Recent Activity

(since last October)
9000 lines of code ini Ocaml
?
Compiler backend
= SPARC, IA32, PowerPC

Tatsurou Sekiguchi GC
(PCC, TAL)

Why not? Relevant Work andl Systems

= Using a VM = Mobile computation
= T0o slow even with JIT compilation = GNUIC compiler or MIC

e_SpeCia”y for SstyleRuogiams = Compiler toolkits: ANDE, SUIE, Vortex
a Usinga TAL NT=

= Too technically difificult to extend it c
— NG
= _Tfranslating inte the C language
. ; - = MLRISC
= Difficult to implement precise GC

Mobile Compuitation GNU C Compiler

s Platforms

= Omniware, veode, etc. = Efficient execution rather than guick
compilation

= Execution on multiple platfiorms = Native code generator fior multiple
platforms

= \We don't need
= Exactly same virtual machine = 100 complex (more than 0.3M lines of code)

= Integer size, endianness, data representation, etc. 4 O|d fashioned (SSA)
= Very fast compilation, but need efficient code:

MIC (1/2) MIC (2/2)

GCC
= SPARCvV8
GCC
= GCC
= Modified GCC
. Register allocation
= Native code G'C'A32 spil
= Register allocation, peephole optimizations

Compiler Toolkits .NET

= ANDE (developed by OSF) Muchi similar to/ VM
= Architecture and language Neutral Distribution Format . .
R G larUne Mulitiple languages willl be supported

= SUIF = VB, C#, C, C++, Fortran, etc.

= National Compiler Infrastructure Project (?) Multiple platforms will be Supported
= Framework for parallel and optimizing compilers

= Portability is not strongly supported = Currently IA32 only
p z Two modes

. Vortex_) : = Managed: pointer arithmetic forbidden
= Compiler framework for object-oriented languages

= Portability is not strongly supported (SPARC only?) = Unmanaged: GC is not supported

Cmm MLRISC

Compiler backend! fior multiple languages, = Compiler backend fior SML/NJ
multiple platforms

Stilllunder development (prototypes are available) = Weaiidoeumentation, nofviaketile

\[o) SUppOI"t fOr‘ garbage CO”eCtiOn u OptimizatiOHSZ (we don’t implement some of them)

inhD Dead code elimination Global code motion
Z\;iilat(%; rich’) Support for coneurrent Register allocation Conditional constant propagation

. Global value numbering Strength reduction
= No support for native threads Constant folding List scheduler

= The programmer can provide a scheduler in user Algebraic simplification VLIW support
level Time-constrained instruction scheduler

Our Language System

= Compiler backend language
= Explicit access to memory.
= Pointer arithmetic
= No verification, but support for verification
= Weak type checking
= Architecture neutral

= Native codegenerator

= Should do only architecture dependent
optimizations

Sample: fibonacel fiunction

INt32 Fib(int32 n) {
Int32 p, G;
iff(n>1) gotol;
return 1;

p = fib (n - 1);
g = fib (n. - 2);
return p + @;

Built—in Tail Call Instruction

Function call with a current stack frame
Synitax:

= Normal call: foo();

= Tail call: jump foo();

Adopted in C-- and .NET

Purpoeses:

= Tail call optimization

= CPS-style program handling

Surface Language

» C-like syntax and semantics
= No block of statements
= Weak type system
= Only integer types and floating-point types
= EXcluding ambiguities in the C language
= Evaluation order (function arguments, ++, --, etc.)

= Structure layout
= Integer bitwidth, pointer bitwidth

= New features:
= Exception handling
= Built-in taill call instruction

Exception Handling

= Source code = Implementation

X = foo() => k; call foo

ba k exceptional return
Z=x+1; add x,1,z normal return
handler k(y): k: mov: .,y

Native Code Generator (1/2)

= T0o advanced, too costly,
= e.0.

Native Code Generator (2/2) SISTAN

= DON'T = DO » SSA 2
= Interprocedural g 2 tion . (static
analysis and Algebraic simplification single assignment form)

AV Constant propagation
Y EI Strength reduction - ops [kelsey9si[Appelos]

= Global code motion Liveness analysis

= [nlining Register allocation = Flow insensitive

Induction variable elimination flow sensitive

H | |
= [Loep-unrolling Laze code motion

Machine SSA transformation
Critical path based list scheduling

= Machine SSA ?

. register
SSA (%y register in SPARC, edx:eax in mul of 1A32)

SSA and Functional
Programming

x Non SSA CSISTAN = SSA = Functional equivalent
LO: if x < 0/ goto L.2; LO: if x < 0 goto L.2; LO: if x < 0 goto L2; let 10(x) =
L1: y = 10; goto L4; L1: y1 = 10; goto L.4; L1: y1 = 10; goto L3; Lt '_3(2’1,_3)“;/ R
L2:y = 20; L2: y2 = 20; L2: y2 = 20; mP”n (“%d¥nt, y3)
L3: printf(“%d¥n”, y); L3: printfi(“%d¥n”, y2); L3: y3 = o (yl,y2);

: iff X < 0 then
L4:z=x; L4: z = o (Y1,y2); L4: printf(“%d¥n”, y3); let y1 = 10 in I3(y1)

else
let y2 = 20 in 13(y2)

Flow: Iinsensitivity

Lazy: Code Moition

(partial redundancy: elimination)

Progress

= Generalization of loop invariant hoisting, common SSA transformation
subexpression elimination ... Algebraic simplification

Constant propagation d
Strength reduction One
Liveness analysis

Z=XtY, Z=X*Yi z=x+y; Machine SSA transformation

\ Register allocation
Induction variable elimination H
/ \ / LLaze code motion On gOI ng

Critical path based list scheduling
Z=X1Y,

Summar Mac OS X is
y Linux PPC + MS Office

= A language system: is under developmentt = Mac (E
s UNIX

= Open source
= emacs, tcsh, ssh
= C compiler, X window system

= Requirements:
= Highly efficient, and
= Highly portable

a Components
= Surface-language for compiler backend = _Control

= Native code generator (JIT compiler) J Samba
= UNIX

= Powerpoint, Internet Explore

