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Abstract. Region-based memory management scheme has been pro-
posed for programming language ML. In this scheme, a compiler stati-
cally estimates the live range of each object by performing an extension
of type inference (called region inference) and inserts code for memory
allocation and deallocation. Advantages of this scheme are that memory
objects can be deallocated safely (unlike with manual memory manage-
ment using malloc/free) and often earlier than with run-time garbage
collection. Since the region inference is an extension of the ML type infer-
ence, however, it was not clear whether the region-based memory man-
agement was applicable to dynamically-typed programming languages
like Scheme. In this paper, we show that the region-based memory man-
agement can be applied to dynamically-typed languages by combining
region inference and Cartwright et al.’s soft type system.

1 Introduction

Tofte et al. [19] proposed a static memory management scheme called region in-
ference. In this scheme, heap space is divided into abstract memory spaces called
regions. Memory is allocated and deallocated region-wise and every object gen-
erated at run-time is placed in one of the regions. A compiler statically estimates
the life time of each region, and statically inserts code for allocating/deallocating
regions.

For example, a source program:

let x = (1, 2) in λy. #1 x end

is translated into

letregion ρ2 in

let x = (1 at ρ1, 2 at ρ2) at ρ3

in λy. #1 x at ρ4 end

end



Here, #1 is the primitive for extracting the first element from a pair, and
ρi stands for a region. letregion ρ in e end is a construct for allocating and
deallocating a region. It first creates a new region ρ, and evaluates e. After
evaluating e, it deallocates ρ and returns the evaluation result. v at ρ specifies
that the value v should be stored in the region ρ. Given the source program
above, a compiler can infer that integer 2 is used only in that expression, so
that it inserts letregion ρ2 in · · · end. This transformation (which inserts
letregion ρ · · · and at ρ) is called region inference [19].

Region-based memory management has several advantages over conventional
memory management schemes. First, it is safe, compared with manual memory
management using free/malloc in C. Second, it can often deallocate memory cells
earlier than conventional, pointer-tracing garbage collection. Since the original
region inference is an extension of the ML type inference, however, it was not
clear how to apply the region-based memory management to programming lan-
guages other than ML, especially dynamically-typed programming languages
such as Scheme [13]. In this paper, we show that the region-based memory man-
agement can be applied to dynamically-typed languages by combining region
inference and soft typing [5].

We explain the main idea below. First, we review ideas of the original region
inference. In the region inference, ordinary types are annotated with region in-
formation. For example, the type int of integers is replaced by (int, ρ), which
describes integers stored in region ρ. Similarly, the function type int → int is ex-
tended to ((int, ρ1)

ϕ−→ (int, ρ2), ρ3), which describes a function stored in region
ρ3 that takes an integer stored in ρ1 as an argument, accesses regions in ϕ when
it is called, and returns an integer stored in ρ2. By performing type inference
for those extended types, a compiler can statically infer in which region each
value is stored and which region is accessed when each expression is evaluated.
Using that information, a compiler statically inserts the letregion construct.

For example, the expression above is given a type (α
{ρ3}−→ (int, ρ1), ρ4), where α

is an arbitrary type. Using this type, a compiler infers that when the function
is applied at execution time, only the region ρ3 may be accessed and an integer
stored in region ρ1 is returned. Therefore, the compiler can determine that the
region ρ2 is used only in this expression, and insert letregion ρ2 in · · ·.

As described above, the region inference is an extension of ML type inference,
so that it cannot be immediately applied to dynamically-typed language. We
solve this problem by using the idea of soft typing [5]. We construct a new region-
annotated type system which includes union types and recursive types. Using
union and recursive types, for example, an expression (if a then λx.x else 1),
which may return either a function or an integer, can be given a region-annotated
type (int, ρ1) ∨ (τ1

ϕ−→ τ2, ρ3), which means that the expression returns either
an integer stored in ρ1 or a function stored in ρ3. Using this kind of type, a
compiler can translate (if a then λx.x else 1)2 into:

letregion ρ1, ρ3 in

(if0 a then (λx.x at ρ3) else 1 at ρ1 )(2 at ρ2)



We have constructed a region-type system hinted above for a core language
of Scheme, and proved its soundness. We have also implemented a prototype
region inference system for Scheme. In a more general perspective, one of the
main contributions of this work is to show that type-based analyses (which have
originally been developed for statically-typed languages) can be applied also to
dynamically-typed languages by using the idea of soft typing.

