Bytecode Transformation for Portable Thread
Migration in Java

Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa

Department of Information Science, Faculty of Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-0033
{takas, cocoa, yonezawa}@is.s.u-tokyo.ac.jp

Abstract. This paper proposes a Java bytecode transformation algo-
rithm for realizing transparent thread migration in a portable and effi-
cient manner. In contrast to previous studies, our approach does not need
extended virtual machines nor source code of target programs. The whole
state of stack frames is saved, and then restored at a remote site. To ac-
complish this goal, a type system for Java bytecode is used to correctly
determine valid frame variables and valid entries in the operand stack.
A target program is transformed based on the type information into a
form so that it can perform transparent thread migration. We have also
measured execution efficiency of transformed programs and growth in
bytecode size, and obtained better results compared to previous studies.

1 Introduction

Mobile computation is a promising programming paradigm for network-oriented
applications where running computations roam over the network. Various kinds
of applications are proposed such as electric commerce, auction, automatic in-
formation retrieval, workflow management and automatic installation.

The ability to preserve execution states on migration is an important criterion
of classifying programming languages for mobile computation [3,4]. Migration
is called transparent if a mobile application is resumed at the destination site
with exactly the same execution state as before [7]. From the viewpoint of pro-
gramming mobile applications, the notion of transparent migration is especially
important since it allows the programmer to write mobile applications in the
same way as writing ordinary non-mobile applications. It substantially supports
the mobile application programmer to understand program behavior. Early mo-
bile language systems such as Telescript [8] and Agent Tecl [7] had a mechanism
of transparent migration.

Transparent migration, however, is not adopted in major Java-based mobile
language systems (e.g., IBM Aglets [9] and Voyager [12]) though Java has been
very popular among people who are interested in mobile computation. There
is a difficulty in implementing transparent migration in Java. In order to move
computation transparently, the call stack needs to be preserved across migration.
But the Java security policy forbids Java bytecode itself to manipulate the stack.

Two different approaches have been proposed for realizing transparent migration
in Java: extending a Java virtual machine and transforming source code.

Both approaches, however, have their own difficulties. The former approach
requires mobile applications to run only on modified virtual machines. This nul-
lifies one of the advantage of Java, which is ubiquity of common virtual machines.
On the other hand, the latter approach is not applicable when source code is
not available. In fact, Java source codes are often unavailable.

In contrast to the two approaches above, our approach can avoid these draw-
backs by bytecode transformation. In our approach, bytecode instead of source
code is transformed into the form that makes transparent migration possible.

Bytecode transformation has several advantages compared to source code
transformation. The Java language forces clean programming, where only struc-
tured control transfer is allowed. When a method is resumed, we want to transfer
the control to a suspended point in the method. A suspended point can be in
a compound statement, but the Java language forbids a control transfer into a
compound statement. In contrast, there is goto instruction in the Java bytecode
set. The control can be transferred to any program point in a method if it is
allowed by the bytecode verifier. The use of goto instruction can reduce the size
of inserted code fragments for control transfer, and hopefully it can improve exe-
cution efficiency of transformed codes. Actually, as shown later, codes produced
by our bytecode transformer show better execution efficiency on JDK 1.2.2 than
those produced by a source code transformer [13].

There are two difficulties in bytecode transformation. (1) Transformed codes
must pass a bytecode verifier. (2) It is difficult to know the set of values to be
saved and restored. In the bytecode level, values are passed by frame variables
and the operand stack. There are neither variable declarations nor scoping rules.
To obtain necessary information for bytecode transformation, we had to adopt
a type system of Java bytecode [15], and to devise a static program analyzer on
it.

The rest of this paper is organized as follows: Sect. 2 gives an overview of our
mobile agent system. Sect.3 describes our implementation scheme for thread
migration. Sect.4 explains a static program analysis for the bytecode transfor-
mation. Sect. 5 describes our scheme of bytecode transformation for transparent
thread migration and gives an example of a transformed bytecode. Sect. 6 shows
some experiments with our current implementation of the bytecode transforma-
tion. Sect. 7 discusses related work. Sect. 8 concludes this paper.

