
An Implementation of State-of-the-Art

Graph Bisection Algorithms ∗

Nan Dun

Department of Computer Science, the University of Tokyo

April 28, 2006

Abstract

In recent decades, various graph partitioning heuristic algorithms
have been developed by researchers, which are widely used in “real-
world” applications. As a starting point of graph partition problem,
graph bisection algorithms provide basic approaches and solutions
for other graph partition instances. This work implemented part of
contemporary graph bisection algorithms which produce high-quality
partitions for graphs in wide-range domains. These algorithms in-
clude Kernighan-Lin heuristic[3], Linear Kernighan-Lin heuristic[4],
Greedy Growing Partitioning[5], Min-Max Greedy heuristic[6], Ran-
domized Tabu Search heuristic[6], Reactive Randomized Tabu Search
heuristic[6]. Multilevel graph partition technique[5] has not been
included in current implementation to achieve better performance.
Instead, these heuristics are extended in grid environment so as to sig-
nificantly reduce run-time by distributing mutually exclusive iterations
over computing nodes with support from GXP cluster shell[9]. Further,
this parallel bisection needs no communication among computing
nodes, thus bearing a high fault-tolerance. Finally, experiments show
that although with more computation effort comparing to mulitilevel
partition, this graph bisection library is still practically useful with its
state-of-the-art result.

Keywords: Graph bisection, graph partitioning, heuristic algorithms,
Kernighan-Lin, greedy heuristic, Tabu search, GXP cluster shell.

∗Grid Challenge 2006, Japan. http://www.hpcc.jp/sacsis/2006/grid-challenge/

1

1 Introduction

In mathematics, the graph k-partition problem is defined as follows: Given
a unweighted graph G = (V,E), partition V into k subsets, V1, V2, . . . , Vk

such that Vi∩Vj = φ for i 6= j, |Vi| = |V |/k, and
⋃

Vi = V , and the number
of edges of E whose incident vertices belong to different subsets, or edge-cut

is minimized. And a graph 2-partition, bipartition or bisection problem
can be summarized as: Given a unweighted graph G = (V,E), partition V
into V1 and V2 such that V1 ∪ V2 = V , V1 ∩ V2 = φ and ||V1| − |V2|| ≤ 1 (0
if |V | is even, 1 otherwise), meanwhile, the edge-cut |{E(vi, vj)vi∈V1,vj∈V2

∈
E}| is minimized. Note that weighted graph partitioning can be inherently
extended from unweighted graph partitioning.

Graph partition problem is a classical problem and has been extensively
investigated over many years. Graph k-partition problem is NP-complete[1],
as well as graph bisection problem[2]. Finding approximate solution is also
NP-hard, loosing the restriction of equal-size sets can lead avaiable but not
practical algorithms. Most of solutions of graphs in wide range are produced
by heuristics.

The importance of graph partition not only comes from mathematics,
such as sparse matrix-vector multiplication and Gaussian elimination, but
also from practical applications, including load balancing, mesh distributing,
VLSI and large network design. Therefore, this implementation of contem-
porary bisection algorithms is trying to provide practical usability for real-
world problems rather than demonstration only.

2 Graph Bisection Algorithms

Many graph partitioning heuristic algorithms have been developed by re-
searchers recently. There are three classes of graph partitioning techniques[5]:
Spectral partition, geometric partition and multilevel partition. Spectral
partitioning is good at producing better result but usually costing more
execution time. Geometric partitioning algorithms uses the geometric
information of the graph to find a good partition, it is faster but yields
worse result than spectral techniques. Multilevel schemes are usually
applied for very large graphs (100,000-500,000 vertices) to obtain a short
execution time. The multilevel partitioning significantly reduce the size of
graph by collapsing vertices and edges, partition the smaller graph, and
then uncoarsen it to construct a partition for the original graph. The
combination of multilevel and other techniques is main stream of nowaday
graph partition. Since our work starts from dealing with relative small
graphs (<100,000 vertices), multilevel techniques is not included. In this
section, the heuristc algorithms are discussed in consequent as well as time
sequence, which gradually approach better results and performance.

2

2.1 Kernighan-Lin Heuristic

Kernighan-Lin heuristic[3] was originally developed to solve telephone net-
work problem and now becomes a classical one. KL heuristic holds a O(|V |3),
or better O(|E| log |E|) complexity. Before getting into the algorithm given
below as Figure 1, a few concepts should be explained first.

• weight : Denote connection degree of two vertices vi and vj . For
unweighted graphs, it is 1 if there is a edge between vi and vj , 0
otherwise.

ω(vi, vj)vi, vj∈V =

{

0 E(vi, vj) /∈ E
1 E(vi, vj) ∈ E

(1)

• degree of vertex : Degree of vertex v is the number of edges one of
whose endpoint is v.

Degree(v) = |{E(v, v
′

)v′∈V ∈ E}| =
∑

v′∈V

ω(v, v
′

) (2)

• internal cost : The number of internal edges (edge whose endpoints
lie in same set).

Internal(vi)vi∈V1
=

∑

vj∈V1

ω(vi, vj) (3)

• external cost : The number of internal edges (edge whose endpoints
lie in same set).

External(vi)vi∈V1
=

∑

vj∈V2

ω(vi, vj) (4)

• gain : The variance of edgcut after moving a vertex from one set to
another.

Gain(vi)vi∈V = Internal(vi)− External(vi) (5)

• cut : From (1)-(4), it is easy to derive the variance of edgcut after
swapping two vertices in two different set.