The rest of this paper is organized as follows. In Section 2, we introduce
a target language of our region inference and define its operational semantics.
In Section 3, we introduce a region-type system for the target language, and
prove its soundness. In Section 5, we sketch a region inference algorithm. In
Section 6, we discuss extensions of our target language to deal with full Scheme.
In Section 7, we report the result of preliminary experiments on our region
inference system. Section 8 discusses related work. Section 9 concludes.

2 Target Language

In this section, we define the syntax and the semantics of the target language of
our region inference. It is a λ-calculus extended with constructs for manipulating
regions (letregion ρ in · · ·, at ρ, etc.). Note that programmers need only to
write ordinary functional programs: The constructs for regions are automatically
inserted by our region inference described in later sections.

2.1 Syntax

Definition 2.1 [expressions]: The set of expressions, ranged over by e, is
given by:

e (expressions) ::= x | n at ρ | λx.e at ρ | e1e2

| let f = fix(f, Λ%̃.(λx.e1 at ρ)) at ρ′ in e2

| f [ρ̃] | if0 e1 then e2 else e3

| letregion % in e
| v | v[ρ̃]

v (run-time values) ::= 〈n〉ρ | 〈λx.e〉ρ | 〈fix(f, Λ%̃.(λx.e at ρ))〉ρ′
ρ (regions) ::= % | •

Here, x ranges over a countably infinite set of variables, and n ranges over the set
of integers. % ranges over a countably infinite set of region variables. ρ̃ represents
a sequence ρ1, . . . , ρn.

The expressions given above includes those for representing run-time values
(ranged over by v): They have been borrowed from the formalization of Calcagno
et al. [4]. An expression n at ρ stores an integer n in region ρ and returns (a
pointer to) the integer. A region ρ is either a live region (denoted by %) or a
dead region • (that has been already deallocated). (Our type system presented



in the next section guarantees that n at • is never executed.) λx.e at ρ stores a
closure λx.e in region ρ and returns a pointer to it. An expression e1e2 applies e1

to e2. An expression let f = fix(f, Λ%̃.(λx.e1 at ρ)) at ρ′ in e2 stores in region
ρ′ a recursive, region-polymorphic [19] function f that takes regions and a value
as an argument, binds them to %̃ and x, and evaluates e; It then binds f to the
function and evaluates e2. An expression f [ρ̃] applies the region-polymorphic
function f to ρ̃. if0 e1 then e2 else e3 evaluates e2 if the value of e1 is 0, and
evaluates e3 otherwise. letregion ρ in e creates a new region and binds ρ to the
new region; It then evaluates e, deallocates the region ρ, and returns the value of
e. Run-time values 〈n〉ρ，〈λx.e〉ρ and 〈fix(f, Λ%̃.(λx.e at ρ))〉ρ′ denote pointers
to an integer, a closure, and a region-polymorphic function respectively. (The
difference between 〈n〉ρ and n at ρ is that the former has already been allocated,
so that evaluating it does not cause any memory access, while evaluation of the
latter causes an access to region ρ.)

The bound and free variables of e are defined in a customary manner: x is
bound in λx.e, f, %̃, and x are bound in fix(f, Λ%̃.(λx.e1 at ρ)), and % is bound
in letregion % in e. We assume that α-conversion is implicitly performed as
necessary, so that all the bound variables are different from each other and from
free variables.

2.2 Operational Semantics

We define an operational semantics of our target language, following the formal-
ization of Calcagno et al. [4].

Definition 2.2 [evaluation contexts]: The set of evaluation contexts, ranged
over by E, is given by:

E ::= [ ] | Ee | vE | if0 E then e1 else e2

| letregion % in E

We write E[e] for the term obtained by replacing [ ] in E with e.

Definition 2.3 [reduction]: The reduction relation e −→ e′ is the least rela-
tion that satisfies the rules in Figure 1.