2 Overview of Our Mobile Agent System

This section gives an overview of our model of mobile computation and our
mobile agent system.

The model of mobile computation adopted in our mobile agent system is
simple, plain and direct so that it accommodates wide applicable domains. The
subject and the unit of mobility in our system are a thread. A thread migrates to
a remote site, preserving its execution states such as the call stack and a part of

the heap image. The thread at the departure site will vanish and an equivalent
thread will appear at the destination. In this sense, our model of migration is
similar to those of Arachne threads system [5] and Emerald [16] rather than
major Java-based mobile agent systems.

In our system, a place or a location to which a mobile agent migrates is a
Java virtual machine. A mobile agent (thread) hops around a group of Java
virtual machines.

Basically, a heap image that a migrating thread can refer to is duplicated
to the destination. This may cause a serious security flaw because a secret data
may be duplicated to a remote site implicitly. Our mobile language system does
not provide a protection mechanism for that kind of flaws, but our system can
be combined with various proposed techniques [2,11] that prevent security flaws.

Though objects on a heap can be transmitted to a remote site, resources such
as files, windows and sockets cannot be. These stationary resources, thus, cause
a problem on migration if a mobile agent has references to them. We have two
options for dealing with these resources. The first one is to force the programmer
to use transient references for these stationary resources. A transient reference
is automatically nullified on migration. The second one is to use the class library
[20] adapted for mobile environment instead of the default libraries in JDK. This
class library shares a common interface with JDK and it enables transparent
access of stationary resources. A stationary resource is either accessed remotely
by Java RMI or duplicated automatically to a destination on migration.

The bytecode transformation scheme described in this paper can be used in
the class loader for mobile code. A class loader fetches class files from both local
and remote sites if they are not loaded yet into a Java virtual machine. When
a class loader detects a class file not modified yet, our bytecode transformer
automatically transforms it at load time into a form in which its execution
states can be saved and restored.

3 How to Move a Thread Over the Network

Our basic mechanism of transparent thread migration on Java virtual machines
is, in principle, similar to other schemes based on source-code-level transforma-
tion [1,6,13,17,18]. A thread migration is accomplished by three steps:

— The execution states of a target thread are saved at the departure site into a
machine-independent data structure. The thread terminates itself when the
migration succeeds.

— The data structure representing the execution states of a target thread and
a part of the heap image are transmitted through the network to the desti-
nation site.

— A new thread is created at the destination. Equivalent execution states of
the target thread are reconstructed for the new thread.

The above whole process is implemented by using only standard mechanisms of
Java and Java RMI.

3.1 Saving Execution States

The execution states of a thread consist of those of the methods in execution.
The execution states of a method consist of (1) a program counter, (2) valid
local (frame) variables, and (3) valid entries in the operand stack. The execution
states of the methods are encoded into a data structure. Note that we assume
that each method is transformed so that it can save its execution state when a
special exception is thrown. When a migration is in operation, an exception is
thrown. If a method captures the exception, the method stores its execution state
to a newly created state object defined for each method, and then it propagates
the exception to the caller of the method. This process is repeated until the
exception reaches the bottom of the stack.

3.2 Transmitting Execution States

When the exception is captured at the bottom of the call stack, all the state
objects are transmitted to the destination site by using Java RMI. All values on
the heap that can be reached from the target thread are also transmitted to the
destination by a mechanism of Java RMI.

3.3 Restoring Execution States

The execution states of a target thread is reconstructed from the state objects.
The call stack is reconstructed by calling the methods in the order in which they
were invoked at the departure site. Each method is transformed in advance so
that it can restore its execution state from the state object. When a method
is called with the state object, it restores the values of the stack frame, and it
continues execution from the suspended point.

