

of the existence of the trade-off relation between fault-tolerance and timeliness.

6.3 Community Overlay Network Reconstruction Techniques

6.3.1 Self-Adaptable Multilayer-CON

Major design issue of the Multilayer-CON is not only how to build, but also how

to adapt the virtual layer that is crucial to the performance of the CON. The main

goal of this section is to adapt the changes of the node-to-node latency. Each node

periodically processes the following instance of code to monitor its latency to the

leader of its sub-community.

Node LatencyCheck()

{
// MySelf ∈ S(0)

i

// Path = { x0 = MySelf, x1, ..., xm = L
(0)
i }

τ =
∑
xi∈Path δ(xi, xi+1) ;

if (τ > α
(0)
i) {

98

Wait(Wt);

τ =
∑
xi∈Path δ(xi, xi+1) ;

if (τ > α
(0)
i) {

Send(L
(0)
i ,”Ok: Movefrom(S

(0)
i)”,τ);

Return 1;

}
}
Else Return 0;

}

The Node LatencyCheck() function is installed in the Neighbors module. It pe-

riodically monitors the latency of the node to the L
(0)
i if it satisfies the LAC then

return 0, otherwise it waits timeout Wt. After Wt, it checks the LAC again. As soon

as L
(0)
i receives the Movefrom request, it forwards this request Bottom-up and Top-

down like join request until find the appropriate sub-community S
(0)
j that satisfies

the LAC. Then the node moves or migrates to the appropriate sub-community. Oth-

erwise, a new sub-community and/or new level are created. Owing to the proposed

adaptable Multilayer-CON, each node can adapt its location in the Multilayer-CON

and as a result the community communication delay is improved. In the next sections,

the evaluation and simulations give evidence that Multilayer-CON can scale to large

number of members.

Adaptable Multilayer-CON: Communication Delay

To simulate the self-adaptable CON technique during the simulation time, we pick

about 2% from core links randomly and increase their latencies by 50ms. Figure 6.26

evaluates and compares Multilayer-CON before the change of the latency of about

2% of the core links, after the change of the latency without adaptation and after

the change of the latency with node migration technique. Clearly, it presents the

effectiveness of the proposed migration (adaptable) technique. Owing to the adapt-

able Multilayer-CON architecture and migration technique, the adaptable Multilayer-

99

0.1

0.2

0.3

0.4

0.5

0.6

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Number of Nodes

M
C

D
 [

Se
c]

Before change of latency After change of latency
Adaptable change of latency

Figure 6.26. Comparison: Adaptable and non-adaptable Multilayer-CON.

CON has shown about 22% improvement of the MCD compared with non-adaptable

Multilayer-CON.

6.3.2 Sub-Communities Division/Integration

Why Division/Integration?

This section presents discussion of the tradeoff between join overhead and the

communication delay that sustains the needs for a division and integration technique

of sub-communities. For the sake of simplicity, we assume that each sub-community

at layer j has an equal α(j) = α
(j)
i for i=1,..., βj and α(j+1) = C × α(j) ; C > 1. Thus

the transmission time to forward a message from one node to all nodes is bounded by

α(k) +
k−1∑

j=0

2× α(j) (6.3)

We also assume that the maximum communication latency between any two nodes

in the community network is τ . Thus, τ ≤ βk × α(k) → τ ≤ βk ∗ C × α(k−1) →
τ ≤ βk ∗ C2 × α(k−2) → τ ≤ βk ∗ Ck × α(0). Then, the number of layers, k, can be

determined as follows:

k ≥ logC(
τ

βk × α(0)
) (6.4)

100

Construction OverheadCommunication Cost

β0

IntegrationDivision

Figure 6.27. Relationship between Communication Delay and Construction
overhead with various β0.

For example, assume τ =120ms, βk=2, α(0) =10 and C =2, then the number of layers,

k ≈ 3. The join overhead is O(β0) in terms of the number of nodes to contact. It

satisfies the following relation.

β0 ∝ 1

α0
(6.5)

where τ ≤ β0 × α(0). In addition, the average number of control messages that

are required to add new node to the Multilayer-CON is proportional to β0. If α(0)

increases then the join overhead decreases. Equation 6.3 shows the upper bound of

the community communication delay on the proposed multi-layer structure. It can

be written as follows:

α0 × (Ck + 2× Ck−1 + ...+ 2) (6.6)

where α(j+1) = C × α(j) ; C is constant and C > 1. Equation 6.6 shows that if

α(0) increases then the number of layers, k decreases and consequently the commu-

nication delay among community nodes increases. Thus, the increasing of β0 leads

to decrease the communication delay and increase the join overhead. This relation

presents a tradeoff between the construction overhead and the community commu-

nication delay as shown in Figures 6.23 and 6.27. Consequently, if the number of

sub-communities β0 at layer 0 is small and there exist sub-communities with size

|S(0)
i | larger than a threshold value, Thru, then this sub-community S

(0)
i should be

101

Normal Member Leader Member

X

WS

XW

Layer 0

Layer 1

Layer 2

X
W

S

S1
(0)

S2
(0)

S3
(0)

S1
(1)S2

(1)

S1
(2)

α (0)

α(1)

α(2)

Y

|S1
(0)|>ThrU

Before Division

X
WS

X

W

Layer 0

Layer 1

Layer 2

W

S

S2
(0)

S3
(0)

S1
(1)

S2
(1)

S1
(2)

α (0)

α(1)

α(2)

Y

X
S1

(0)

Y
S4

(0)

After Division

Figure 6.28. Sub-Community division.

divided. In contrast, if the number of sub-communities β0 at layer 0 is large and

there exist sub-communities with size |S(0)
i | and |S(0)

j | smaller than Thrd then these

sub-communities S
(0)
i and S

(0)
j should be integrated. Next subsections will discusses

the sub-community division/integration technologies.

