next up previous
Next: Problem 3 - Digital Up: Information Science I Previous: Problem 1 - Operating

Problem 2 - BCH Codes

For a polynomial $ x^4 + x + 1$ over $ GF(2)$, let $ \alpha$ be a root satisfying $ \alpha^4 + \alpha + 1 = 0$.

1.
Show that $ \alpha$, $ \alpha^2$, ..., $ \alpha^{15}$ are all mutually distinct.
2.
For a polynomial $ f(x) = x^8 + x^7 + x^6 + x^4 + 1$ over $ GF(2)$, show that $ f(\alpha^4) = f(\alpha^3) = f(\alpha^2) = f(\alpha) = 0$ holds.
3.
Show that any nonzero polynomial in $ \{ g(x)f(x) \; \vert \; g(x)
\in GF(2)[x] \}$ as at least 5 nonzero coefficients.


1.
we calculate the following expressions:
$ \alpha$    
$ \alpha^2$    
$ \alpha^3$    
$ \alpha^4$ = $ \alpha + 1$
$ \alpha^5$ = $ \alpha^2 + \alpha$
$ \alpha^6$ = $ \alpha^3 + \alpha^2$
$ \alpha^7$ = $ \alpha^4 + \alpha^3$
  = $ \alpha + 1 + \alpha^3$
$ \alpha^8$ = $ \alpha^2 + \alpha + \alpha^4$
  = $ \alpha^2 + 1$
$ \alpha^9$ = $ \alpha^3 + \alpha$
$ \alpha^{10}$ = $ \alpha^4 + \alpha^2$
  = $ \alpha^2 + \alpha + 1$
$ \alpha^{11}$ = $ \alpha^3 + \alpha^2 + \alpha$
$ \alpha^{12}$ = $ \alpha^4 + \alpha^3 + \alpha^2$
  = $ \alpha^3 + \alpha^2 + \alpha + 1$
$ \alpha^{13}$ = $ \alpha^4 + \alpha^3 + \alpha^2 + \alpha$
  = $ \alpha^3 + \alpha^2 + 1$
$ \alpha^{14}$ = $ \alpha^4 + \alpha^3 + \alpha$
  = $ \alpha^3 + 1$
$ \alpha^{15}$ = $ \alpha^4 + \alpha$
  = $ 1$
$ \alpha^{16}$ = $ \alpha$
2.
$ f(\alpha^4) = \alpha^{32} + \alpha^{28} + \alpha^{24} + \alpha^{16} + 1$
$ = \alpha^{16}\alpha^{16} + \alpha^{16}\alpha^{12} + \alpha^{16}\alpha^{8} + \alpha + 1$
$ = \alpha^2 + \alpha(\alpha^3+\alpha^2+\alpha+1)+\alpha(\alpha^2+1)+\alpha+1$
$ = \alpha^2 + \alpha^4 + \alpha ^3 + \alpha^2 + \alpha + \alpha^3 + \alpha + \alpha + 1$
$ = 0$

$ f(\alpha^3) = \alpha^{24} + \alpha^{21} + \alpha^{18} + \alpha^{12} + 1$
$ = \alpha^{16}\alpha^8 + \alpha^{16}\alpha^5 + \alpha^{16}\alpha^2 + \alpha^3 + \alpha^2 + \alpha + 1 + 1$
$ = \alpha(\alpha^2+1) + \alpha(\alpha^2+\alpha) + \alpha^3 + \alpha^3 + \alpha^2 + \alpha$
$ = \alpha^3 + \alpha + \alpha^3 + \alpha^2 + \alpha^2 + \alpha$
$ = 0$

$ f(\alpha^2) = \alpha^{16} + \alpha^{14} + \alpha^{12} + \alpha^8 + 1$
$ = \alpha +\alpha^3 + 1 + \alpha^3 + \alpha^2 + \alpha + 1 + \alpha^2 + \alpha +1+1 $
$ = 0$


$ f(\alpha) = \alpha^8 + \alpha^7 + \alpha^6 + \alpha^4 + 1$
$ = \alpha^2 + 1 + \alpha + 1 + \alpha^3 + \alpha^3 + \alpha^2 + \alpha + 1 + 1$
$ = 0$

3.
Let us assume that $ c(x)\in\{ g(x)f(x) \; \vert \; g(x) \in GF(2)[x] \}$. We can denote $ c(x)$ as being the following polynomial:

$\displaystyle c(x)=c_0 + c_1x + c_2x^2 + \cdots + c_{n-1}x^{n-1}$

$ c(x)$ has the same zeros as $ f(x)$, which leads to:

$\displaystyle c(\alpha^i) = c_0 + c_1\alpha^i + c_2(\alpha^i)^2 + \cdots + c_{n-1}(\alpha_i)^{n-1} = 0, \quad i\in\{1,2,3,4\}$

These equation can also be written as:

$\displaystyle (c_0,c_1,c_2,\dots,c_{n-1})\left(\begin{array}{c} 1 \\  \alpha^i ...
...i)^2 \\  \vdots \\  (\alpha^i)^{n-1}\end{array}\right)=0, \quad i\in\{1,2,3,4\}$

Let us now suppose that there exists a polynomial such that only four of its coefficients are non-zero. Then, we should have the following four relations:

$\displaystyle (c_k,c_l,c_m,c_n)\left(\begin{array}{l} (\alpha^i)^k \\  (\alpha^i)^l \\  (\alpha^i)^m \\  (\alpha^i)^n \end{array}\right)=0, \quad i\in\{1,2,3,4\}$

It implies in particular the following equality:

$\displaystyle (c_k,c_l,c_m,c_n)\left(\begin{array}{llll} (\alpha^1)^k & (\alpha...
... (\alpha^1)^n & (\alpha^2)^n & (\alpha^3)^n & (\alpha^4)^n \end{array}\right)=0$

That means that the kernel of the linear application represented by the matrix is not $ \{0\}$. This implies that the matrix is singular and therefore is determinant is zero. Let us take a closer look at it.

$\displaystyle \left\vert\begin{array}{llll} (\alpha^1)^k & (\alpha^2)^k & (\alp...
...lpha^m)^3 \\  1 & \alpha^n & (\alpha^n)^2 & (\alpha^n)^3 \end{array}\right\vert$

$\displaystyle = \alpha^{(k+l+m+n)}\Pi_{j<i, i,j\in\{k,l,m,n\}}(\alpha^i - \alpha^j) $

Which cannot be 0, obviously. Thus, our assumption that there exists a such polynomial was wrong. That's why a polynomial in $ \{ g(x)f(x) \; \vert \; g(x)
\in GF(2)[x] \}$ has at least five non-zero coefficients.


next up previous
Next: Problem 3 - Digital Up: Information Science I Previous: Problem 1 - Operating
Reynald AFFELDT
2000-06-08