next up previous
Next: Information Science II Up: Information Science I Previous: Problem 7 - Operating

Problem 8 - Numerical Computing

Put appropriate words/number in $ (A)\sim(I)$.

1.
Concerning the Newton method for a nonlinear equation $ f(x)=\frac{1}{x}-a=0\; (a>0)$, when the initial value is set in the interval $ (A)$, it converges to $ x=\frac{1}{a}$ with the order of convergence $ (B)$.
2.
Apply the trapezoidal formula to the integral $ I=\int_0^1 e^x dx$ by dividing the interval into $ N$ equal bins. The truncation error is proportional to $ N$ to the power $ (C)$.
3.
When solving an ordinary differential equation $ \frac{dy}{dx}=-2xy,
y(0)=1$ by the forward Euler method with interval $ h$, the truncation error at $ x=1$ is proportional to $ h$ to the power $ (D)$.
4.
(Choose appropriate words by greek letters from the candidates shown below. If multiple candidates are applicable, select the rightmost one.)

1.
$ x_{n+1}=x_n - \frac{\frac{1}{x_n}-a}{-\frac{1}{x_n^2}} = 2x_n - ax_n^2$
$ e_n = \vert x_n - \frac{1}{a}\vert$
$ e_{n+1} = \vert x_{n+1} - \frac{1}{a}\vert=\vert 2x_n - ax_n^2 -\frac{1}{a}\vert=a\left( x_n - \frac{1}{a}\right)^2$
$ e_{n+1}/e_n^2 = a$
Thus $ (B) = 2$.
$ e_{n+1} = a e_n^2 = a e_0^{2^{n+1}}$
$ \vert a(x_0 - \frac{1}{a})\vert < 1 \Leftrightarrow \vert x_0 - \frac{1}{a}\vert < \frac{1}{a}$
Thus $ (A) = [0,\frac{2}{a}]$.
2.
$ \int_{x_i}^{x_{i+1}} e^x dx = \frac{1}{2}(x_{i+1} - x_i)(e^{x_i} + e^{x_{i+1}})$
If $ x_{i+1} - x_i = \frac{1}{N} = h$, the step lenght, then, the composite trapezium rule gives:
$ \int_0^1 e^x dx \approx \frac{1}{2}h(e^0 + 2(e^h + e^{2h} + \cdots + e^{1-h}) + e^1) = I_T(n)$
According to Hildebrand, with $ x_i < \xi_i < x_{i+1}$:
$ \int_{x_i}^{x_{i+1}} e^x dx = \frac{1}{2}h(e^{x_i} + e^{x_{i+1}}) - \frac{1}{12}h^3 f''(\xi_i)$
$ \int_0^1 e^x dx = I_T(n) - \frac{1}{12}h^3 \sum_{i=0}^{n-1} f''(\xi_i) = I_T(n) - \frac{1}{12}h^2f''(\xi)$
With $ 0< \xi <1$ and $ \sum_{i=0}^{n-1} f''(\xi_i) = N f''(\xi)$.
$ \left\vert \hbox{Error in trapezium rule}\right\vert < \frac{1}{12}\frac{1}{N^2}\max_{0 \leq x \leq 1}\vert f''(x)\vert$
Thus $ (C) = -2$.
3.
$ y(x_{r+1}) = y(x_r) + hy'(x_r) + \frac{h^2}{2}y''(x_r) + O(h^3)$
$ y(x_{r+1}) \approx y(x_r) - 2 h x_r y(x_r)$
$ y_{r+1} = y_r - 2 h x_r y_r$
$ y(x_{r+1}) - y_{r+1} = \frac{h^2}{2}y''(x_r) + O(h^3)$
In particular: $ y(1) - y_{r_i + 1} = - h^2 y_{r_i} + O(h^3)$
Thus $ (D) = 2$.
4.


next up previous
Next: Information Science II Up: Information Science I Previous: Problem 7 - Operating
Reynald AFFELDT
2000-06-08