Sub-Community Division Technology

Due to the frequent joins and leaves of community members, the size of sub-

communities may increase and the number of sub-communities decrease. Thus, the

communication delay will be increased and the join overhead will be decreased. This

section clarifies the sub-community division technology to divide the sub-community

whose size is larger than threshold value Thru. The scenario of division process of the

sub-community S
(0)
i is as follows. When the leader (L

(0)
i) detects that |S(0)

i | > Thru

then it calls an instance of code Leader DivProcess() and autonomously takes a de-

cision either to divide its sub-community or not. Also, the sub-community members

process the instance of code node DivProc() when they received the divide request

message from the leader. The detailed description of the Leader DivProcess() and

node DivProc() subroutines are illustrated in Appendix B. Each member then au-

tonomously takes a decision either to move to the new created sub-community or to

keep in its current sub-community depend on the LAC. Thus, each member sends

102

Normal Member Leader Member

YWS

X
W

Layer 0

Layer 1

Layer 2

Y

Z

W

S

S1
(0)

S2
(0)

S3
(0)

S4
(0)

S5
(0)

S1
(1)

S2
(1)

S1
(2)

α(1)

α(2)

A

A

S6
(0)

α (0)

|S6
(0)|<Thrd

Before Integration

Z
XYW

S

XW

Layer 0

Layer 1

Layer 2

Y

Z

W

S

S2
(0)

S3
(0)

S4
(0)

S5
(0)

S1
(1)S2

(1)

S1
(2)

α(1)

α(2)

α (0)

X
S1

(0)

A

After Integration

Z

X

X

Figure 6.29. Sub-Community integration.

either ”LAC is satisfied” or ”LAC is not satisfied” message to L
(0)
i . L

(0)
i sends a

promotion message to the first replier. The first replier then becomes the leader of

the new sub-community S
(0)
β0+1. The members of S

(0)
i who did not satisfy the LAC,

leave the S
(0)
i and join the new sub-community S

(0)
β0+1. Figure 6.28 shows an example

of the division process of the sub-community S
(0)
1 into two sub-communities S

(0)
1 and

S
(0)
β0+1 where β0 = 3.

Sub-Communities Integration Technology

Similarly, due to the frequent joins and leaves of community members, the size

of sub-communities may decrease and the number of sub-communities may increase.

Thus, the communication delay will be decreased and the join overhead will be in-

creased. This section clarifies the sub-community integration technology to integrate

two sub-communities S
(0)
i and S

(0)
j , where the size of both sub-communities is less

than threshold value Thrd. For example, Figure 6.29 shows the integration process of

S
(0)
1 and S

(0)
6 sub-communities, where (|S(0)

1 | < Thrd and |S(0)
6 | < Thrd). The scenario

of the integration process is as follows. When the leader L
(0)
i detects that |S(0)

i | <
Thrd then it calls an instance of code Leader InitInteg() to initiate the integration

process. L
(0)
i autonomously takes a decision either to integrate with the neighbor’s

sub-community or not. The Leader InitInteg() subroutine is illustrated in Appendix

103

B. If integration is required then the L
(0)
i sends integration requests to its neighbors.

As soon as a leader L
(0)
j receives integration requests it calls the instance of code

Sub IntegProcess() that is also illustrated in Appendix B. If the leaders L
(0)
i and L

(0)
j

take a decision to integrate their sub-communities then (L
(0)
i) one of them becomes a

leader of the integrated sub-communities. The leader L
(0)
i then sets α

(0)
i = α

(0)
i +α

(0)
j .

L
(0)
j then sends a message to all nodes in S

(0)
j to change their sub-community iden-

tifier, becomes normal node and then leaves the sub-community at the upper layer.

Thus, the number of sub-communities becomes β0−1. Figure 6.29 shows that node X

calls Leader InitInteg() subroutine and node A is the first replier to node X. Node A

calls the Leader IntegProcess() subroutine. Then node X sends acknowledgement of

the integration between S
(0)
1 and S

(0)
6 . When node A receives the acknowledgement,

it forward the S
(0)
1 identifer to all members in S

(0)
6 . Node A then becomes normal

node and leaves form the sub-community of leader at the upper layer.

6.4 Summary

This chapter elucidated the construction technologies of the community overlay

network. These technologies confronts the challenges that mentioned in chapter 4.

The construction and maintenance techniques of both Flat-CON and Multilayer-CON

achieve the following requirements: scalable online-expansion and fault-tolerance.

Flat-CON is a self-organized overlay network that is constructed and maintained

with low complexity. We studied the efficiency of the proposed community commu-

nication and the autonomous community overlay network construction techniques

by evaluating the communication delay, fault-tolerance overhead and network traffic

associated with Flat-CON. The results show that Flat-CON can achieve the time-

liness scalable Online-expansion and fault-tolerance of the large-scale information-

dissemination systems under the homogenous end-node to end-node latency assump-

tion. However, in the Internet environment the end-node to end-node latency is

heterogeneous. The question then is: can ADCCS support large number of mem-

bers with different communication delay? The main concern of Multilayer-CON is to

answer this question. Multilayer-CON considered latency between community nodes

104

as an important criterion that need to be optimized. It organized the community

overlay network into a number of homogenous sub-communities. To reduce both

the communication delay among community nodes and the join overhead, this chap-

ter presented a novel multi-layer structure, ADCCS-Multilayer, of sub-communities.

Furthermore, this chapter described how to step-step construct, maintain and adapt

sub-communities and the multi-layer structure as well. For adapting the network la-

tency changes, this chapter presented the self-adapting Multilayer-CON technology.

Then this chapter demonstrated the Sub-Community division/integration technology

to cope with the dynamic change of the network. Finally, this chapter presented the

simulation results that show the effectiveness of the proposed techniques. The results

confirm that Multilayer-CON achieves the timeliness, scalable online-expansion and

fault-tolerance of the large-scale information-dissemination systems in real Internet

settings with heterogeneous end-node to end-node latency assumption with maintain-

ing the community nodes autonomy. Moreover, the results give an evidence of the

existence of the trade-off relation between fault-tolerance and timeliness.

105

106

7 EVALUATION

7.1 Qualitative Analysis

The advantages of autonomous decentralized community communication system

are compared hereafter with some application level multicast communication systems.

7.1.1 Approaches

A literature review of related works that tackles the problem of constructing over-

lay networks for efficient information-dissemination of the application level multicast

systems is illustrated as follows. In fact all overlay networks organize the group

members into two topologies. First, control topology is the communication envi-

ronment among members for membership management. Second, data topology is

the communication media for data dissemination to all members in the overlay net-

work. Depending on the sequence of construction of the control and data topologies,

this section classifies the different overlay networks into different three approaches:

tree-first, mesh-first and implicit approaches as shown in Figure 7.1. The tree-first

approach includes ALMI [50], YOID [76] and Overcast [63]. It constructs a shared

data delivery tree first directly. A drawback of using a shared tree is that failure of

a single application may cause a partition of the overlay topology. Moreover, each

member knows a few other members of the group that are not its neighbors on the

overlay tree and establishes and maintains additional links to these members. Thus,

the data delivery tree with these additional control links forms the control topology.