The relation e −→ e′ means that e is reduced to e′ on one step. As in
[4], function applications are carried out by using substitutions, so that the
identity of each pointer is lost. (For example, we cannot tell whether or not two
occurrences of 〈1〉ρ point to the same location.) This does not cause a problem
in our target language, since there is no primitive for comparing or updating
pointers. In the rule R-Reg, region deallocation is modeled by replacement of
a region variable with the dead region •. Notice that in each rule, the region
accessed in the reduction is denoted by the meta-variable % for live regions,
rather than ρ: Evaluation gets stuck when the dead region • is accessed.



E[n at %] −→ E[〈n〉%] (R-Int)
E[λx.e at %] −→ E[〈λx.e〉%] (R-Abs)
E[〈λx.e〉%v] −→ E[[v/x]e] (R-App)

E[〈fix(f, Λ%̃.(λx.e at ρ))〉%′ [ρ̃]]
−→ E[〈λx.[〈fix(f, Λ%̃.(λx.e at ρ))〉%′/f ][ρ̃/%̃]e〉[ρ̃/%̃]ρ]

(R-RApp)

E[let f = fix(f, Λ%̃.(λx.e1 at ρ)) at ρ′ in e2]
−→ E[[〈fix(f, Λ%̃.(λx.e1 at ρ))〉ρ′/f ]e2]

(R-Fix)

E[if0 〈0〉% then e1 else e2 ] −→ E[e1] (R-IfT)
E[if0 〈n〉% then e1 else e2 ] −→ E[e2] (if n 6= 0) (R-IfF)

E[letregion % in v] −→ E[[•/%]v] (R-Reg)

Fig. 1. Reduction rules

Example 2.4: Let us consider:

letregion %1, %5 in (λx.(λy.(letregion %3 in e x) at %2)) at %1)(1 at %5)

where e = (λz.(2 at %4) at %3). (This is the program obtained by applying region
inference to the source program (λx.(λy.(λz.2) x))1.)

The above program is reduced as follows.

letregion %1, %5 in (λx.(λy.(letregion %3 in e x) at %2)) at %1)(1 at %5)
−→ letregion %1, %5 in 〈λx.(λy.(letregion %3 in e x) at %2))〉%1(1 at %5)
−→ letregion %1, %5 in 〈λx.(λy.(letregion %3 in e x) at %2))〉%1〈1〉%5

−→ letregion %1, %5 in λy.(letregion %3 in e 〈1〉%5) at %2)
−→ λy.(letregion %3 in e 〈1〉•) at %2)

The result contains a value 〈1〉• stored in the dead region •, but it does not
cause a problem since e does not access the value.

3 Type System

In this section, we present a type system for the target language introduced in
the previous section. The type system guarantees that every well-typed program
never accesses dead regions. So, the problem of region inference is reduced to
that of inserting “letregion ρ in · · ·” and “ at ρ” so that the resulting program
is well-typed in the type system (which can be done through type inference).



3.1 Type Syntax

Definition 3.1 [Type Syntax]: The set of types, ranged over by τ , is given
by:

µ (atomic types) ::= (num, ρ) | (τ1
ϕ−→ τ2, ρ)

ϕ (effects) ::= ξ | {ρ1, . . . , ρn} | ϕ1 ∪ ϕ2

τ (types) ::= r | rec r.µ1 ∨ · · · ∨ µn

| rec r.µ1 ∨ · · · ∨ µn ∨ α

π (type schemes) ::= ∀%̃ϕ.∀α̃.∀ξ̃.τ
Here, we assume that there are two sets of type variables. One, which is ranged
over by α, is the set of type variables bound by universal quantifiers, and the
other, which is ranged over by r, is the set of type variables for expressing
recursive types. The meta-variable ξ denotes an effect variable.

An atomic type (num, ρ) describes an integer stored in region ρ. An atomic
type (τ1

ϕ−→ τ2, ρ) describes a function that is stored in ρ and that takes a value
of type τ1 as an argument, accesses regions in ϕ, and returns a value of type τ2.

A type rec r.µ1 ∨ · · · ∨µn describes a value whose type is one of [(rec r.µ1 ∨
· · · ∨ µn)/r]µ1, . . . , [(rec r.µ1 ∨ · · · ∨ µn)/r]µn. For example, a value of type
rec r.(num, ρ) ∨ (r

ϕ−→ r) is either an integer or a function that takes a value
of type rec r.(num, ρ) ∨ (r

ϕ−→ r) and returns a value of the same type. Here,
we require that the outermost type constructors of µ1, . . . , µn are different from
each other. For example, rec r.(num, ρ)∨ (num, ρ′) is invalid. When r does not
appear in µ1, . . . , µn, we write µ1 ∨ · · · ∨ µn for rec r.µ1 ∨ · · · ∨ µn.