Cut(vi, vj)vi∈V1,vj∈V2
= 2ω(vi, vj) + Gain(vi) + Gain(vj) (6)

Kernighan-Lin algorithm starts from a initial bisection, since its basic
idea is to swap two vertices in different sets if this exchange can bring less
edgecut comparing to former ones. The initial bisection can be obtained
simply by half-half dividing (first half of vertices form a set, and second half
of vertices form another), or by random bisection (randomly choose half of

3

vertices as one set, and the rest forms another). KL heuristic is sensitive to
this initial configuration, thus, also as experiments show, random bisection
tends to be generate better result than half-half bisection. Due to this,
KL heuristic is usually used as refinement of bisection produced by other
heuristics, and we will discuss this in later sections.
KERNIGHAN-LIN

1 forall vertex ∈ V
2 Lock[vertex]← unlock

3 edgecutmin ← edgecutinit, Cut[0]← edgecutinit

4 bestchange← 0
5 for t← 1 to |V |/2
6 Cut[t]←∞
7 forall vertexi ∈ {v ∈ setL|Lock[v] = unlock}
8 forall vertexj ∈ {v ∈ setR|Lock[v] = unlock}
9 cut← 2ω(vertexi, vertexj)+Gain(vertexi)+Gain(vertexj)
10 if cut < Cut[t] then

11 Pair[t]← (vertexi, vertexj)
12 Cut[t]← cut
13 (mini,minj)← Pair[t]
14 Lock[mini]← lock, Lock[minj]← lock

15 forall vertex ∈ {v ∈ V |Lock[v] = unlock}
16 if vertex ∈ setL then

17 Gain(vertex)← Gain(vertex) + 2ω(vertex,minj)
−2ω(vertex,mini)

18 else

19 Gain(vertex)← Gain(vertex) + 2ω(vertex,mini)
−2ω(vertex,minj)

20 Cut[t]← Cut[t− 1] + Cut[t]
21 if Cut[t] < edgecutmin

22 bestchange← t
23 edgecutmin ← Cut[t]
24 for i← 1 to bestchange
25 swap Pair[i]

Figure 1 Kernighan-Lin Heuristic

Given an initial bisection, KL first mark all vertices unlock (line 1-2),
which means these vertices are free to move. Since we swap two vertices,
we only need iterate for |V |/2 times (line 5). By checking through each pair
which crossing two sets (line 7-8), we search for a pair such that it cause
greatest decrease of edge-cut (line 10-13). Then we lock this pair as if they
were swapped (line 15), and update gains of rest free vertices (line 17-19).
At the end of each iteration, we accumulate former swapping sequence and
record the time when minimum edgecut was reached (line 20-23). Finally,
real swappings are performed to generate new bisection (line 24-25).

4

From algorithm above, we can find that KL heuristic may escape “local
minimum” where switching no pair helps. Usually, for very small graphs, the
edge-cut will converge after 2-4 runs. And for random graphs, the probability
of convergence in a single run appears to be 2−|V |/30. Thus KL is relative
much slower comparing to following algorithms we will discuss.

2.2 Linear Kernighan-Lin Heuristic

Linear Kernighan-Lin heuristic[4] is one of KL’s successors. The essential
algorithm of LKL is similar to Figure 1, but achieves O(|E|) complexity
instead of KL’s O(|V |3) due to using proper data structures during imple-
mentation. Thus we delay the discussion of LKL heuristic to Section 3.2.

2.3 Greedy Growing Partitioning

The graph growing algorithm comes from the intuition that bisection starts
from a seed and grow a partition around it in a breath-first-search way,
and stop until half of vertices have been included. Thus the quality of
bisection also dependes on this seed. Its complexity is O(|E|2). Graph
growing heuristic is usually used as starting a new bisection and pass the
result to other heuristic, e.g. KL heuristic, for refining.

• adjacent vertices: The adjacent vertices of a vertex v is those
vertices sharing edges with v.

adjacent(v) = {v
′

∈ V |E(v, v
′

)v∈V ∈ E} (7)

• boundary of set : Given a partition V1 and V2 of graph V . A subset
of V1 such that each vertices in it has at least one neighbour in V2 is
called boundary of V1.

boundary(V1) = {v ∈ V1|∃E(v, v
′

)v′∈V2
∈ E} (8)

• frontier of set : Given a partition V1 and V2 of graph V . A subset
of V2 such that all vertices in it have at least one neighbour in V1 is
called frontier of V1.

frontier(V1) = {v ∈ V2|∃E(v, v
′

)v′∈V1
∈ E} (9)

Greedy growing algorithm extends graph growing heuristic by replacing the
breath-first-search with greedily including the vertex which causes largest
decrease (or smallest increase) to the current partition. As in KL, for each
vertex we define gain in the edge-cut by moving this vertex from one set to
another. Additional effort is to sort the vertices of current set’s (partition)
frontier by their gains in non-decreasing order, and then the vertex with

5

smallest gain is inserted. After a vertex is added, gains of its adjacent

vertices already in the frontier are updated, those adjacent vertices not in
frontier are inserted to frontier.

