next up previous
Next: Problem 3 - Operating Up: Information Science II Previous: Information Science II

Problem 2 - Cauchy sequences

For a set $ T$ defined by

$\displaystyle T=\{ X \; \vert \; X \subseteq \{0,1\}^*, \forall x,y \in \{0,1\}^*, xy\in X \Rightarrow x \in X\}$

consider a distance $ d$ on $ T$ defined by

$\displaystyle d(X,X)=0\quad (X\in T)$

$\displaystyle d(X,Y)=\frac{1}{\min\{\vert x\vert:x\in X, x\notin Y \; \hbox{or} \; x\notin X, x\in Y\}}\quad (X,Y\in T, X\neq Y)$

where $ \vert x\vert$ denotes the length of $ x$.

Prove that $ (T,d)$ is a complete metric space, i.e., every Cauchy sequence on $ T$ converges.


A sequence $ (X_n)$ is a Cauchy sequence when

$\displaystyle (\forall \epsilon \in \mathbb{R}^*_+)(\exists q \in \mathbb{N})(\forall n \geq q)(\forall p \in \mathbb{N})(d(X_{n+p},X_n)\leq \epsilon).$

Let us assume that $ (X_n)$ does not converge, that is

$\displaystyle (\forall l \in T)(\exists \epsilon \in \mathbb{R}^*_+)(\forall n_...
...{N})(\exists n \in \mathbb{N})(n\geq n_0 \; \hbox{and} \; d(X_n,l) > \epsilon).$

In particular, if $ l=\{0,1\}^*$, we have an $ \epsilon$ such that

$\displaystyle (\forall n_0 \in \mathbb{N})(\exists n \in \mathbb{N})(n\geq n_0 \; \hbox{and} \; d(X_n,l) > \epsilon),$

$\displaystyle (\exists q \in \mathbb{N})(\forall n \geq q)(\forall p \in \mathbb{N})(d(X_{n+p},X_n)\leq \epsilon).$

We selection a $ q$ such that

$\displaystyle (\exists n \in \mathbb{N})(n\geq q \; \hbox{and} \; d(X_n,l) > \epsilon),$

$\displaystyle (\forall n \geq q)(\forall p \in \mathbb{N})(d(X_{n+p},X_n)\leq \epsilon).$

and finally a $ n$ such that

$\displaystyle d(X_n,l) > \epsilon,$

$\displaystyle (\forall p \in \mathbb{N})(d(X_{n+p},X_n)\leq \epsilon).$

We can rewrite those equations as:

$\displaystyle \frac{1}{\min\{\vert x\vert:x\notin X_n\}} > \epsilon,$

$\displaystyle (\forall p \in \mathbb{N})(\frac{1}{\min\{\vert x\vert:x\in X_n, x\notin X_{n+p}\;\hbox{or}\;x\in X_{n+p},x\notin X_n\}} \leq \epsilon).$

We can simplify the first one because $ X_n \subset l, X_n \neq l$ (because when $ \epsilon$ was fixed, the fact that $ \hbox{card}\; l = \infty$ ensured that $ X_n$ couldn't be $ l$). We deduce that $ \min\{\vert x\vert:x\notin X_n\} = k$ for some $ k\in
\mathbb{N}$. The second formula says that $ \min\{\vert x\vert:x\in X_n,
x\notin X_{n+p}\;\hbox{or}\;x\in X_{n+p},x\notin X_n\} > k$. That means that the minimal value is achieved for $ x\notin X_n$ (because otherwise that longer word should have been detected before when comparing $ X_n$ and $ l$). That is:

$\displaystyle \frac{1}{\min\{\vert x\vert:x\notin X_n\}} > \epsilon,$

$\displaystyle (\forall p \in \mathbb{N})(\frac{1}{\min\{\vert x\vert:x\in X_{n+p},x\notin X_n\}} \leq \epsilon).$

But, anyway, it still means that an element of length $ \geq k$ should belong to $ X_n$, which yields a contradiction with the fact that $ \min\{\vert x\vert:x\notin X_n\} = k$.

Therefore, we have shown ab absurdo than $ (X_n)$ converges, thus $ (T,d)$ is a complete metric space.


next up previous
Next: Problem 3 - Operating Up: Information Science II Previous: Information Science II
Reynald AFFELDT
2000-06-08