A type scheme ∀%̃ϕ∀α̃∀ξ̃.τ describes a region-polymorphic function. The ef-
fect ϕ is the set of regions that may be accessed when regions are passed to the
region-polymorphic function. For example, fix(f, Λρ1ρ2.(λx.x at ρ2)) has a type

scheme (∀ρ1ρ2
{ρ2}.((num, ρ1)

∅−→ (num, ρ1), ρ2) (assuming that variable x has
an integer type).

3.2 Typing rules

A type judgment relation is of the form Γ ` e : τ&ϕ. Intuitively, it means that
if e is evaluated under an environment that respects the type environment Γ ,
the evaluation result has type τ and regions in ϕ may be accessed during the
evaluation. Here, a type environment Γ is a mapping from a finite set of variables
to the union of the set of types and the set of pairs of the form (π, ρ) (where π
is a type scheme and ρ is a region).

Typing rules are given in Figures 2 and 3. Here, the relation τ ′ ≺ ∀α̃∀ξ̃.τ
used in T-RApp and T-VRApp means that there exist τ̃ ′′ and ϕ̃ such that
τ ′ = [τ̃ ′′/α̃][ϕ̃/ξ̃]τ . The relation µ ⊆ τ means that τ = rec r. · · · ∨ µ′ ∨ · · · and
µ = [τ/r]µ′ hold for some r and µ′. fv(Γ ) and fv(τ) denote the sets of free
region, type, and effect variables (i.e., those not bound by rec r. or ∀%̃ϕ.∀α̃.∀ξ̃.)
appearing in Γ and τ respectively.



Γ (x) = τ

Γ ` x : τ&∅ (T-Var)

Γ + {x 7→ τ1} ` e : τ2&ϕ′ ϕ′ ⊆ ϕ

(τ1
ϕ−→ τ2, ρ) ⊆ τ3

Γ ` λx.e at ρ : τ3&{ρ}
(T-Abs)

Γ (f) = (π, ρf ) π = ∀%̃ϕ∀α̃∀ξ̃.τ
τ ′ ≺ ∀α̃∀ξ̃.[ρ̃′/%̃]τ

Γ ` f [ρ̃′] : τ ′&{ρf} ∪ [ρ̃′/%̃]ϕ
(T-RApp)

Γ ` e : τ&ϕ % 6∈ fv(Γ ) ∪ fv(τ)

Γ ` letregion % in e : τ&ϕ \ {%}
(T-Reg)

(num, ρ) ⊆ τ

Γ ` n at ρ : τ&{ρ} (T-Int)

Γ ` e1 : τ1&ϕ1 (τ2
ϕ0−→ τ3, ρ) ⊆ τ1

Γ ` e2 : τ2&ϕ2

Γ ` e1e2 : τ3&ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ρ}
(T-App)

Γ ` e1 : τ1&ϕ1 (num, ρ) ⊆ τ1

Γ ` e2 : τ2&ϕ2 Γ ` e3 : τ2&ϕ3

Γ ` if0 e1 then e2 else e3

: τ2&ϕ1 ∪ ϕ2 ∪ ϕ3 ∪ {ρ}
(T-If)

π = ∀%̃ϕ1∀ξ̃.τ1 {%̃, ξ̃, α̃} ∩ (fv(Γ ) ∪ {ρf}) = ∅
Γ + {f 7→ (π, ρf )} ` λx.e1 at ρt : τ1&ϕ1

π′ = ∀%̃ϕ1∀α̃∀ξ̃.τ1 Γ + {f 7→ (π′, ρf )} ` e2 : τ2&ϕ2

Γ ` let f = fix(f, Λ%̃.(λx.e1 at ρt)) at ρf in e2 : τ2&{ρf} ∪ ϕ2

(T-Fix)

Fig. 2. Typing rules for static expressions

Note that in the rule T-App, e1 need not be a function, since τ may be
(num, ρ′) ∨ (τ2