In contrast, overlay networks based on the mesh-first approach firstly organize the

group members into the overlay mesh topology. This approach includes Narada [51]

and Scatercast [67]. Each member in this control topology computes unique overlay

paths to every other member. Thus, a source specific data tree rooted at any mem-

ber can be created. A drawback of the mesh-first approach is that the calculation

of spanning trees requires running a multicast routing protocol (e.g., distance vector

multicast routing protocol DVMRP [52]) within the overlay that adds complexity to

107

Tre
e-F

irs
t a

ppro
ac

h

Mesh-First approach

Implicit approach

Narada

Yoid Overc
ast

ADCCS-Multilayer

Bayeux

CAN

ALMI

Scattercast

Delaunay Triangulation

Figure 7.1. Application level multicast: Overlay Construction approaches.

the overlay network. Protocols [64,77,78] using the implicit approach creates a control

topology that implicitly defines the data delivery path with some specific properties.

For example, the overlay in CAN multicast [77] the logical addresses are obtained

from n-dimensional Cartesian coordinates on an n-torus. An advantage of building

overlay networks with logical addresses is that, for good choices of the address space

and the topology, next hop routing information for unicast and multicast transmis-

sions can be encoded in the logical addresses. A disadvantage of building overlay

networks with logical addresses is that, the overlay network may not be a good match

for the network topology. Some researchers have focused only on the performance of

the application level multicast communication systems that could be improved if the

overlay network topology is congruent with the underlying IP-level topology [73], but

this is not the approach we have decided to follow. To our knowledge, Multilayer-

CON is the first overlay network that considers the latency between nodes in order to

optimize the end-end communication delay and take advantage from the node-node

latency heterogeneity. The problem of constructing an optimal overlay network is

known to be NP-hard [67,74].

Table 7.1 compares different approaches of the current application level multicast

(e.g. ALMI, Narada, Scatercast and CAN) that eases the data dissemination-oriented

applications. It compares the membership management techniques, overlay network

108

Table 7.1
A comparison of data dissemination systems

ALMI Narada Scattercast CAN ADCCS

Membership

Management

Centralized Decentralized Distributed

(Proxies)

Decentralized

Approach

Tree-first Mesh-first Implicit

Coordinate

Space

Latency

Awareness

Tree-type Shared Source-specific Shared

Communication Address-based Content-based

Protocol Unilateral unicast Multilateral

1→ N

construction approaches, and communication based and protocols. Each node in

the ADCCS considers the node to node communication delay during the community

overlay network construction. In contrast, each node in ALMI, Narada, Scatercast

and CAN does not consider the node to node communication during the construction

of their overly networks.

7.1.2 Discussions

ADCCS-Multilayer, ADCCS, like Overcast [63], Narada [51] and ALMI [50], im-

plement multicast, uses a self-organized overlay network and assume only Unicast

support from the underlying network layer. Narada and ALMI target collaborative

applications with a small number of group members. However, ADCCS-Multilayer

and ADCCS are frameworks for collaborative applications with a large number of

group members. ALMI is centralized overlay construction protocol that uses the

tree-first approach. In this approach, a shared content delivery tree is constructed.

It relies on a recursive algorithm to enhance the tree. Clearly, it constitutes a single

point of failure for all control operations related to the group. Narada is distributed

overlay construction protocol that uses the mesh-first approach. In this approach, ev-

109

ery member should keep a full list of all other members. Therefore, both ALMI and

Narada approaches do not scale well to the large group sizes. In contrast, ADCCS-

Multilayer takes a decentralized approach: no node knows the total system as shown

in previous chapters. In addition, ADCCS-Multilayer creates a control multi-layer

topology considering the latency awareness condition. The content delivery path is

implicitly defined on this multi-layer topology. Thus, the ADCCS-Multilayer is scal-

able for large number of members. Scattercast [67] and Overlay Multicast Network

Infrastructure OMNI [66] are designed for global content distribution. They argue for

infrastructure support, where proxies are deployed in the Internet to support large

number of users. For large-scale data distributions, such as live web casts, a single

source exists. In contrast in the ADCCS, the nodes are considered to be equal peers

and are organized in the community network. The community concept is a ”real”

end-system multicast approach. The end-systems (autonomous members) work coop-

eratively to deliver the data on the whole community members. ADCCS is dedicated

for multi-sender applications with large number of participants. It does not depend

on the multicast support by the routers (e.g. IP multicast) and does not depend on

the multicast service nodes MSNs (e.g. Scattercast and OMNI). A rapid and sharp

surge in the volume of requests arriving at MSN often leads to a flash crowd. Clearly,

MSN constitutes a single point of failure for information provisions to the group.

Scattercast, like Narada takes a mesh-based approach to the tree creation problem.

Therefore, Scattercast does not scale well to the large group sizes. In the other side,

the ADCCS scales well to the large number of members because each member is re-

quired to know a small number of other members (neighbors). The proposed ADCCS-

Multilayer and ADCCS are framework for both information sharing and large-scale

data distribution applications. Some other recent projects like CAN [62] have also

addressed the scalability issue in creating the overlay network. CAN defines a virtual

d-dimensional cartesian coordinate space, and each node owns a part of this space.

Contrary to ADCCS-Multilayer, CAN did not consider the node-node latency as an

important criteria that should be optimized. Therefore, CAN may suffer from per-

formance degradation if some intermediate nodes slow down entire network branches.

110

�

�� �

�� �

�� �

�� �

�� �

�� �

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��

	
��
�

	
��

	
�

�

	
��
�

	
��

	
��

�
��
�

�
��

�
�

�
��
�

�
��

�
��
	

�
��
�

�
��
�

	
 � �
 � �
 � � � �
 � �

�

�
�
��
�
�
�
�
�
��
�
��
�
�
��

��
�
��
�

�
�

� � � � 	 � � �
 �

 � � � � � � � �

� � � � 	 � � �
 �

 � � � � � � � � � � � � � � � � � ! � " � � � � � � � � � � � � � � � � � ! � "

Latency changed
ALMI calculates
multicast tree

Figure 7.2. Comparison: ALMI and ADCCS-Multilayer.