GREEDYGROWING

1 setL← φ, setR← V
2 seed← random vertex ∈ setR
3 setL← setL ∪ {seed}, setR ← setR \ {seed}
4 edgecut← 0
5 setTobeadded← {v ∈ setR|E(seed, v) ∈ E}
6 while |setL| < |V |/2
7 if setTobeadded = φ then

8 vertex← random vertex ∈ setR
9 setTobeadded← setTobeadded ∪ {vertex}
10 gainmin ← minv∈setTobeaddedGain(v)
11 vertexmin ← first vertex ∈ {v ∈ setTobeadded|Gain(v) = gainmin}
12 setTobeadded← setTobeadded\{vertexmin}
13 setL← setL ∪ {vertexmin}, setR← setR\{vertexmin}
14 edgecut← edgecut + gainmin

15 if adjacent(vertexmin) 6= φ then

16 forall vertex ∈ adjacent(vertexmin)
17 if vertex ∈ frontier(setTobeadded) then

18 update Gain(vertex)
19 else

20 setTobeadded← setTobeadded ∪ {vertex}

Figure 2 Greedy Growing Heuristic

Greedy growing algorithm is also sensitive to initial seed, but less sensi-
tive than graph growing region. A typical usage is to perform indenpendent
runs of greedy growing algorithm with different seed, and select the bisection
with smallest edge-cut.

2.4 Min-Max Greedy Partitioning

Min-Max Greedy heuristic is also used as produce an initial bisection. It can
be similarily considered as the “twin” version of greedy growing algorithm,
since it starts from two seed, and growing their own regions by adding
candidate vertices in turn. Min-Max Greedy appends additional criteria
comparing to Greedy Growing heuristic when some vertex is going to be
added, based on following definition.

• connection from vertex to set : The number of edges whose one
endpoint is v and another endpoint is in V

′

is called the connection

6

from v to V
′

.

Conn(v, set) = |{E(v, v
′

)v′∈set ∈ E}| (10)

From Greedy Growing heuristic, we choose a candidate which has
minimum gain. Recalling (5), to minimize the gain, one can minimize
the internal cost and maximize the external cost. Thus, Min-Max Greedy
choose a candidate by minimizing its connection to other set, or edgecut,
and maximizing its connection to add set.

There are two alternatives to screening the candidates. One, denoted
as FirstMin, is firstly choosing a group of candidates which have maximum
connection to add set, and then select the first one with minimum connec-

tion to otherset among them. Another, FirstMax, select the first vertex
with maximum connection to a add set from the candidates set satisfying
minimum connection to other set. Since at the beginning, the number of
vertices that are connected to a given set by one or more edges is very small,
FirstMax is more efficient than FirstMin [6].

MINMAXGREEDY

1 setL← φ, setR← φ
2 seedL← random vertex ∈ {1, . . . , n}
3 seedR← random vertex ∈ {1, . . . , n} \ {seedL}
4 setTobeadded← V \ {seedL, seedR}
5 edgecut← 0
6 if (seedL, seedR) ∈ E then edgecut← 1
7 setAdd← setR, setOther ← setL
8 while |setTobeadded| > 0
9 setAdd↔ setOther
10 minedges← minv∈setTobeaddedConn(v, setOther)
11 bestvertex← FIRSTMAX(setAdd, setOther)
12 setAdd← setAdd ∪ {bestvertex}
13 edgecut← edgecut + minedges
14 setTobeadded← setTobeadded \ {bestvertex}

Figure 3 Min-Max Heuristic

FIRSTMAX(setAdd, setOther)
15 min← minv∈setTobeaddedConn(v, setOther)
16 candidates← {v ∈ setTobeadded|Conn(v, setOther) = min}
17 max← maxv∈candidatesConn(v, setAdd)
18 bestvertex← first vertex ∈ {v ∈ candidates|Conn(v, setAdd) = max}
19 return bestvertex

Figure 4 First-Max Routine

7

2.5 Randomized Tabu Search Heuristic

Tabu, or prohibition-based search can be considered as a variant of basic
local-search scheme, such as KL heuristic. Its purpose is to optimize local
optimality. [6] gives the relationship between Kernighan-Lin heuristic and
Tabu Search. Later we will see under some conditions, KL is equivalent to
Tabu. Recalling KL algorithm, when a pair of vertices has been swapped,
they are locked (prohibited) for further moving. This scheme suggests that
for one single pass of KL, the result will stay at local optimization, even
better configuration can be achieved by moving those vertices that have been
swapped before. But for Tabu Searching, after a pair of vertices swapped,
instead of being locked forever (in this pass), they are locked for a period of
time. Then they are avaiable to move again when time exceed this period.

Tabu length refers to this period of time, which is usually a fraction of
vertices number, line 1. And a LastUsed list records the time when some
vertex is moved (line 6). In BestMove routine, a vertex is legal to move if its
last-move time is not in prohibition period (line 11). All Tabu search will
do |V | iterations, and when the bisection is balanced, the minimum edgecut

and corresponding configuration are recorded (line 8). Actually, if LastUsed

time for each vertex is set to −∞ and tabu length is set to more than |V |/2,
Tabu Search becomes equivalent to Kernighan-Lin.