4 Bytecode Analysis

To transform bytecode for transparent migration, we need information on a set
of all valid frame variables and entries in the operand stack for each program
point. A variable or a slot is valid if a value on it is available for every possible
control flow. Types of frame variables and entries in the operand stack are also
necessary. In addition, a transformed code must pass a Java bytecode verifier if
the original code passes it. To obtain such necessary information on bytecode,
we adopt a type system for Java bytecode.

4.1 A Type System for Java Bytecode

Our bytecode transformer exploits exactly the same information for bytecode
verification [10]. We adopt the formulation of bytecode verifier by Stata and
Abadi [15]. Tt is a type system for a small subset of Java bytecode called JVMLO.

If a bytecode is well-typed, it tells that the bytecode is verifiable. A type judg-
ment is written in their type system as follows:

F,S,iF P.

where P denotes a sequence of instructions that constitutes a method. F' is a
mapping from a program point to a mapping from a frame variable to a type.
S is a mapping from a program point to an ordered sequence of types. Finally i
denotes a program point or an address of code. Intuitively, the map F(i) gives
a type of a local variable at program point i. The string S(i) gives the types of
entries in the operand stack at program point .

These F' and S are useful to our bytecode transformation since they contain
typing information about valid local variables and entries in the operand stack,
respectively.

When a type judgment F, S,i F P is true, it tells that program P is verifiable
at program point ¢. The whole program is verifiable if the program is verifiable
for every program point in it. This is denoted by F,S + P.

The type reconstruction problem for JVMLO is to find appropriate F' and
S such that F,S F P is true for given P. It is actually a verification algorithm
itself. We have implemented a type reconstruction algorithm for the extended
JVMLO to be explained next.

4.2 Extending JVMLO to the Full Set of Java Virtual Machine

Since JVMLO includes only a small subset of the Java virtual machine, we have
extended it so that it incorporates the full set of Java virtual machine except
bytecode subroutines. In doing so, the following points are important.

Instruction. The Java virtual machine has around 200 instructions. A typing
rule is defined for each instruction.

Type. Stata and Abadi’s type system has only three kinds of types: an integer
type, a reference type and a return address type. We have to add primitive
types, and the notions of inheritance and subtyping to reference types. In
order to pass a bytecode verifier, our bytecode transformer has to know the
most specific type of a value when the value is restored from a state object.

Exception. Since Stata and Abadi’s type system lacks the mechanism of throw-
ing and catching exceptions, we have to add a facility of handling exceptions.

5 Bytecode Transformation

This section describes our bytecode transformation algorithm. It takes a method
in bytecode and produces a method that has instructions for saving and restoring
its execution state. Because the produced bytecode also consists of the standard
JVM instructions, the transformed method including the state handling mecha-
nism is compatible with any standard JVM and any JIT compiler.

5.1 Overview of Bytecode Transformation

The transformation algorithm changes the signature of a given method to take
a state object as an extra parameter and inserts the following code fragments in
the method:

— An exception handler for each method invocation. The occurrence of migra-
tion is notified by a special exception. The exception handler is responsible
for saving an execution state. The program counter to be saved is known
since an exception handler is unique for each suspended point. The set of
valid local variables and their types (whether it is a primitive type or a ref-
erence type) are found by the bytecode analysis described in Sect. 4 (from F
and S). Even if a migration takes place in a try statement with the finally
clause, the finally clause is not executed on migration, because we do not
insert a jsr instruction to the finally clause in the exception handler.

— Instructions for saving valid entries on the operand stack. The contents on
the operand stack are defined to be discarded when an exception is thrown,
which means that their values cannot be fetched from an exception handler.
The basic idea for saving values on the operand stack is to make the copies
of them in the extended local variables before the method invocations. The
valid entries on the operand stack are found from S.

— Instructions at the head of the method that restore all valid frame variables.
When the execution state of a method is restored, a state object is passed to
the method in the extended parameter. The inserted code restores all valid
frame variables at the suspended point. After restoring the frame variables,
the control is transferred to the suspended point.

— Instructions that put a state object as an extra parameter for a method
invocation instruction.