Both ADCCS and CAN nodes maintain constant state for other members and as a

result exchange a constant number of periodic messages. However, this overhead in

Bayeux is logarithmic.

7.2 Quantitative Analysis

The goal of this section is to quantitatively study the ADCCS-Multilayer and

one of the application level multicast such as ALMI. For comparison, we have im-

plemented the entire, ALMI protocol from the description given in [50]. The ALMI

protocol is a tree-first application-level multicast approach. In this approach, each

node monitors a constant number of neighboring nodes from the total number of

nodes. In this simulation each node monitors 2% nodes from the total number of

nodes in the system. Periodically, these nodes send a report message to the ses-

sion controller. Thus, the controller can build a sub-optimal Minimal Spanning Tree

(MST) for efficient communication. In this simulation, ALMI controller calculates

the multicast tree every 2 minutes. Moreover, we have conducted a simulation over

transit-stub network model with the same setup parameters as used in chapter 6. Af-

ter one minute from the simulation time, we randomly selected about 2% from core

links and increased their latencies by 50ms. Figure 7.2 shows the variations of the

Mean Communication Delay for both ALMI and ADCCS-Multilayer with simulation

111

time. For small number of members ADCCS-Multilayer is not effective compared

to ALMI but ADCCS-Multilayer reveals meaningful results when the total number

of members in the community increases sharply. After one minute of the simula-

tion, 2% from core links increase their latencies by 50ms. ADCCS-Multilayer adapts

these changes quickly however ALMI periodically (2 Minutes) monitors the changes

and then constructs new multicast tree. ADCCS-Multilayer has shown about 19%

improvement of the MCD compared to ALMI.

7.3 Summary

This chapter presented a review of related works and study their approaches for

construction the overlay networks. In this chapter, we discussed the other approaches

to demonstrate the strength and weakness in compare with the ADCCS. Finally this

chapter demonstrated the effectiveness of the ADCCS compared to ALMI, one of the

best application level multicast system. Thus, we conclude that the ADCCS achieves

the timeliness.

112

8 CONCLUSIONS

8.1 Summary

The accelerating progress in both economy and new information and communi-

cation technology are radically modifying the ways in which we use communication.

Over the last few years, there have been dramatic changes in the computing and com-

munication landscape. The combination of these changes is bringing forth a number of

new and interesting challenges forcing us to re-evaluate how to design and implement

large-scale decentralized information-dissemination systems.

This thesis focuses on clarifying a new paradigm for information-dissemination

systems in a heterogeneous and highly dynamic environment such as Internet. The

dissertation illustrates the concept, architecture and real-time and fault-tolerance ori-

ented technologies of Autonomous Decentralized Community Communication System

ADCCS. The main contributions of this research are:

• Proposition of ADCCS concept in information-dissemination services (right me,

right time and right location) bases on the leading Autonomous Decentralized

Concept. In contrast to the traditional anyone-anywhere-anytime model, AD-

CCS’s concept is to provide specific users with information at specific place and

time.

• Proposition of autonomous decentralized community communication architec-

ture. It is loosely connected and controlled mass of nodes. Each node au-

tonomously controls itself and coordinates with the others nodes to disseminate

information timely and reliably. The architecture is fully decentralized model,

the community membership management doesn’t rely on any centralized au-

thority. This is key to a scalable system for a large number of members.

• Proposition of service-oriented and multilateral autonomous decentralized com-

munity communication technology. It makes a shift from traditional unilateral

and address-oriented dissemination systems to multilateral and service-oriented

113

dissemination systems. In addition, it realizes a flexible, a timely and a pro-

ductive cooperation among members.

• Proposition of autonomous self-organized and self-adaptable Community Over-

lay Network (CON) construction, reconstruction and maintenance techniques.

These techniques allow users to join with low complexity and with considering

node-node latency to enhance the communication delay. Moreover, they allow

members to detect, recover a node/link failure with low complexity and to adapt

the network changes. Thus these techniques achieve:

– Scalable Online-expansion,

– Fault-tolerance,

– Timeliness and adaptability,

under dynamic and heterogeneous environment without requiring any knowl-

edge of the total system structure. Then, CON enables the efficient information-

dissemination at the application layer without any support from routers.

• Quantitative comparison of autonomous decentralized community communica-

tion system (ADCCS) with unicst, IP Multicast and ALMI.

• Qualitative comparison of ADCCS with the other conventional information-

dissemination systems such as Narada, ALMI and others.

In accordance with the assumption stated in section 6.1 (homogenous node-node

latency), a time analysis was elucidated. This analysis manifests that the mean com-

munication time introduced by the ADCCS’s communication technology over Flat-

CON is improved about 93 percent compared to unicast and 87 percent compared

to unicast using caching proxies with hit rate 50%. However, section 6.2 reveals

the time analysis according to the realistic assumption (heterogeneous node-node la-

tency). This analysis manifests that the mean communication time introduced by

the ADCCS’s communication technology over Multilayer-CON is improved about 93

percent compared to unicast and 39 compared to ADCCS over Flat-CON. Moreover,

114

a study of stress per physical links was conducted to evaluate the load per link during

the running of ADCCS. The result of this study shows that under ADCCS performed

over Multilayer-CON, the maximum stress per physical link of is 15. In contrast, it

is 299 under naive Unicast. Thus, the stress perceived while using ADCCS is close

and converges to IP-Multicast. From these results we conclude that the ADCCS’s

over Multilayer-CON enhances the community communication in realistic Internet

settings compared to the ADCCS over FLAT-CON. Thus, the timeliness is achieved.

In addition, we analyze the fault-tolerance and Timeliness and then show the exis-

tence of the tradeoff relation between timeliness and fault-tolerance. Moreover, this

analysis manifests that the Functional Reliability FR introduced by the ADCCS’s

fault-tolerance process over Multilayer-CON is improved about 17 and 60 percent

compared to Flat-CON with fault-tolerance and random logical overlay network with

fault-tolerance respectively.

Beyond the promising performance results, the major fulfillments of the autonomous

decentralized communication system are tenant in the community concept, communi-

cation technology and the construction, reconstruction and maintenance technologies

of the community overlay network. These proposed technologies achieve scalable

online-expansion, timeliness, adaptability and fault-tolerance to the system while

maintaining the autonomy of the system’s components.