FIXEDTABUSEARCH(fracTabu, iterations)
1 Tabu← ⌊fracTabu × n⌋
2 for i← 1 to iterations
3 if |setL| ≥ n/2 then setAdd← setR, setOther ← setL

else setAdd← setL, setOther ← setR
4 bestvertex← BESTMOVE(setOther)
5 setAdd← setAdd ∪ {bestvertex}, setOther ← setOther \ {bestvertex}
6 LastUsed[bestvertex]← time
7 time← time + 1
8 if |setL− setR| ≤ 1 and edgecut < edgecutmin then

edgecutmin ← edgecut

Figure 5 Fixed Tabu Search Heuristic

BESTMOVE(set)
9 for gain← maxi∈setGain(i) downto mini∈setGain(i)
10 forall vertex ∈ {j ∈ set such that Gain(j) = gain}
11 if LastUsed[vertex] < (time− Tabu) return vertex

Figure 6 BestMove Routine

Randomized Tabu Search is simple extension of Fixed Tabu Search. RTS
passes the initial bisection generated by Min-Max Greedy (line 14) to Fixed

8

Tabu Search with randomly choosed tabu length. Different tabu lengthes
are tried and the best bisection met during these searches are recoreded.

Experiements[6] shows that the tabu fractions ranging from 0.01 to 0.25
are sufficient to approach best result, more fractions will not improve the
result.

RANDOMIZEDTABUSEARCH(iterations, individual)
12 time← 0
13 while time < iterations
14 MINMAXGREEDY

15 timeend ← time + individual
16 while time < timeend

17 fracTabu ← random value ∈ {0.01, 0.02, . . . , 0.25}
18 FIXEDTABUSEARCH(fracTabu, |V |)

Figure 7 Randomized Tabu Search Heuristic

2.6 Reactive Randomized Tabu Search Heuristic

Randomized Tabu Search performs local-search with statically given tabu
fraction. And Reactive Randomized Tabu Search is in a self-tuning way
to dynamically choose tabu length. Parameters, especially the tabu length,
are dynamically optimized depending on the statistical characteristics of
current graph but not specific category of graphs or certain local-optimized
configuration.

The RRTS algorithm (Figure 9) starts from looking for a best tabu
fraction by a ⁀Scoring routine (Figure 8). ⁀Scoring routine tries all given
tabu fraction (line 2) and evaluate their results (line 14) based on edge-cut

decrease during this pass. All votes are normalized from 0.1 to 1 (line 15-
17). At last, the fraction that gains highest vote is returned as the best
fraction (line 18-19). Further, the best configuration met in individual trial
is recorded. (line 13)

SCORING(trials)
1 elite← φ
2 forall fracTabu ∈ {0.01, 0.02, . . . , 0.25}
3 vote[fracTabu]← 0
4 for i← 1 to trials
5 MINMAXGREEDY

6 LOCALSEARCH

7 edgecutmin ← edgecut, edgecutstart ← edgecut
8 timestart ← time
9 do

9

10 FIXEDTABUSEARCH(fracTabu, 2 ⌊fracTabu × |V |⌋+ 1)
11 LOCALSEARCH

12 while(time < timestart + |V |/2)
13 elite← elite ∪ {best bisection with fracTabu}
14 vote[fracTabu]← vote[fracTabu] + edgecutstart−edgecutmin

time−timestart

15 forall fracTabu ∈ {0.01, 0.02, . . . , 0.25}
16 if maxvote 6= minvote then

17 vote[fracTabu]← 0.1 + 0.9× vote[fracTabu]−minvote

maxvote−minvote

18 bestfracTabu ← smallest fracTabu such that vote[fracTabu] = maxvote

19 return bestfracTabu

Figure 8 Scoring Rountine

The RRTS algorithm does 3 trials of Scoring, larger number of trials
will not increase the performance[6]. The best configuration and tabu
fraction are extracted after Scoring, or intial a bisection by Min-Max Greedy
Routine. In RRTS, a wider range search is performed (see line 12 and 31).
If the best edge-cut is not found in Scoring trials, a random tabu fraction is
selected with probability proportional to their votes (line 33-34).

REACTIVERANDOMIZEDTABUSEARCH(iterations, individual)
20 bestfracTabu ← SCORING(3)
21 for i← to ⌈iterations/individual⌉
22 if elite 6= φ then extract bisection from elite
23 else MINMAXGREEDY

24 fracTabu ← bestfracTabu

25 tindividual ← time
26 do

27 tstart ← time
28 do

29 FIXEDTABUSEARCH(fracTabu, 2 ⌊fracTabu × |V |⌋+ 1)
30 LOCALSEARCH

31 while(time < timestart + |V |)
32 if timemin ≤ timestart then

33 fracTabu ← random fracTabu with probability ∝ vote[fracTabu]
34 while(time < timeindividual + individual)

Figure 9 Reactive Randomized Tabu Search

3 Graph bisection library

Our graph bisection library implemented all heuristic algorithms discussed
above. The implementation consists of about 3,000 lines C code. The library

10

provides simplicity APIs and clear interface for tunning heuristics. In this
section, we firstly introduce the usage of this library, and then we give a
detailed description of its implementation.

All source code and related materials are available at author’s website:
http://www.yl.is.s.u-tokyo.ac.jp/∼dunnan/graphbisection/.

3.1 Basic Guide

3.1.1 Installation

Follow the instructions to build the graph bisection library.

1. Unpack the tarball
tar -zxf gb.tar.gz

or

gunzip -c gb.tar.gz | tar xf -

2. Build and intall
./INSTALL

3.1.2 Using APIs

Before APIs, we present the essential data structure used over all bisection
routines.

