next up previous
Next: Problem 2 - Analysis Up: Mathematics Previous: Mathematics

Problem 1 - Analysis

Compute the maximal and minimal values of the following functions.
1.
$ f(x,y) = x^3 - 3axy + y^3 \quad (a>0)$
2.
$ f(x,y) = (ax^2 + by^2)\exp(- x^2 - y^2) \quad (b>a>0)$


Taylor-Young formula with $ f \in \mathcal{C}^2(U,
\mathbb{R})$ with $ U\in \mathcal{T}(E)$:

$\displaystyle f(a+u)-f(a)=\sum_{i=1}^n \frac{\partial f}{\partial x_i}(a)u_i + ...
..._j}(a)u_i u_j
\right) + o_{u\rightarrow 0}\left(\vert\vert u\vert\vert^2\right)$

We call Monge notation the particular case where $ \dim E = 2$:

$\displaystyle f(a+h,b+k) - f(a,b) =
ph + qk
+ \frac{1}{2}\left( rh^2 + 2shk + tk^2\right)
+ o(h^2+k^2)
$

where

$\displaystyle p=\frac{\partial f}{\partial x}(a,b) \quad q=\frac{\partial f}{\partial y}(a,b)$

$\displaystyle r = \frac{\partial^2 f}{\partial x^2}(a,b)
\quad s=\frac{\partial^2 f}{\partial x \partial y}(a,b)
\quad t=\frac{\partial^2 f}{\partial y^2}(a,b)$


If $ f \in \mathcal{C}^1(U,
\mathbb{R})$ where $ U\in \mathcal{T}(E)$, we say that $ a$ is a critical point when $ df_a=0$.


We assume that $ \dim E = 2$. Let $ f \in \mathcal{C}^2(U,
\mathbb{R})$ with $ U\in \mathcal{T}(E)$ and let $ (a,b)\in U$ be a critical point of $ f$ such that $ s^2-rt\neq 0$ at $ a$:

1.
$ \frac{\partial f}{\partial x}(x,y) = 3x^2 - 3ay$
$ \frac{\partial f}{\partial y}(x,y) = 3y^2 - 3ax$
$ \frac{\partial^2 f}{\partial x \partial y}(x,y) = -3a$
$ \frac{\partial^2 f}{\partial x^2}(x,y) = 6x$
$ \frac{\partial^2 f}{\partial y^2}(x,y) = 6y$
$ 3x^2 - 3ay = 0$
$ 3y^2 - 3ax = 0$
$ \Leftrightarrow$ $ (x,y)=(0,0)$
At $ (0,0), s^2 - rt = 9a^2 > 0$
Therefore, $ f$ has no extremum.
2.
$ \frac{\partial f}{\partial x}(x,y) = 2x\exp(-x^2-y^2)(a - ax^2 - by^2)$
$ \frac{\partial f}{\partial y}(x,y) = 2y\exp(-x^2-y^2)(b - by^2 - ax^2)$
$ \frac{\partial^2 f}{\partial x \partial y}(x,y) = 4xy\exp(-x^2-y^2)(-b-a+ax^2+by^2)$
$ \frac{\partial^2 f}{\partial x^2}(x,y) = 2\exp(-x^2-y^2)(a-5ax^2+2ax^4+2bx^2y^2-by^2)$
$ \frac{\partial^2 f}{\partial y^2}(x,y) = 2\exp(-x^2-y^2)(b-5by^2+2by^4+2ax^2y^2-ax^2)$
$ 2x(a-ax^2-by^2)=0$
$ 2y(b-ax^2-by^2)=0$
$ \Leftrightarrow$
$ x=0$ or $ a=ax^2+by^2$
$ y=0$ or $ b=ax^2+by^2$
$ \Leftrightarrow$ $ (x,y) \in \{ (0,0), (0,1), (0,-1), (1,0), (-1,0)\}$


next up previous
Next: Problem 2 - Analysis Up: Mathematics Previous: Mathematics
Reynald AFFELDT
2000-06-08