8.2 Future Work

We believe that the proposed technologies and simulations that are realized during

this thesis have been a nucleus for further research and development of large-scale

information-dissemination systems. We thought this thesis is the base stone of this

research direction and raised some important trends and challenges for new genera-

tions of students to follow this direction and enlarge it. Due to the time scale of a

Ph.D., this thesis has been limited to disseminate non-multimedia data. Streaming

media delivery applications have motivated increasing interests. In large-scale and

dynamic environments, they require more difficult real-time requirements that cur-

115

rently cannot fulfil. Moreover, the wireless and mobility are added dimensions to a

streaming media network.

Internet-based telephony - Voice-over-IP - (VoIP) has been around for years but

has not reached the mainstream market. These systems uses centralized technologies

to route calls through firewalls or Network Address Translations. The result is that

companies operating such services typically allocate very little resources on their

servers per user which seriously degrades the call quality. Skype [79] is the first P2P

telephony system. Utilizing our experience in this thesis to leverage all of the available

resources in a network without the need for costly centralized resources with achieving

service level agreement and maintaining the autonomy of each subsystem.

Security is also an important issue that should be handled with maintaining the

autonomy of the system’s components. Future work is to develop secure autonomous

decentralized information-dissemination systems that realizing the following general

goals: trustworthy encryption, data integrity, data confidentiality, access control and

robustness against denial-of-service attacks.

116

Publications

I. Journals & Magazines

1. K. Ragab, N. Kaji and K. Mori, ”Scalable Multilateral Autonomous Decentral-

ized Community Communication Technique for Large-Scale Information Sys-

tems,” IEICE TRANS. COMMUN. Vol. E87-B, No. 3, pp. 660-670, March

2004.

2. K. Ragab, N. Kaji and K. Mori, ”ACIS: A large-scale Autonomous Decen-

tralized Community Communication Infrastructure,” IEICE TRANS. INFO.&

SYST. Vol. E87-D, No. 4, pp. 936-946, April 2004.

3. K. Ragab and K. Mori, ”ACIS-Hierarchy: Enhancing Community Communi-

cation Delay for Large-Scale Information Systems,” IEICE Trans. COMMUN.

Vol. E87-B, No. 7, pp. 1797-1805, July 2004.

4. K. Ragab N. Kaji, Y. Horikoshi, H. Kuriyama and K. Mori, ”Autonomous De-

centralized Community Communication for information dissemination,” IEEE

Internet Computing Magazine Vol. 8 No. 3, pp. 29-36, May/June 2004.

II. International Conferences

First Author

1. K. Ragab, T. Ono, N. Kaji, and K. Mori, ”Community Communication Tech-

nology for achieving Timeliness in Autonomous Decentralized Community Sys-

tems,” Proc. IEEE CS of the 2nd International Workshop on Autonomous

Decentralized System (IWADS 2002), pp. 56-60, Beijing, China.

2. K. Ragab, T. Ono, N. Kaji, K. Mori, ” Autonomous Decentralized Community

Concept and Architecture for a Complex Adaptive Information System,” Proc.

IEEE CS of FTDCS, pp. 9-15, Puerto Rico, May 2003.

3. K. Ragab, T. Ono, N. Kaji, K. Mori, ”An Efficient Communication Technology

for Autonomous Decentralized Community Information System,” Supplement

Proc. IEEE CS of ISADS, pp. 7-8, Pisa, Italy, April 2003. (Fast abstract)

117

4. K. Ragab, N. Kaji, K. Mori, ”Scalable Multilateral Communication Technique

for Large-Scale Information Systems,” Proc. IEEE of COMPSAC, pp. 222-227,

Dallas, USA, Nov. 2003.

5. K. Ragab, N. Kaji, K. Mori, ”Service-Oriented Autonomous Decentralized Com-

munity Communication Technique for a Complex Adaptive Information Sys-

tem,” Proc. IEEE/WIC CS of WI’2003, pp. 323-329, Halifax, Canada, October

2003.

6. K.Ragab, N.Kaji, K. Anwar, Y. Hirokoshi, H. Kuriyama and K. Mori, ”A Novel

Multilayer Community Architecture With End-End Delay Awareness for Com-

munication Delay Enhancement,” Proc. IEEE CS of SAINT’2004, pp. 43-49,

Tokyo, Japan, Jan., 2004.

7. K. Ragab, Y. Horikoshi, H. Kuriyama and K. Mori ”Multilayer Autonomous

Community Overlay Network for Enhancing Communication Delay ”, Proc.

IEEE CS of ISCC, pp. 987-992, Alexandria, Egypt, June 2004.

Coauthor

1. T. Ono, K. Ragab, N. Kaji, and K. Mori, ”Service-oriented Communication

Technology for Achieving Assurance”, Proc. IEEE CS of the 22nd International

Conference on Distributed Computing Systems Workshops, pp. 69-74, Vienna,

Austria 2002.

2. T. Ono, K. Ragab, N. Kaji, and K. Mori, ”Autonomous Cooperation Technique

to Achieve Fault tolerance in Service oriented Community System”, Proc. IEEE

CS of the 2nd International Workshop on Autonomous Decentralized System

(IWADS 2002), pp. 84-89, Beijing, China.

3. N. Kaji, K. Ragab, T. Ono, and K. Mori, ”Autonomous Synchronization Tech-

nology for Achieving Real Time Property in Service Oriented Community Sys-

tem”, Proc. IEEE CS of the 2nd International Workshop on Autonomous De-

centralized System (IWADS 2002), pp. 16-21, Beijing, China.

118

4. N. Kaji, K. Ragab, T. Ono, and K. Mori, ”Service Oriented Community Systems

for Mobile Commerce”, International Conference on Advances in Infrastructure

for e-Business on the Internet (SSGRR 2002s), Italy, 2002.

5. N. Kaji, K. Ragab, T. Ono, and K. Mori, ”Autonomous Cooperation Technolo-

gies for Achieving Real Time Property and Fault Tolerance in Service Oriented

Community System”, Proc. IEEE CS of the 23nd International Conference on

Distributed Computing Systems, pp. 36-41, Rhode Island USA May, 2003.

6. Y. Hirokoshi, K. Ragab, N. Kaji, K. Mori, ”Service Discovery Technology in

Autonomous Decentralized Community System”, Proc. IEEE/IEICE of the

APSITT’2003, New Caledonia, Nov. 2003.