5.2 State Class

public class STSamplefoo extends javago.StackFrame
implements java.io.Serializable {

public int M_EntryPoint;

public int[] ArrayI = new int[1];

public long[] ArrayL = new long[2];

public float[] ArrayF = new float[3];

public double[] ArrayD = new double[4];

public Object[] ArrayA = new Object[5];

Fig. 1. A state class.

Our transformation algorithm defines a state class for each method. An ex-
ecution state of a method is stored into an instance of the state class. Fig.1

shows all field variables of a state class, where the array sizes are the maximum
numbers of the values of the corresponding type in the execution states. These
numbers are found by the bytecode analysis. The type of a value to be saved is
either one of the primitive types (int, long, float, and double) or a reference
type (Object).

5.3 Extending Method Frame for Local Variables

The set of the local variables are extended for saving valid entries in the operand
stack and some other purposes. The amount of local variables is determined by
the information S, which is obtained by the bytecode analyzer, and another
eight local variables are used for special purpose in our current implementation
of transformation. These reserved frame variables are used to keep the state
object for the current method, the state object for the caller of the current
method, a special exception that notifies migration, and array references in the
current state object (that is ArrayI, ..., ArrayA in Fig.1).

5.4 Example of a Transformed Bytecode

public class test {
public static int foo(int x, int y) {
int z = x + y;
may_migrate();
return z;

Fig. 2. A toy method that may cause a migration.

We illustrate the bytecode transformation by using a toy method in Fig. 2.
This method is compiled into the (pseudo) bytecode listed in the left part in
Fig.3, and it is transformed into the one listed in the right part. An address
with a subscript or a prime denotes an inserted code.

When the may migrate method wants to migrate, the method throws a spe-
cial exception. The exception handler at line 4’ catches the exception and saves
the execution states (z, y and z). Then it propagates the exception to the caller
method. On resumption, this method is invoked with a state object. It restores
the execution state from the state object at line 03. The control is transferred to
line 2’ and then the execution state of the may migrate method will be restored.

5.5 Which Method Should be Transformed?

Since our bytecode transformer changes the signature of a method, the trans-
former must modify method invocation instructions accordingly. Some methods,

1l: z =x + y; 0;: if not resumption, jump to 1;
2: call may migrate; | 0O2: tablejump 0O3;

3: return z; 03: restore x,y,z; jump to 2’

1: z =x + y;

2': push state_object;

2: call may migrate;

3: return z;

4': save x,y,z; throw;

Original bytecode. Transformed bytecode.

Fig. 3. Original and transformed pseudo bytecode for the toy method.

however, preserve their signatures as mentioned in Sect. 5.6. An important ques-
tion, thus, arises: which method should be transformed? There are two solutions:
annotation by the programmer, and construction of a call graph. In the first so-
lution, methods to be transformed are specified by the programmer. This scheme
is simple and able to realize the programmer’s intention correctly, but it cannot
deal with class files written by others. In the second solution, every method that
contains migration instructions is transformed. Besides, every method that in-
directly invokes migration instructions is also transformed. The second kind of
methods is found by constructing a call graph. Though this scheme can deal with
class files written by others, it requires all class files before starting execution.
It is difficult to achieve this requirement in cases that a mobile agent visits some
location for the first time and that two unknown agents meet somewhere.

Our solution is to predesignate the set of methods not to be modified. Our
transformer does not modify system classes and the signatures of callback meth-
ods in user code. This scheme does not need annotation nor a call graph, but an
implementor of the transformer must have a good knowledge of system classes.

5.6 Limitations

Our transformation algorithm and its current implementation has some limita-
tions.

First, our current transformer cannot handle programs that may migrate
when a live return address of a subroutine is included in a local variable or
an entry of an operand stack. The reason is that a return address cannot be
saved arbitrarily under the restrictions of Java bytecode verifier. This limitation
matters when a migration occurs in a finally clause of a try statement.