1 typedef int integer;
2 struct GB GRAPH {
3 char filename[GB MAX FILENAME]; /* graph’s filename */
4 integer nv; /* Number of vertices */
5 integer ne; /* Number of edges */
6 integer **adjlist; /* Vertices adjacent list */
7 int vparity; /* Parity of vertices number */
8 integer maxvdeg; /* Maximum vertex degree */
9 integer minvdeg; /* Minimum vertex degree */
10 integer *belonglist; /* Vertices belonging list */
11 integer edgecut; /* Edge-cut */
12 };

Figure 10 GB GRAPH Data Structure

First, we use “int” type as vertex’s index type. In Linux INT MAX (2147483647
by ANSI) is pretty enough for most graphs, however, in Windows INT MAX (32767)
may be overflowed easily, thus you can define “long” type instead. Note that using
“unsigned” type is at risk since it may cause unpredicatable result. Note that the
index of vertices starts from 1, not 0.

GB GRAPH.adjlist is a 2-dimentional integer array. the vertex v’s adjacent
vertices list is given by adjlist[v], in which adjlist[v][0] indicates the
number of adjacent vertices of v, the adjacent vertices start from adjlist[v][1].

11

GB GRAPH.vparity indicates the parity of vertices number, which might
be GB NUM EVEN or GB NUM ODD. GB GRAPH.maxdeg and GB GRAPH.minvdeg
record the maximum and minimum vertex degree in graph, they are used to improve
the search performance in implementation.

GB GRAPH.belonglist indicates which partition the vertex belongs to, GB PAR L
(left partition), GB PAR R (right partition) or GB PAR N (no partition). GB GRAPH.edgecut
is the edge-cut of bisection.

Now we illustrate APIs usage by following sample program.

13 #include <stdlib.h>
14 #include <stdio.h>
15 #include "gb.h"
16

17 int main(int argc, char *argv[]){
18 GB GRAPH mygraph;
19 char *file;
20 int hostid, hostnum, seed[2], iter;
21 doulbe timeout; integer threshold;
22

23 /* argument check */
24 file = argv[1];
25 hostid = atoi(argv[2]);
26 hostnum = atoi(argv[3]);
27 iter = atoi(argv[4]);
28 timeout = atoi(argv[5]);
29

30 GB Initial(file, &mygraph);
31 GB SeedDistribute(hostid, hostnum, seed);
32 GB Bisect(&mygraph, GB KL, seed, iter, timeout, threshold);
33 GB Check(&mygraph);
34 GB Finalize(&mygraph);
35

36 return 0;
37 }

Figure 11 Sample Program

• GB Initial(char *filename, GB GRAPH *graph)
Allocate space for graph structure, and fill it with content read from
filename.

• GB SeedDistribute(char *filename, GB GRAPH *graph)
Divide the whole seed range into hostnum sections and assign them based
on hostid. For single host running, simply set hostid and hostnum to 1.
This routine is especially for GXP usage and will be discussed later.

• GB Bisect(GB GRAPH *graph, GB ALGO options, int *seed, int
iter, double timeout, integer threshold)
Bisect given graph by heuristic indicated by options, which could be
GB KL, GB LKL, GB GG, GB MMG, GB RTS or GB RRTS. iter shows how
many independent iterations will be performed, set to -1 means infinite

12

iterations. And partitioning procedure will return when elapsed time ex-
ceeds timeout (in seconds), or edge-cut less/equal than threshold, or
iter iterations is reached. The best bisection will be passed out as
GB GRAPH.belonglist when this routine returns.

• GB Check(GB GRAPH *graph)
Check graph and bisection’s integrity and print out check information.

• GB Finialize(GB GRAPH *graph)
Free space for graph structure.

3.1.3 Running Program

Single Host

Running single program is trivial.

1 ./main file hostid hostnum iter timeout threshold

Cluster Environment

First, a better bisection is approached by independent iterations of one or more
heuristics passes. In general case, more iteration leads to better result. Thus, it
is naturally to distribute these independent iterations over hundreds of compute
nodes within cluster. For 100 compute nodes, we can let each node run a 1-
iteration approximately 100 iterations in total, or run 100-iterations on each node
as approximate 10,000 iterations in total.

Second, following above’s scheme, one important problem is how to keep these
iteration as “independent” as possible, since there may have duplicate initial
configurations which end with same result, which is only time wasting. Recalling
some heuristics starting from random seeds (Greedy Growing starts from 1 seed,
Min-Max Greedy starts from 2 seeds), they are sensitive to initial configuration, or
seeds. And another important phenomenon in graph bisetion problem is the casual
relationship between initial configuration to specific result (mostly “best” result),
which means one will never go to the “best” result until the heuristic get on the
“right” path. A proof of this barrier is that our experiements on 500 compute nodes
solving some large-scale graph (≥50,000 vertices), only 1 or 2 node will finally get
the “best” result, and the rest will stay at some average good bisection but still
has a distance to the “best” result. Of course, this also shows that in NP-problem,
getting the best solution is much harder than approaching it.

Therefore, in cluster environment, we distribute exclusive mutual seeds to
different compute node, to increase the possibility of getting best result. Take 100
compute nodes and 10000-verteices graph as an example, GB SeedDistribute()
will assign seeds with in range [1, 100] for host 1, seeds within [101, 200] for host 2,
... , seeds within [901, 1000] for host 100.

Now we discuss how to run hundreds of independent instances in cluster environ-
ment. Refer to http://www.logos.ic.i.u-tokyo.ac.jp/phoenix/gxp quick man.shtml
for GXP cluster shell’s usage.