7. T. Ono, N. Kaji, Y. Hirokoshi,H. Kuriyama, K. Ragab and K. Mori ”Au-

tonomous Decentralized Community Construction Technology to Assure Qual-

ity of Services ”, Proc. IEEE CS of FTDCS, pp. 299-305, China, May 2004.

III. Domestic Conferences

1. K. Ragab, T. Ono, K. Mori, ”High Assurance Communication Technique for

Autonomous File Sharing Community”, Assurance Kenkyukai’02, pp. 9-16,

Tokyo Metro. University, Tokyo, Japan.

2. Y. Hirokoshi, K. Ragab, T. Ono, N. Kaji, K. Mori, ”Autonomous Service Dis-

covery Technology To achieve Assurance in Community”, Assurance Kenkyukai’03,

pp. 59-66, Hiroshima City University, Japan.

3. T. Ono, K. Ragab, N. Kaji, Y. Hirokoshi, K. Mori, ”Autonomous Construc-

tion Technology in Community to Assure the Quality of Services”, Assurance

Kenkyukai’03, pp. 51-58, Hiroshima City University, Japan.

119

REFERENCES

[1] L. G. Roberts. A Beyond Moore’s law: Internet Growth Trend. IEEE Computer,
33:117, 2000.

[2] Peter Lyman and Hal R. Varian. How Much Information. Journal of Electronic
Publishing, 6:25, 2000.

[3] David R. Cheriton. Dissemination-oriented Communication Systems. Technical
report, Computer Science Dept., Stanford University, 1992.

[4] S. Deering and D. Cheriton. Multicast Routing in Datagram Internetworks and
Extended LANs. ACM Transaction on Computer Systems, 8(2):85–110, May
1990.

[5] S. Deering. Multicast Routing in Datagram Internetworks. Ph.d., Stanford Uni-
versity, May 1991.

[6] K. Almeroth. The Evolution of Multicast: From the MBone to Inter-domain
Multicast to Internet2 Deployment. IEEE Network, 14:10–20, January/February
2000.

[7] N. Kaji T. Ono, K. Ragab and K. Mori. Service-oriented Communication Tech-
nology for Achieving Assurance. In IEEE CS Proc. 22nd ICDCS (ADSN work-
shop), pages 69–74, 2002.

[8] T. Ono N. Kaji, K. Ragab and K. Mori. Autonomous Cooperation Technolo-
gies for Achieving Real Time Property and Fault Tolerance in Service Oriented
Community System. In IEEE CS Proc. 23rd ICDCS (ADSN workshop), pages
36–41, 2003.

[9] Shaun Terry. Enterprise JMS Programming. John Wiley Publication, 2002.

[10] K. Mori Et. al. Proposition of Autonomous Decentralization Concept. Journal
of IEE Japan, 104(12):303–310, 1994. (Japanese).

[11] K. Mori. Autonomous Decentralized Systems: Concept, Data Field Architecture
and Future Trends. In IEEE CS Proc. ISADS’93, pages 28–34, 1993.

[12] Ray-Shang Lo. The Embedding of Hamiltonian Paths in Faulty Arrangement
Graphs. Ph.d., National Taiwan University, 2000.

[13] I. Harrington. Organizational Structure and Information Technology. Prentice-
Hall London, UK, 1991.

[14] M. Solman and J. Kramer. Distributed Systems and Computer Network. Prentice-
Hall, 1987.

[15] H. Zimmerman. OSI Reference Model-the ISO Model of Architecture for Open
Systems Interconnection. IEEE Trans. on Communications, 28(4):425–432,
1980.

120

[16] W. Stallings. Networking Standards: A Guide to OSI, ISDN, LAN and MAN
Standard. Addison-Weseley, 1993.

[17] M.K. Buckland. What is a document? Journal of the American Society of
Information Science, 48(9):804–809, 1997.

[18] ISC internet domain survey. http://www.isc.org/index.pl?/ops/ds/, January
2003.

[19] $33 Billion in Online Advertising by 2004. Forrester Research, Meta Group -
http://WWW.forrester.com, August 1999.

[20] J. Han and M. Kamber. Data Mining: Concepts and Techniques,. Morgan
Kaufmann, August 2000.

[21] A. Ankolekar. DAML-S: Web Service Description for the Semantic Web. In
Proc. Semantic Web Conf. ISWC’02, 2002.

[22] David Gourley and Brian Totty. HTTP: The Definitive Guide. O’Reilly &
Associates, 2002.

[23] T. Lindholm and F. Yellin. The Java(TM) Virtual Machine Specification. (Ad-
dison Wesley), 1997.

[24] A. D. Birrel and B. J. Neslon. Implementing Remote Procedure Calls. ACM
Trans. on Computer Systems, 2:39–59, 1984.

[25] Errol Simon. Distributed Information Systems: From Client/Server to Dis-
tributed Multimedia. McGraw-Hill publishing Company, England, 1996.

[26] Andy Oram. Peer-to-Peer Harnessing the Power of Disruptive Technologies,
PUBLISHER =.

[27] A Iamnitchi M, Ripeanu and I. Foster. Mapping the Gnutella Network. IEEE
Internet Computing, 6:50–57, January 2002.

[28] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. In ACM Proc. SIGCOMM’01, pages 149–160, 2001.

[29] A. Susarla M. Parameswaran and A.B. Whinston. P2P Networking: An
Information-Sharing Alternative. IEEE Computer, 43(7):31–38, 2001.

[30] Joe Malcolm Kurt J. Lidl, Josh Osborne. Drinking from the Firehose: Multicast
USENET News. In USENIX Conference Proceedings, San Francisco, CA, 1994.
USENIX.

[31] A. S. Tanenbaum. Distributed Operating Systems. Prentice-Hall, Inc., 1995.

[32] Tai Jin Martin Arlitt. Workload Characterization of the 1998 World Cup Web
Site. Hewlett Packard Co., 1999.

[33] J.Jung and Et al. Flash Crowds and Denial of Service Attacks: Characterization
and Implications for CDNs and Web Sites. In Proc. WWW’02, Hawaii, USA,
2002.

[34] S. K. Shrivastava David B. Ingham and F. Panzieri. Constructing Dependable
Web Services. IEEE Internet Computing, 4(1):25–33, 2000.