We are planning to eliminate this limitation in future. The basic idea is to
keep traces of subroutine calls dynamically. The bytecode transformer inserts a
code fragment in subroutines that keeps the set of subroutines in execution and
their invocation order. When the execution state of a method is restored, the
subroutines that were in execution at the departure site are invoked explicitly
by the inserted code fragment. The code in the subroutines that were already

executed is skipped by dynamic checking. Perhaps, this scheme degrades exe-
cution performance because many code fragments are inserted that are always
executed, but this scheme lowers code growth in comparison to unfolding and it
does not need to extend the exception table.

Second, as is mentioned in Sect. 5.5, we do not transform system classes be-
cause they have tight connections with native code. This decision makes migra-
tion across callback methods impossible such as the actionPerformed and the
finalize. The transformer preserves the signatures of these callback methods.
In the callback methods, a null state object is passed to transformed methods.

Third, our transformation changes the signature of a method in order to
pass a state object as an extra parameter. This induces some programs using
reflection not to work correctly.

Fourth, our current implementation of transformation removes the line num-
ber table attribute of the target method, since debug information is no longer
correct after transformation. This implies that it becomes unable to trace the
execution of transformed methods with source-code debuggers. This limitation,
however, can be easily eliminated by maintaining the line number table.

6 Experiments

This section shows some experiments with our current implementation of byte-
code transformer for transparent thread migration. We measured the cost of the
transformation process and evaluated the quality of transformed codes produced
by our bytecode transformer from the viewpoints of execution efficiency and code
size. The transformed codes are compared with (1) those produced by our source
code transformer JavaGo [13] and (2) the original code without transformation.

The implementation is written in Java using only standard libraries in JDK.
The size of the source code is around 5000 lines. All the benchmark programs
were generated as standalone applications in advance by this transformer.

6.1 Elapsed Time for Bytecode Transformation

Table 1. Elapsed time for bytecode transformation.

program # of methods|analysis(ms)|code insertion(ms)|total (ms)
fib 1 235 79 314
qsort 1 285 81 366
nqueen 1 267 80 347
201 _compress 23 3454 1349 4803

(JDK 1.2.2, Sun UltraSPARC 168MHz)

Table 1 shows the times consumed by our transformer to analyze and trans-
form all methods of the sample programs, where 201_compress is a benchmark
program included in SpecJVM98. These elapsed times are rather small, but our

bytecode analyzer needs at least the same costs of bytecode verification.

6.2 Execution Efficiency of Transformed Programs

Table 2. Comparison of execution efficiency.

elapsed time (ms)
with JIT without JIT
program original JavaGo ours original JavaGo ours
fib(30) 111 | 263 (+137%) | 173 (+56%) | 870 |2553 (+193%) | 1516 (+74%)
gsort(400000) | 214 | 279 (+30%) | 248 (+16%) | 2072 | 2856 (+38%) | 2597 (+25%)
nqueen(12) 1523 | 2348 (+54%) | 1731 (+14%) | 30473 | 36470 (+20%) | 30843 (+1.2%)
~201_compress| 33685 |61629 (+83%)|40610 (+21%)|365661 |713936 (+95%)|433439 (+19%)

(JDK 1.2.2, Intel Celeron(TM) Processor 500MHz)

The elapsed times of transformed programs were measured and compared
with those of the original programs. The purpose of this measurement is to iden-
tify the overheads induced by inserted code fragments in the original programs.
Thus, migration does not take place during the execution of the benchmark pro-
grams. The results are shown in Table 2. As a comparison, the elapsed times of
the transformed programs by JavaGo, which is a source code level transformer,
is also listed in the table.

Most part of the overheads is due to the code fragments for saving the operand
stack at suspended points. The overheads of the Fibonacci method is rather
high because the method does almost nothing but invokes the method itself
recursively. When the contents of a method is so small, the relative overheads of
inserted code fragments tend to be high. This tendency is common to migration
schemes based on program transformation. Our results, nevertheless, are better
than those of JavaGo. In this experiment, the overheads induced by our bytecode
transformation are always less than those induced by JavaGo. For quick sort
and N-queen programs, the overheads were approximately 15% to the original
programs when the applications were executed with Just-In-Time compilation.