ϕ0−→ τ3, ρ). When e1e2 is evaluated, e1 and e2 are first evaluated
and the regions in ϕ1 ∪ ϕ2 may be accessed. After that, if the value of e1 is a
function, then the function is called and the regions in ϕ2∪{ρ} may be accessed.
Otherwise, the evaluation gets stuck, so that no more region is accessed. So, the
effect ϕ0∪ϕ1∪ϕ2∪{ρ} soundly estimates the set of regions that are accessed when
e1e2 is evaluated, irrespectively of whether the value of e1 is a function or not.
(Here, we assume that information about whether a value of type (num, ρ′) ∨
(τ2

ϕ0−→ τ3, ρ) is an integer or a function is embedded in the pointer, rather than
in the memory cell stored in ρ′ or ρ. So, no region is accessed when it is checked
whether the value of e1 is a function or not. If we store that information in the
memory cell in ρ′ or ρ, we should add all the outermost regions appearing in τ1

to the effect of e1e2 in T-App.)

Example 3.2: The type judgment:

∅ ` letregion ρ0, ρ1, ρ3 in

(if0 n at ρ0 then (λx.x at ρ3) else 1 at ρ1 )(2 at ρ2) : (num, ρ2)&{ρ2}
is derived as follows (here, n is some integer).

First, we can obtain ∅ ` n at ρ0 : (num, ρ0)&{ρ0} and x : (num, ρ2) ` x :
(num, ρ2)&∅ by using the rule T-Int and T-Var. By applying rule T-Abs to



Γ ` v : (∀%̃ϕ∀α̃∀ξ̃.τ, ρf )

τ ′ ≺ ∀α̃∀ξ̃.[ρ̃′/%̃]τ

Γ ` v[ρ̃′] : τ ′&{ρf} ∪ [ρ̃′/%̃]ϕ
(T-VRapp)

Γ + {x 7→ τ1} ` e : τ2&ϕ′

ϕ′ ⊆ ϕ

(τ1
ϕ−→ τ2, ρ) ⊆ τ3

Γ ` 〈λx.e〉ρ : τ&∅
(T-VAbs)

(num, ρ) ⊆ τ

Γ ` 〈n〉ρ : τ&∅ (T-VInt)

π = ∀%̃ϕ∀ξ̃.τ
{%̃, ξ̃, α̃} ∩ (fv(Γ ) ∪ {ρf}) = ∅

Γ + {f 7→ (π, ρf )} ` λx.e1 at ρt : τ&ϕ

π′ = ∀%̃∀ϕα̃∀ξ̃.τ
Γ ` 〈fix(f, Λ%̃.(λx.e at ρt))〉ρf : (π′, ρf )&∅

(T-VFix)

Fig. 3. Typing rules for dynamic expressions

the latter, we obtain

∅ ` λx.x at ρ3 : ((num, ρ2)
∅−→ (num, ρ2), ρ3) ∨ (num, ρ1)&{ρ3}.

We can also obtain

∅ ` 1 at ρ1 : ((num, ρ2)
∅−→ (num, ρ2), ρ3) ∨ (num, ρ1)&{ρ1}

by using T-Int. By applying T-If and T-App, we obtain

∅ ` (if0 n at ρ0 then (λx.x at ρ3) else 1 at ρ1 )(2 at ρ2) : (num, ρ2)&{ρ0, ρ1, ρ2, ρ3}

Finally, by using T-Reg, we obtain:

∅ ` letregion ρ0, ρ1, ρ3 in
(if0 n at ρ0 then (λx.x at ρ3) else 1 at ρ1 )(2 at ρ2)(num, ρ2)&{ρ2}.

4 Type Soundness

The soundness of the type system is guaranteed by Theorems 4.3 and 4.4 given
below. Theorem 4.3 implies that a well-typed, closed expression does not access
a deallocated region immediately. Theorem 4.4 implies that the well-typedness
of an expression is preserved by reduction. These theorems together imply that
a well-typed, closed expression never accesses a deallocated region. Our proof is
based on the syntactic type soundness proof of Calcagno et al. [4], and extends
it to handle union/recursive types and polymorphism.