121

[35] H. Nakanishi K. Ohmachi K. Mori, S. Yamashita and Y. Hori. Service Accelerator
(SEA) System for Supplying Demand Oriented Information Services. In IEEE
CS Proc. ISADS’97, pages 129–136, 1997.

[36] R. Paul I.L. Yen and K. Mori. Towards Integrated Methods for High Assurance
Systems. IEEE Computer, 31(4):32–34, 1998.

[37] K. Mori. Applications in Rapidly Changing Environments. IEEE Computer,
31(4):42–44, April 1998.

[38] Sape Mullender. Distributed Systems. Addison-Wesley, 1995.

[39] Steve Steinke. Middleware Meets the Network. LAN: The Network Solutions
Magazine, 10(13):56, 1995.

[40] H. Eriksson. Mbone: The multicast backbone. Communications of the ACM,
37(8):54–60, 1994.

[41] S. Casner and S. Deering. First IETF Internet Audiocast. ACM Computer
Communication Review, 22(3):92–97, July 1992.

[42] Injong Rhee, Nallathambi Ballaguru, and George N. Rouskas. MTCP: Scalable
TCP-like Congestion Control for Reliable Multicast. In IEEE CS Proc. INFO-
COM, March 1999.

[43] Luigi Rizzo. PGMCC: A TCP-friendly Single-rate Multicast. In ACM Proc.
SIGCOMM, pages 17–28, 2000.

[44] J. C. Lin and S. Paul. RMTP: A Reliable Multicast Transport Protocol. In IEEE
CS Proc. INFOCOM’96, pages 1414–1424, San Francisco, CA, March 1996.

[45] J. W. Wong and M. H. Aremar. Analysis of Broadcast Delivery in a Videotex
System. IEEE Transactions on Communications,, 34(9):863–866, 1985.

[46] K. C. Lee G. E. Herman, G. Gopal and A. Weinrib. The Datacycle Architecture
for Very High Throughput Database Systems. In ACM SIGMOD, pages 97–103,
San Francisco, CA, May 1987.

[47] H. Garcia-Molina T. Yan. SIFT- A Tool for Wide-area Information Dissemina-
tion. In Proc. USENIX Technical Conf., pages 177–186., 1995.

[48] Alex Siegel B. Oki, M. Pfluegl and Dale Skeen. The Information Bus: An Ar-
chitecture for Extensible Distributed Systems. In Proc. 14th SOSP, December
1993.

[49] D. S. Roseablum A. Carzaniga and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transaction on Computer Systems,
13(3):332–383, August 2001.

[50] D. Verma D. Pendarakis, S. Shi and M. Waldvogel. ALMI: An Application Level
Multicast Infrastructure. In Proc. of 3rd Usnex Symp. on Internet Technologies
and Systems, pages 49–60, San Francisco, CA, USA, March 2001.

[51] S. Seshan Y. Chu, S. G. Rao and H. Zhang. A Case for End System Multicast.
IEEE Journal on Selected Areas in Communication (JSAC), 20(8):1456–1471,
October 2002.

122

[52] C. Partridge D. Waitzman and S. Deering. Distance Vector Multicast Routing
Protocol. Technical report, RFC 1075, November 1998.

[53] M. Koizumi and K. Mori. Autonomous Coordinability of Decentralized System
considering Subsystems Failures. In Proc. 7th Int. Conf. On Multiple Criteria
Decision Making, Kyoto, Japan, 1986.

[54] M. Matsumoto and Et. al. Development of the Autonomous Decentralized Train
Control System. IEICE Trans. Communication, E84-D(10):1333–1340, October
2001.

[55] G. H. Hillery. Defination of Community: Areas of Agreement. Rural Sociology,
1955.

[56] R. M. MacIver. Community. Macmillan, 1917.

[57] M. Jarke F. Matthes J. Mylopoulos M. P. Papazoglou K. Pohl J. Schmidt C.
Woo E. Yu G. De Michelis, E. Dubois. Cooperative Information Systems: A
Manifesto. Cooperative Information Systems: Trends & Directions, Academic-
Press, New York, 1998.

[58] Toru Ishida, editor. Community Computing: Collaboration over Global Informa-
tion Networks. John Wiley & Sons Ltd., 1998.

[59] H. Ihara Et al. K. Mori. Autonomous Decentralized Software Structure and its
Application. In IEEE CS Proc. FJCC’86, November 1986.

[60] D. Reed J. Saltzer and D. Clark. End-to-End Arguments in System Design.
ACM Trans. on Computer Systems, 2(4):195–206, 1984.

[61] G. E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965.

[62] S. Ratnasamy and Et al. Scalable Content-Addressable Network. In Proc. Of
SIGCOMM’01, California, USA., 2001.

[63] K. Johnson M. Kaashoek J. Jannotti, D. Gifford and Jr. J. O’Toole. Overcast:
Reliable Multicasting with as n Overlay Network. In Proc. 4th Sym. OSDI, pages
197–212, October 2000.

[64] A. D. Joseph R. H. Katz S. Q. Zhuang, B. Y. Zhao and J. D. Kubiatowicz.
Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dis-
semination. In Proceedings of NOSSDAV, Port Jefferson, NY, USA, June 2001.

[65] Secure hash standard. Technical Report FIPS 180-1, National Inst. Of Standards
and Technology, US Dept of Commerce, Washington D.C., April 1995.

[66] K. Kor B. Bobb S. Banerjee, C. Kommareddy and S. Khuller. Construction of
an Efficient Overlay Multicast Infrastructure for Realtime Applications. In IEEE
Proc. of INFOCOM, 2003.

[67] Y. Chawathe. Scattercast: An Architecture for Internet Broadcast Distribution
as an Infrastructure Service. PhD thesis, University of California, Berkeley, Dec.
2000.

[68] S. H. Strogatz M. E. J. Newman and D. J. Watts. Random graphs with arbitrary
degree distributions and their applications. Phys. Rev., E64, 2001.

123

[69] B. Jackson and H. Li. Hamilton cycles in 2-connected k-regular bipartite graphs.
Comb. Theory Series A, 44(2):177–186, 1998.

[70] J.A. Bondy and U.S. R. Murty. Graph Theory with Applications. Macmilliam
Press Ltd., 1976.

[71] Granbaum B. and Malkevitch J. Pairs of Edge-disjoint Hamiltonian Circuits.
Aequationes Math, 14(1/2):191–196, 1976.