6.3 Growth in Bytecode Size of Transformed Programs

The growth in bytecode size due to our bytecode transformation is shown in
Table 3. To show the pure growth in the method body size, these sizes do not

Table 3. Comparison of bytecode size.

bytecode size (in bytes)
program original JavaGo Ours
fib 276 | 884 (3.2 times) | 891 (3.2 times)
gsort 383 | 1177 (3.1 times) | 1253 (3.3 times)
nqueen 393 | 1146 (2.9 times) | 976 (2.5 times)
-201_compress| 13895 (22029 (1.6 times)|18171 (1.3 times)

include that of the state classes. The growth rates for these programs are ap-
proximately three times. We think that these results would be the worst case
because the relative amount of inserted code fragments tend to be high when an
original method is small.

The size of bytecode produced by our transformation scheme is very similar
to the size of bytecode produced by JavaGo scheme. But their characteristics are
quite different each other. In case of JavaGo, the size of transformed bytecode
is proportional to square of the deepest depth of loops. In contrast, the size
of bytecode transformed by our transformation scheme is proportional to the
number of suspended points.

7 Related Work

Telescript [8] was an early interpreted programming language for mobile agents
developed by General Magic Inc. The Telescript interpreter had a mechanism for
transparent migration. Unfortunately, General Magic does not seem to develop
Telescript anymore. Agent Tcl [7] was also a mobile language system developed
in the early stage of mobile computation. Agent Tcl also has a mechanism for
transparent migration. It is useful to run existing Tcl scripts on a mobile envi-
ronment.

However, this emphasis on transparent migration was not inherited by major
Java-based mobile language systems because of the restrictions imposed by the
Java virtual machine release policy. Shudo avoided the restrictions by extending
a Java virtual machine and implemented a transparent thread migration system
[14]. Fiinfrocken [6] pointed out that an exception handling mechanism could be
used for notifying occurrence of migration with low costs. He developed a scheme
of transparent migration for standard Java, but his scheme had difficulties in
resumption of control in a compound statement. Sekiguchi et al. eliminated these
difficulties based on the idea of unfolding and developed a transparent migration
system [13] in Java. Their scheme enables transparent migration on any standard
Java virtual machine with Java RMI. But it requires all Java source code that
constitutes a mobile program. In Java, programs are always distributed in the
form of bytecode, and source code may be unavailable.

Eddy Truyen et al. [19] developed independently a Java bytecode transformer
for transparent migration, which shares a large part with ours. Both perform

bytecode verification to determine all valid values in a frame and insert code
fragments in the target bytecode based on the analysis. The major difference
between their scheme and ours is execution efficiency. They use return and if
instructions to roll back the stack during saving state, while we use the mecha-
nism of exception. The former scheme significantly degrades the efficiency. Taga
measured execution overheads of that scheme [18] (although it was performed
in C++) and reports that the additional overheads are 27% — 137% of the orig-
inal execution time compared to our scheme. In addition, their scheme uses a
data area proper to a thread to pass state objects. Their scheme, therefore, can
preserve the signature of transformed methods, but it also induces considerable
performance loss. Truyen discusses execution efficiency and growth in bytecode
size in a formal setting, while we measured with real applications.

8 Conclusion and Future Work

We have proposed a scheme for bytecode transformation that enables Java pro-
grams to save and restore their execution states including the call stack with
low overheads. A bytecode transformer based on our scheme has actually been
implemented. The transformer gives Java programs the ability of transparent
migration. As is described in Sect. 6, the quality of the bytecode transformer
is measured and we have obtained better results compared to existing schemes
for transparent migration based on source code transformation. The latest im-
plementation of the transformer described in this paper is widely available at
http://www.yl.is.s.u-tokyo.ac.jp/amo/.