Remark 4.1: Note that the type system does not guarantee that evaluation
of a well-typed program never gets stuck: since the target of our study is a
dynamically-typed language like Scheme, our type system does allow an expres-
sion like if0 〈λx.e〉ρ then e1 else e2 .



Lemma 4.2: If ∅ ` E : τ&ϕ is derivable from ∅ ` [ ] : τ ′&ϕ′ and • ∈ ϕ′, then
• ∈ ϕ.

Proof: This follows by straightforward induction on derivation of ∅ ` E : τ&ϕ.
¤

Theorem 4.3: Suppose ∅ ` e : τ&ϕ, and e is one of the following forms:

– E[n at ρ]
– E[λx.e at ρ]
– E[〈λx.e〉ρv]
– E[〈fix(f, Λ%̃.(λx.e at ρ′))〉ρ[ρ̃′′]]
– E[let f = fix(f, Λ%̃.(λx.e1 at ρ′)) at ρ in e2]
– E[if0 〈n〉ρ then e1 else e2 ]

If • 6∈ ϕ, then ρ 6= •. In the fourth case, [ρ̃′′/%̃]ρ′ 6= • also holds.

Proof: We show only the first case. The other cases are similar. Suppose that
∅ ` E[n at ρ] : τ&ϕ and • 6∈ ϕ. By the typing rules, ∅ ` E[n at ρ] : τ&ϕ must
have been derived from ∅ ` n at ρ : τ ′&{ρ}. By Lemma 4.2, • 6∈ {ρ}, which
implies ρ 6= •. ¤

Theorem 4.4 [subject reduction]: If Γ ` e : τ&ϕ and e −→ e′, then Γ ` e′ :
τ&ϕ′ for some ϕ′ such that ϕ′ ⊆ ϕ.

A proof of this theorem is given in Appendix A.

5 Region Inference

In this section, we show how to perform region inference, i.e., transform a source
program (without constructs for regions) into a program of the target language
defined in section 2. The region inference is carried out in the following steps.

1. Based on the typing rules defined in Section 3, a standard type (types with-
out regions and effects) is inferred for each expression. This can be carried
out by using the soft type inference algorithm [5].

2. Fresh region variables and effect variables are added to the types inferred
above.

3. Based on the typing rules in Section 3, the actual values of region variables
and effect variables are computed. This can be carried out in a way similar to
the ordinary region inference [18]. Finally, letregion is inserted in the place
where the side condition of T-Reg is met. (Actually, inference of regions and
effects and insertion of letregion have to be carried out in an interleaving
manner to handle region polymorphism [18].)



Example 5.1: Consider the expression:

(if0 n then (λx.x) else 1 )2.

Here, n is an integer. Region inference for this expression is performed as follows.
First, the standard type (without regions) of the expression is inferred as

num ∨ (num −→ num). Then, region and effect variables are inserted, as

(num, ρ1) ∨ ((num, ρ2)
∅−→ (num, ρ2), ρ3). Using this type, the effect of the

whole expression is inferred as {ρ0, ρ1, ρ2, ρ3}. The regions ρ0, ρ1 and ρ3 do not
appear in the type environment (which is empty) and the type of the returned
value (num, ρ2), so that letregion can be inserted as follows.

letregion ρ0, ρ1, ρ3 in

(if0 n at ρ0 then (λx.x at ρ3) else 1 at ρ1 )(2 at ρ2)

6 Language Extensions

In this section, we show how to extend the target language defined in Section 2
to support full Scheme.

Cons cells We can introduce cons cells by adding a new atomic type (τ1× τ2, ρ),
which describes a cons cell that is stored in ρ and consists of a car-element of
type τ1 and a cdr-element of type τ2. We can deal with set-car! and set-cdr!
by assigning the following types to them:

set-car!
∀ρ1ρ2ρ

{ρ3}
3 .∀α1α2α3.∀ξ1ξ2.((α1×α2, ρ1)

{ρ2}∪ξ1−→ (α1
{ρ1}∪ξ2−→ α3, ρ2), ρ3)

set-cdr!
∀ρ1ρ2ρ

{ρ3}
3 .∀α1α2α3.∀ξ1ξ2.((α1×α2, ρ1)

{ρ2}∪ξ1−→ (α2
{ρ1}∪ξ2−→ α3, ρ2), ρ3)