[72] Stephen Williams. Caching Proxies: Limitations and Potentials. In Proc. 4th
Int. World Wide Web Conference, Dec. 1995.

[73] S. Ratnasamy and Et al. Topologically-aware Overlay Construction and Server
Selection. In IEEE Proc. INFOCOM, New York, 2002.

[74] M.R. Garrey and Et al. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman, San Francisco, CA, 1979.

[75] E. W. Zegura and Et al. How to model an Internetwork. In IEEE CS Proc.
INFOCOM, San Francisco, 1996.

[76] P. Francis. Yoid: Extending the Internet Multicast Architecture. Technical
report, AT&T Center for Internet Research at ICSI (ACIRI), April 2000.

[77] S. Ratnasamy and Et al. Application-level Multicast using Content-Addressable
Networks. In Proc. 3rd Int. Workshop on Networked Group Communication
(NGC’01), London, U.K., 2001.

[78] Michael Nahas Jorg Liebeherr and Weisheng Si. Application-Layer Multicasting
With Delaunay Triangulation Overlays. IEEE Journal on Selected Areas in
Communications, 20(8):1472–1488, October 2002.

[79] http://www.skype.com/home.html.

124

APPENDICES

A MULTILAYER-CON: RECURSIVE JOINING AND RECONSTRUCTION

A.1 Multilayer-CON: Join Recursive Function

Join(X, FN, S
(j)
i)

{
// Global variables: First Contact = 1, CHECK OUT=0.

// CHECK OUT: Number of sub-communities have been checked out

If ((!First Contact) && (CHECK OUT==β0)) then

{
//No sub-community satisfied the LAC.

Create Sub(X, S
(0)
β0+1); // Set L

(0)
β0+1 =X

Return (S
(0)
β0+1);

}
If ((First Contact) && ((δ(X, FN) + δ(FN, L

(j)
i)) < α

(j)
i)) then

{
Create link(X, FN);

Return (S
(0)
i);

}
If ((j == 0) && (δ(X, L

(j)
i) < α

(0)
i)) then

{
Join Sub(X, S

(0)
i);

Return (S
(0)
i);

}
// Set First Contact=0 for next recursive call.

First Contact =0;

If ((j==0) && (δ(X, L
(j)
i) > α

(0)
i))

{ // u: Up

j = j+1;

CHECK OUT++;

125

Return (Join(X, L(j)
u , S(j)

u));

}
If ((j>0) && δ(X, L

(j)
i) < α

(0)
i) then

{ // d: down

j = j-1;

CHECK OUT++;

Return (Join(X, L
(j)
d , S

(j)
d));

}
If ((j>0) && (δ(X, L

(j
i)) > α

(0)
i)) then

{
// L

(j)
i forwards a request to check LAC to its neighbors

// Each neighbor forwards that request to its neighbors

// until ∀zmεS(j)
i received that request.

For (k=0; k < L
(j)
i .nu neighbors; k++)

L
(j)
i .neighbor[k].Node Join Check(X, L

(j)
i);

L
(j)
i .Wait(γ); //γ is timeout L

(j)
i wait for replies

CHECK OUT = CHECK OUT + S
(j)
i .Sub Size -1;

If (L
(j)
i .received) then

{
//Selected: SubID with minimum latency from the repliers

Selected =SubID MinLatency (Repliers);

j = j-1;

Return (Join(X, L
(j)
Selected , S

(j)
Selected));

}
Else

{
// i.e. No reply within γ : L

(j)
i .received = 0.

If (j < Number layers) then

{
j = j+1;

126

Return (Join(X, L(j)
u , S(j)

u));

}
el se

{
j = j-1;

Return (Join(X, L
(j)
d , S

(j)
d));

}
} }

A.2 Multilayer-CON: Sub-Community Division and Integration Technol-

ogy

A.2.1 Sub-Community Division Technology

Leader DivProcess() // Leader calls this routine to initiate the division process

{
if ((Thrd < |S(0)

i |) && (|S(0)
i | < Thru))

return(0); // No need to divide

else

if (Thru < |S(0)
i |)

{
α

(0)
i = α

(0)
i - ω; // Leader autonomously determines ω

α
(0)
β0+1 = ω;

// Send division request to all members in S
(0)
i with new α (α

(0)
i)

Send Divreq(α
(0)
i , α

(0)
β0+1, β0 + 1);

while (Not Not satified reply); //First reply is received from node id.

 L
(0)
β0+1 = node id;

//Node with node id becomes the leader of new sub-community S
(0)
β0+1.

Send promotion(node id);

}
return(1);

127

}

// Each member calls this routine when it received a division request from leader

node DivProcess(αnew)

{ // αnew is new α received from leader

subid = myself.sub id; //myself: Object contains node’s information

if (δ(myself.id, L
(0)
subid) < αnew)

{
myself.αsubid = αnew;

myself.send(L
(0)
subid, ”LAC is satisfied”);

}
else

{
myself.send(L

(0)
subid, ”LAC is not satisfied”);

myself.leave();

join sub(myself, S
(0)
β0+1);

}
}

A.2.2 Sub-Community Integration Technology

Check Integ() // This routine checks if integration is required or not.

{
if ((Thrd < |S(0)

i |) && (|S(0)
i | < Thru))

return(0); // No need to Integrate

else

if (Thrd > |S(0)
i |)

return (1); // Integration is required

}

Leader InitInteg() // Leader calls this routine to initiate the integration process

{

128

if (Check Integ())

{
sub id= myself.subid;

// Send integration request to its neighbors in sub-community of leaders at upper layer

Send IntgRequest(Neighbors nodes);

while(no reply);

// Wait until receive a first reply from a replier that wants to integrate too

α
(0)
sub id = α

(0)
sub id + α

(0)

replier;

Send IntegAck(replier); // Send integration acknowledge to replier

}
}

//Leader calls this routine when it received an integration request from neighbor’s leader

Leader IntegProcess()

{
if (received IntegRequest)

if (Check Integ())

{
Send(ToRequester, ”Ok Integrate”);

WaitIntegAck(); // Wait integration acknowledgement

// Send a message to all sub-community members to change

// their sub-community identifer to InitInteg SubID.

myself.SendSubMembers(InitInteg SubID);

myself.leader = 0;

myself.normal = 1; // The leader becomes normal member

myself.subid = InitInteg SubID;

}
}

129

