next up previous
Next: Problem 2 - Digital Up: Information Science I Previous: Information Science I

Problem 1 - Predicate Logic

1.
Transform the following logic formula to a prenex normal form with Skolem variables:

$\displaystyle P(c, c) \wedge \forall x (\exists y P(x, y) \supset \exists y Q(x, y)) $

where $ c$ is a constant.
2.
Find the minimal Herdrand model for the resultant logic formula. Here, consider only the symbols appearing in the formula. Also, the minimal Herbrand model is a minimal subset among subsets of Herbrand bases.

$\displaystyle P(c, c) \wedge \forall x (\exists y P(x, y) \supset \exists y Q(x, y)) $

$\displaystyle P(c, c) \wedge \forall x (\exists y P(x, y) \rightarrow \exists y Q(x, y)) $

$\displaystyle P(c, c) \wedge \forall x (\neg (\exists y P(x, y)) \vee \exists y Q(x, y)) $

$\displaystyle P(c, c) \wedge \forall x (\forall y \neg P(x, y) \vee \exists y Q(x, y)) $

$\displaystyle P(c, c) \wedge \forall x (\forall y \neg P(x, y) \vee \exists z Q(x, z)) $

$\displaystyle \forall x (P(c, c) \wedge (\forall y \neg P(x, y) \vee \exists z Q(x, z))) $

$\displaystyle \forall x \forall y (P(c, c) \wedge (\neg P(x, y) \vee \exists z Q(x, z))) $

$\displaystyle \forall x \forall y (P(c, c) \wedge (\neg P(x, y) \vee Q(x, f(x, y)))) $


Herbrand universe: $ H = \{ c, f(c,c), f(c, f(c,c)), f(f(c,c),f(c,c)), \dots \}$

Ground terms: $ c, f(c,c), f(c, f(c,c)), f(f(c,c),f(c,c)), \dots$

Ground atoms: $ P(c,c), Q(c,c), P(c, f(c,c)), Q(c,f(c,c)), P(f(c,c),c), \\
Q(f(c,c),c), P(f(c,c),f(c,c))), Q(f(c,c),f(c,c))), \dots$

Herbrand base: $ B = \{ P(c,c), Q(c,c), P(c, f(c,c)), Q(c,f(c,c)), P(f(c,c),c), \\
Q(f(c,c),c), P(f(c,c),f(c,c))), Q(f(c,c),f(c,c))), \dots \}$

Herbrand interpretation: $ D = H$, $ \bar{a}_1 = c$, $ \bar{f}_1^2 = f$, there are no restrictions on the assignments of relations over the Herbrand universe to predicates.

Herbrand model: Just choose a subset of the Herbrand base and assign to its elements the $ T$ value.

Then, the minimal Herbrand model here is: $ \{ P(c,c), Q(c,f(c,c))\}$.



Reynald AFFELDT
2000-06-08