To ensure the type soundness, polymorphic types are not assigned to cons cells.
(For example, ∀α.((num, ρ) × (α

ϕ−→ α, ρ′), ρ′′) is not allowed.) Vector types
and other complexed data types can be introduced in the same way.

set! One way to deal with set! is to translate set! into ML-like operations
on reference cells and then perform region inference in the same way as that
for ML [19]. To perform the translation, we first perform a whole program
analysis to find all the variables whose values might be updated by set!, and
then replace all the accesses to those variables with ML-like operations on ref-
erence cells. For example, (let ((x (+ a 1))) . . . (set! x 2)) is translated to
(let ((x (ref (+ a 1)))) . . . (:= x 2)). Here, ref v is a primitive for creating a
reference cell storing v and returns the pointer to it, and v1 := v2 is a primitive
that stores v2 in the reference cell v1.



call/cc It seems difficult to deal with call-with-current-continuation (call/cc)
in a completely static manner. (In fact, the region inference system for ML does
not handle call/cc, either.) One (naive) way to deal with call/cc might be,
when call/cc is invoked at run-time, to move the contents of the stack and
the heap space reachable from the stack to a global region (so that they can
be only collected by standard garbage collection, not by region-based memory
management). An alternative way would be to first perform CPS-transformation,
and then perform the region inference.

7 Implementation

Based on the type system introduced in Section 3, we have implemented a re-
gion inference system for Scheme. Cons cells and set! discussed in Section 6
have been already supported, but call-with-current-continuation has not been
supported yet. The system transforms a source program written in Scheme into
a region-annotated program (whose core syntax has been given in Section 2),
and then interprets the target program. We have not yet implemented a back-
end compiler to translate the region-annotated program into machine code, since
we need to implement other optimizations [1, 2] to make the region-based mem-
ory management more effective. For the experiments reported below, we have
inserted instructions for counting memory allocation/deallocation in the inter-
preter. Our implementation is available at
http://www.yl.is.s.u-tokyo.ac.jp/~ganat/research/region/

We have tested our region inference system for several programs, and con-
firmed that those programs were translated correctly. (If the translation had
been incorrect, the interpreter would have reported a run-time error.) For exam-
ple, the following program (which takes a binary tree as an input and computes
the number of leaves):

(define (leafcount t)
(if (pair? t)

(+ (leafcount (car t)) (leafcount (cdr t)))
1))

has been automatically translated by our system into

(define leafcount
(reglambda (r60 r57 r59 r58)

(lambda (v2 )
(if (letregion (r62 ) (pair?[r57r62] v2 ))

(letregion (r67 r69 r88 )
(+[r88r67r59r69]

(letregion (r73 )
(leafcount[r73r57r88r76]
(letregion (r82 ) (car[r57r82] v2 )) ))

(letregion (r86 )



(leafcount[r86r57r88r89]
(letregion (r95 ) (cdr[r57r95] v2 )) )) ))

1 at r59))
at r60)

at r52 )

Here, reglambda creates a region-polymorphic function. The instruction
leafcount[r73r57r88r76] applies the region-polymorphic function leafcount
to region parameters r73, r57, r88, and r76. The instruction 1 at r1 puts the
number 1 into region r1.

The result of the experiments is summarized in Table 1 and Figure 4. Pro-
grams Tak, Div, Deriv, Destruct have been taken from Gabriel Scheme bench-
marks [8]. Tree is the program given above to count leafs (with a tree of size 18
given as an input). RayTracing is a program for ray tracing.

Table 1 shows the size of each program, the maximum heap size, and the total
size of allocated memory cells. In measuring the memory size, we assumed that
the size of a number (an integer or a floating point number) is 8 bytes (bignum
is not supported), that the size of a function closure is 32 bytes (the effect of the
free variables on the size of the closure was ignored), and that the size of a vector
is 4 + 4× (the number of elements). The difference between the maximum heap
size and the total size of allocated memory shows the effectiveness of our region
inference. For example, for RayTracing, the total size of allocated memory was
291.6 KBytes, but the required heap space was 17.7 KBytes.