Since GXP provide $GXP HOST IDX and $GXP NUM HOSTS as environment
variables, we use following shell scripts (gxprun) to passing them to our program.
2 #!/bin/bash

13

3 #Check arguments
4 hostid=‘expr $GXP HOST IDX + 1‘
5 hostnum=$GXP NUM HOSTS
6 prog=./main
7 file=$1
8 iter=$2
9 timeout=$3
10 threshold=$4
11 $prog $file $hostid $hostnum $iter $timeout $threshold

Figure 12 GXP Scripts

Starting up GXP on your clusters, type following command.

12 e {{./gxprun file iter timeout threshold }} cat > result

After result having been gathered to text file result, from which best result
can be retrieved by using combination of “grep” and “sort”.

3.2 Implementation Framework

The performance of graph bisection highly depends on the implementation, espe-
cially the choosing of data structure. The specific data structures and routines
implemented APIs are in include/gbimpl.h.

3.2.1 Data Structure and Global Variables

A universal data structure used by all routines is “bucket-list”, similar as ones
refered in [4], [6], see Figure 13. Insert and delete on this “bucket-list” structure
are executed in O(1) steps, only the update bucket bounds is O(|E|). Since during
bisection, the whole information of graph will be passed from one heuristic to
another, making these information global readable is both efficient and simple.
Other global variables include bisection information, timeout, threshold and other
global flags to tuning heuristics.

3.2.2 Routines

These global routines can be categorized as environment routines and bisection
routines. Environment routines is in charge of initializing or finalizing the environ-
ment, such as memory allocation, variable initialization and bucket-list maintain,
etc. Bisection routines are called for specific heuristic partitioning.

4 Experiments

Appendix gives the result of “real-world” benchmarks. Single Host 100-iterations
shows the bisection result produced by Greedy Growing, Min-Max Greedy and
Randomized Tabu Search, 100 iterations seperately. Table GXP Parallel RRTS
gives a comparison of RRTS (100 iterations on single host, column RRTS-100) to

14

RRTS (100 iterations in 100 compute nodes, column P-RRTS-100), for time reason,
we also set a timeout as 100 sec.

From the result, we can conclude that RRTS heuristc is good at finding the best
result but time costing (Results with * means timeout exit, not iterations finished).
And GXP Parallel RRTS significantly increase the performance with much better
result. If given enought time, (P)-RRTS can approach the best best result with
much higher possibility than other heuristics.

A complementary to RRTS time costing characteristic is multi-level graph
partition[5], one of stream of current graph bisection. Multi-level graph partition
is able to extremly reduce the cost time but reserve a good quality bisection.

15

References

[1] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions
is NP-hard. Information Processing Letters, 42(3):153-159, 1992.

[2] M.R. Garey and D.S. Johnson. Computers and Intractability, A guide to the
theory of NP Completeness. W.H. Freeman and Company, New York, 1979.

[3] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell System Technical Journal, 49(2):291-207, Feb. 1970.

[4] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proceedings of the nineteenth design automation

conference, 175-181, 1982.

[5] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Computing,
20(1):359-392, 1998.

[6] R. Battiti and A. Bertossi, Greedy, Prohibition, and Reactive Heuristics for
GraphPartitioning, IEEE Transactions on Computers, 48(4):361-385, 1999.

[7] G.R. Schreiber and O.C. Martin. Cut Size Statistics of Graph Bisection
Heuristics, manuscript in submission to SIAM J. Optimization, 1997.

[8] R. Battiti, A. Bertossi and Cappelletti. Multilevel Reactive Tabu Search for
Graph Partitioning. Preprint UTM 554, Dip. Mat., Univ. Trento, Italy, 1999.