Further work is needed to eliminate the limitations mentioned in Sect. 5.6 due
to bytecode subroutines. More programs can be transformed if these limitations
are removed.

Acknowledgment

The authors would like to express our sincere thanks to Hidehiko Masuhara who
contributed to much of the presentation of this paper.

References

1. Hirotake Abe, Yuuji Ichisugi, and Kazuhiko Kato. An Implementation Scheme of
Mobile Threads with a Source Code Translation Technique in Java. In Proceedings
of Summer United Workshops on Parallel, Distributed and Cooperative Processing,
July 1999. (in Japanese).

2. Boris Bokowski and Jan Vitek. Confined Types. In Intercontinental Workshop
on Aliasing in Object-Oriented Systems in Association with ECOOP Conference,
1999.

3. Luca Cardelli. Mobile Computation. In Mobile Object System: Towards the Pro-
grammable Internet, volume 1222 of LNCS, pages 3—6. Springer-Verlag, April 1997.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Giovanni Vigna. Analyz-
ing Mobile Code Languages. In Mobile Object System: Towards the Programmable
Internet, volume 1222 of LNCS, pages 93-109, April 1996.

Bozhidar Dimitrov and Vernon Rego. Arachne: A Portable Threads System Sup-
porting Migrant Threads on Heterogeneous Network Farms. In Proceedings of
IEEEFE Parallel and Distributed Systems, volume 9(5), pages 459-469, 1998.

Stefan Fiinfrocken. Transparent Migration of Java-Based Mobile Agents. In MA 98
Mobile Agents, volume 1477 of LNCS, pages 26-37. Springer-Verlag, 1998.
Robert S. Gray. Agent Tcl: A Transportable Agent System. In Proceedings of the
CIKM Workshop on Intelligent Information Agents, Fourth International Confer-
ence on Information and Knowledge Management, 1995.

. White J.E. Telescript Technology: Mobile Agents. White Paper. General Magic,

Inc, 1996.

Danny Lange and Mitsuru Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification Second
Edition. Addison-Wesley, 1999.

Andrew C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of Programming
Languages, pages 228-241, January 1999.

Voyager Core Package Technical Overview, 1997. ObjectSpace Inc.

Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa. A Simple Ex-
tension of Java Language for Controllable Transparent Migration and its Portable
Implementation. In Coordination Languages and Models, volume 1594 of LNCS,
pages 211-226. Springer-Verlag, April 1999.

Kazuyuki Shudo. Thread Migration on Java Environment. Master’s thesis, Uni-
versity of Waseda, 1997.

Raymie Stata and Martin Abadi. A Type System for Java Bytecode Subroutines.
SRC Research Report 158, Digital Systems Research Center, June 1998.

B. Steensgaard and E. Jul. Object and Native Code Thread Mobility among
Heterogeneous Computers. In Proceedings of the ACM Symposium on Operating
Systems Principles, pages 68-78, 1995.

Volker Strumpen and Balkrishna Ramkumar. Portable Checkpointing for Hetero-
geneous Architectures. In Fault-Tolerant Parallel and Distributed Systems, chap-
ter 4, pages 73-92. Kluwer Academic Press, 1998.

Nayuta Taga, Tatsurou Sekiguchi, and Akinori Yonezawa. An Extension of C++
that Supports Thread Migration with Little Loss of Normal Execution Efficiency.
In Proceedings of Summer United Workshops on Parallel, Distributed and Cooper-
ative Processing, July 1999. (in Japanese).

Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen and
Pierre Verbaeten Portable Support for Transparent Thread Migration in Java. To
appear in ASA/MA 2000.

Hiroshi Yamauchi, Hidehiko Masuhara, Daisuke Hoshina, Tatsurou Sekiguchi, and
Akinori Yonezawa. Wrapping Class Libraries for Migration-Transparent Resource
Access by Using Compile-Time Reflection. to appear in Proceedings of Workshop
on Reflective Middleware, 2000. April.

