next up previous
Next: February 1996 Up: Information Science I Previous: Problem 7 - Graphs

Problem 8 - Information Theory

Consider a 6-dimensional vector $ \boldsymbol{x}$ and a matrix

$\displaystyle H = \left(
\begin{tabular}{cccccc}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
\end{tabular}\right)$

on $ GF(2) =
\mathbb{Z}_2$.

1.
Find a $ 3 \times 6$ matrix $ G$ satisfying $ HG^T = 0$.
2.
Enumerate all $ \boldsymbol{x}$ satisfying $ H \boldsymbol{x} = 0$.
3.
Show that $ \{ \boldsymbol{x} \; \vert \; H \boldsymbol{x} = 0 \}$ is a subgroup in the 6-dimensional space $ GF(2)$ with respect to addition, and compute the decomposition into cosets.

According to the particular form of $ H$, we can say that this is a parity-check matrix and that we are asking to find the correspondent generator matrix $ G$ which verifies the parity-check theorem: $ HG^T = 0$. If $ H = \left[ I_{r \times r} \; \vert \; -P^T \right]$, then $ G = \left[ P_{k \times r} \; \vert \; I_{k \times k}\right]$, where the matrix $ P$ is called the parity-bit generator.

$\displaystyle H G^T = \left( \begin{tabular}{cccccc}
1 & 0 & 0 & 1 & 0 & 1 \\  ...
...abular}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{tabular} \right)$


The vectors $ \boldsymbol{x}$ satisfying $ H \boldsymbol{x} = 0$ are given by:

$\displaystyle H \boldsymbol{x} = \left( \begin{tabular}{cccccc}
1 & 0 & 0 & 1 &...
...\right) = \left( \begin{tabular}{c}
0 \\
0 \\
0 \\
\end{tabular} \right),$

i.e.

$\displaystyle \begin{tabular}{cccccc}
$x_1$ & $x_2$ & $x_3$ & $x_4$ & $x_5$ & $...
... 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{tabular}$

We can check that

1.
$ 000000 \in C$;
2.
$ (\forall x,y \in C^2)(x+y \in C)$;
3.
$ (\forall x \in C)(\exists y \in C)(x+y=0)$.

Therefore, $ C$ is a subgroup of $ GF(2)^6$ whose decomposition in coset occording to $ C$ is

$\displaystyle \begin{tabular}{c\vert cccccc \vert c\vert cccccc}
coset & $x_1$ ...
...0 & 1 \\
& 1 & 0 & 0 & 0 & 0 & 0 & & 1 & 0 & 1 & 0 & 0 & 0 \\
\end{tabular}$



Reynald AFFELDT
2000-06-08