[9] GXP: http://www.logos.ic.i.u-tokyo.ac.jp/phoenix/gxp quick man.shtml

[10] METIS: http://glaros.dtc.umn.edu/gkhome/views/metis/

[11] Inter Tools: http://rtm.science.unitn.it/intertools/graph-partitioning/

16

Appendix: Real-world Benchmark

Single Host 100-iterations for different heuristics

GG MMG RTS
Graph |V | |E| best result time result time result time
3elt 4720 13722 90 101 0.51 135 0.73 172 0.02
4elt 15606 45878 140 151 1.96 214 3.21 253 0.08
add20 2395 7462 609 760 0.27 798 0.50 938 0.02
add32 4960 9462 11 11 0.53 39 0.71 55 0.03
airfoil1 4253 12289 74 87 0.47 92 0.64 184 0.01
bcspwr09 1723 2394 9 26 0.15 12 0.21 36 0.00
bcsstk13 2003 40940 2355 2751 0.40 2477 0.78 2360 0.02
bcsstk29 13992 302748 2843 5861 3.73 4938 6.53 6270 0.19
bcsstk30 28924 1007284 6394 10430 10.30 6792 18.48 9347 0.59
bcsstk31 35588 572914 3032 18596 8.00 3863 16.41 6662 0.53
bcsstk32 44609 985046 5672 10446 11.84 10408 24.05 15592 0.81
bcsstk33 8738 291583 10172 12066 3.07 10853 4.95 13010 0.17
big 15606 45878 142 151 1.99 201 3.15 188 0.08
Breg100.20 100 150 15 18 0.00 16 0.01 18 0.00
Breg100.4 100 150 4 4 0.00 4 0.00 8 0.00
Breg100.8 100 150 8 8 0.00 8 0.01 16 0.00
Breg5000.0 5000 7500 0 0 0.01 0 0.00 816 0.04
Breg5000.16 5000 7500 16 32 0.52 16 1.36 802 0.03
Breg5000.4 5000 7500 4 4 0.52 4 1.44 824 0.03
Breg5000.8 5000 7500 7 10 0.52 8 1.44 814 0.04
Breg500.0 500 750 0 0 0.00 0 0.00 6 0.00
Breg500.12 500 750 12 18 0.04 16 0.05 12 0.00
Breg500.16 500 750 15 20 0.04 18 0.05 42 0.00
Breg500.20 500 750 20 40 0.04 32 0.05 68 0.00
Cat.1052 1052 1051 1 1 0.08 1 0.12 3 0.00
Cat.352 352 351 1 1 0.02 1 0.03 3 0.00
Cat.5252 5252 5264 1 5 0.53 15 0.69 12 0.04
Cat.702 702 701 1 1 0.05 1 0.07 3 0.00
crack 10240 30380 184 192 1.27 209 2.17 215 0.05
cs4 22499 43858 397 533 3.08 442 9.51 560 0.25
cti 16840 48232 334 668 2.14 657 4.35 758 0.09
data 2851 15093 189 220 0.35 231 0.50 233 0.02
DEBR12 4096 8189 548 564 0.42 684 0.94 700 0.03
fe 4elt2 11143 32818 130 130 1.37 136 2.14 260 0.05
fe body 45087 163734 304 766 6.80 512 16.48 1090 0.68
fe pwt 36519 144794 364 362 5.25 403 8.40 1833 0.33
fe sphere 16386 49152 388 386 2.13 422 3.65 480 0.10
G1000.0025 1000 1272 95 126 0.08 130 0.16 128 0.00
G1000.005 1000 2496 445 525 0.09 532 0.21 509 0.00
G1000.01 1000 5064 1362 1496 0.12 1502 0.28 1433 0.00
G1000.02 1000 10107 3382 3610 0.17 3616 0.38 3441 0.01

17

Single Host 100-iterations for different heuristics (continue)

GG MMG RTS
Graph |V | |E| best result time result time result time
G124.02 124 149 13 14 0.01 14 0.01 19 0.00
G124.04 124 318 63 69 0.01 66 0.01 67 0.00
G124.08 124 620 178 189 0.01 188 0.01 188 0.00
G124.16 124 1271 449 451 0.02 463 0.02 464 0.00
G250.01 250 331 29 33 0.01 35 0.02 35 0.00
G250.02 250 612 114 130 0.02 126 0.03 124 0.00
G250.04 250 1283 357 385 0.02 386 0.04 381 0.00
G250.08 250 2421 828 863 0.03 865 0.05 842 0.00
G500.005 500 625 49 64 0.04 66 0.06 71 0.00
G500.01 500 1223 218 253 0.04 262 0.07 252 0.00
G500.02 500 2355 626 682 0.05 670 0.09 650 0.00
G500.04 500 5120 1744 1837 0.08 1855 0.14 1784 0.00
Grid1000.20 1000 1930 20 20 0.09 20 0.12 53 0.00
Grid100.10 100 180 10 10 0.00 10 0.01 12 0.00
Grid.4920 4920 9698 60 60 0.51 62 0.77 106 0.01
Grid5000.50 5000 9850 50 50 0.52 50 0.80 155 0.01
Grid500.21 500 955 21 21 0.04 21 0.05 25 0.00
Grid.900 900 1740 30 30 0.08 30 0.11 36 0.00
memplus 17758 54196 6139 6557 2.34 7649 26.57 7439 0.70
nasa4704 4707 50026 1292 1692 0.76 1352 1.29 1560 0.04
RCat.134 134 133 1 1 0.00 1 0.01 1 0.00
RCat.5114 5114 5118 1 3 0.49 3 0.66 3 0.06
RCat.554 554 553 1 1 0.04 1 0.06 3 0.00
RCat.994 994 993 1 1 0.07 1 0.11 1 0.00
U1000.05 1000 2394 1 7 0.10 1 0.13 13 0.00
U1000.10 1000 4696 39 82 0.12 48 0.17 64 0.00
U1000.20 1000 2393 222 306 0.16 273 0.23 257 0.01
U1000.40 1000 18015 737 873 0.24 754 0.34 1129 0.01
U500.05 500 1282 2 6 0.04 2 0.06 13 0.00
U500.10 500 2355 26 77 0.05 31 0.08 56 0.00
U500.20 500 4549 178 180 0.07 184 0.11 184 0.00
U500.40 500 8793 409 418 0.11 412 0.16 412 0.00
uk 4824 6837 23 36 0.48 33 0.67 46 0.02
vibrobox 12328 165250 10343 15858 2.64 11785 7.74 12508 0.18
W-grid1000.40 1000 2000 40 40 0.09 40 0.12 40 0.00
W-grid100.20 100 200 20 30 0.00 20 0.01 26 0.00
W-grid5000.100 5000 1 100 100 0.53 100 0.80 138 0.02
W-grid500.42 500 1000 40 64 0.04 42 0.06 46 0.00
whitaker3 9800 28989 128 128 1.19 131 1.77 157 0.04
wing 62032 121544 950 1313 10.56 1230 58.20 1776 2.42
wing nodal 10937 75488 1708 1803 1.91 1852 3.57 1947 0.11

18

GXP Parallel RRTS

RRTS-100 P-RRTS-100
Graph |V | |E| best result time result time
3elt 4720 13722 90 90 56.21 90 74.87
4elt 15606 45878 140 100 174.49 140 100.64
add20 2395 7462 609 715 30.71 609 41.78
add32 4960 9462 11 20 47.99 11 62.49
airfoil1 4253 12289 74 77 50.49 74 66.433
bcspwr09 1723 2394 9 9 13.67 9 17.53
bcsstk13 2003 40940 2355 2355 100.00 2355 100.651
bcsstk29 13992 302748 2843 5927* 100.03 3047* 102.84
bcsstk30 28924 1007284 6394 10051* 100.05 6394* 108.224
bcsstk31 35588 572914 3032 3828* 100.07 3781* 100.64
bcsstk32 44609 985046 5672 6379* 100.05 6096* 116.01
bcsstk33 8738 291583 10171 10171* 100.01 10171* 102.22
big 15606 45878 140 187* 100.00 140* 101.126
Breg100.20 100 150 15 16 0.68 16 1.01
Breg100.4 100 150 4 4 0.67 4 1.06
Breg100.8 100 150 8 8 0.67 8 0.97
Breg5000.0 5000 7500 0 0 3.15 0 16.79
Breg5000.16 5000 7500 16 16 63.66 16 99.142
Breg5000.4 5000 7500 4 4 49.95 4 100.16
Breg5000.8 5000 7500 7 8 46.3 8 74.35
Breg500.0 500 750 0 0 0.61 0 1.05
Breg500.12 500 750 12 12 3.75 12 4.99
Breg500.16 500 750 15 16 3.77 16 5.01
Breg500.20 500 750 20 20 3.78 20 4.98
Cat.1052 1052 1051 1 1 6.86 1 8.950
Cat.352 352 351 1 1 2.15 1
Cat.5252 5252 5264 1 5 39.61 5 55.81
Cat.702 702 701 1 1 4.46 1 5.88
crack 10240 30380 184 185* 100.00 184* 101.15
cs4 22499 43858 397 519* 100.00 397* 101.91
cti 16840 48232 334 365* 100.00 334* 101.31
data 2851 15093 189 192 48.93 189 67.84
DEBR12 4096 8189 548 570 44.15 562 61.37
fe 4elt2 11143 32818 130 120* 100.00 130* 101.32
fe body 45087 163734 304 953* 100.00 319* 102.66
fe pwt 36519 144794 341 360* 100.01 341* 102.46
fe sphere 16386 49152 386 396* 100.00 386* 102.31
G1000.0025 1000 1272 95 107 7.66 102 9.948
G1000.005 1000 2496 445 462 11.22 456 15.468
G1000.01 1000 5064 1362 1391 18.54 1371 25.49
G1000.02 1000 10107 3382 3408 34.17 3391 45.11

19

RRTS-100 P-RRTS-100
Graph |V | |E| best result time result time
G124.02 124 149 13 13 0.83 13 1.213
G124.04 124 318 63 63 1.24 63 2.075
G124.08 124 620 178 178 2.02 178 2.91
G124.16 124 1271 449 449 3.74 449 6.77
G250.01 250 331 29 29 1.77 29 2.62
G250.02 250 612 114 114 2.52 114 3.60
G250.04 250 1283 357 357 4.30 357 5.975
G250.08 250 2421 828 828 7.41 828 10.024
G500.005 500 625 49 56 3.64 52 4.85
G500.01 500 1223 218 220 4.92 219 6.95
G500.02 500 2355 626 650 7.91 626 11.73
G500.04 500 5120 1744 1751 15.41 1744 21.64
Grid1000.20 1000 1930 20 20 8.07 20 11.62
Grid100.10 100 180 10 10 0.69 10 1.14
Grid.4920 4920 9698 60 60 49.03 60 77.94
Grid5000.50 5000 9850 50 50 49.65 50 80.60
Grid500.21 500 955 21 21 3.87 21 5.72
Grid.900 900 1740 30 30 7.3 30 10.50
memplus 17758 54196 6139 7297* 100.00 6139* 102.18
nasa4704 4707 50026 1292 1292 100.00 1292 101.403
RCat.134 134 133 1 1 0.72 1 1.22
RCat.5114 5114 5118 1 3 33.8 3 90.63
RCat.554 554 553 1 1 3.17 1 9.98
RCat.994 994 993 1 1 13.78 1 18.65
U1000.05 1000 2394 1 1 9.93 1 13.92
U1000.10 1000 4696 39 39 15.66 39 22.44
U1000.20 1000 2393 222 222 27.18 222 39.232
U1000.40 1000 18015 737 737 49.60 737 72.419
U500.05 500 1282 2 2 4.96 2 7.176
U500.10 500 2355 26 26 7.62 26 11.01
U500.20 500 4549 178 178 12.97 178 18.77
U500.40 500 8793 409 412 22.88 412 33.96
uk 4824 6837 23 30 35.89 24 51.01
vibrobox 12328 165250 10343 11868* 100.02 10343* 102.43
W-grid1000.40 1000 2000 40 40 8.32 40 15.29
W-grid100.20 100 200 20 20 0.72 20 1.78
W-grid5000.100 5000 10000 100 100 59.75 100 84.23
W-grid500.42 500 1000 40 42 4.07 40 11.84
whitaker3 9800 28989 128 128* 100.00 127* 101.23
wing 62032 121544 950 1776* 2.42 1007* 104.29
wing nodal 10937 75488 1708 1711* 100.45 1708* 101.82

20