Figure 4 shows the transition of the heap size for each program. We can
observe that memory is repeatedly deallocated during execution. For Tak, Div,
Destruct, and RayTracing, the heap size still grows gradually (but more slowly
than without the region-based memory management), so that they will suffer
from memory leak for a larger input. We think that this is mainly due to the
stack-based management of regions, and can be improved by applying optimiza-
tions for the region-based memory management (such as storage mode analy-
sis) [1, 2]. Judging from the result of the above experiments, we think that even
without those optimizations, our region inference would be useful for reducing
the frequency of garbage collection.

Program Name Program Size (Lines) Max. Heap Size (Bytes) Memory Allocation (Bytes)

Tak 23 2748 16488
Div 54 9308 43352

Deriv 65 1648 2376
Destruct 72 1712 23212

Tree 10 1780 5080
RayTracing 1683 17744 291600

Table 1. Heap size and allocated memory size
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8 Related Work

Region-based memory management has been applied to programming languages
other than ML [3, 6, 7, 9–11, 15, 16], but most of them rely on programmers’ an-
notations on region instructions (such as “letregion” and “at ρ”); Only a few of
them, which are discussed below, support region inference (i.e., automatic inser-
tion of region instructions). Makholm [15, 16] studied region inference for Prolog.
As in our work, his region inference algorithm is based on soft typing, but tech-
nical details seem to be quite different since Prolog does not have higher-order
functions (hence no need for effects) and instead has logical variables. Deters and
Cytron [7] have proposed an algorithm to insert memory allocation/deallocation
instructions (similar to region instructions) for Real-Time Java. Their method
is based on run-time profiling, so that there seems to be no guarantee that the
instructions are inserted correctly. Grossman et al. [11] has proposed a type
system for region-based memory management for Cyclone (a type-safe dialect
of C). In Cyclone, programmers have to explicitly insert code for manipulating
regions, but some of the region annotations are inferred using some heuristics.

9 Conclusion

We have proposed a new region-type system for a dynamically-typed language,
and proved its correctness. Based on the type system, we have also implemented
a prototype region inference system for Scheme and tested it for several Scheme
programs.

Support for call-with-current-continuation is left for future work. To make the
region-based memory management more effective, we also need to incorporate
several analyses such as region size inference [2].

The general approach of this work – using soft types to apply a type-based
analysis that has been originally developed for statically-typed languages to
dynamically-typed languages – seems to be applicable to other type-based anal-
yses such as linear type systems [14, 20], exception analysis [17], and resource
usage analysis [12].
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Appendix

A A Proof of Theorem 4.4

Lemma A.1 [substitution lemma]: Let σ1 be τ1 or (π1, ρ1) and σ2 be τ2 or
(π2, ρ2). If Γ +{x 7→ σ1} ` e : σ2&ϕ and Γ ` v : σ1&ϕ′, then Γ ` [v/x]e : σ2&ϕ.

Proof: By the typing rules, ϕ′ = ∅. Therefore, The derivation for Γ ` [v/x]e :
σ2&ϕ can be obtained from the derivation of Γ + {x 7→ σ1} ` e : σ2&ϕ by
replacing Γ ′ + {x 7→ σ1} ` x : σ1&∅ with the derivation of Γ ′ ` v : σ1&∅ and
replacing Γ ′ + {x 7→ σ1} ` x[ρ̃′] : τ ′1&ϕ′′ with Γ ′ ` v[ρ̃′] : τ ′1&ϕ′′ ¤

Lemma A.2: If Γ ` e : τ&ϕ, then θΓ ` θe : θτ&θϕ for any substitution θ on
type, effect, and region variables.

Proof: Straightforward induction on derivation of Γ ` e : τ&ϕ. ¤

Proof of Theorem 4.4: The proof proceeds by case analysis on the rule used
for deriving e −→ e′. It is sufficient to show the case for E = [ ] for each rule.

– R-Int: In this case, e = n at % and e′ = 〈n〉%. By the assumption Γ ` e :
τ&ϕ, it must be the case that (num, ρ) ⊆ τ and ϕ = {ρ}. Let ϕ′ = ∅. Then,
we obtain Γ ` e′ : τ&ϕ′ by using T-VInt.

– R-Abs: Similar to the case for R-Int.
– R-App: In this case, e = 〈λx.e1〉%v and e′ = [v/x]e1. By the assumption

Γ ` e : τ&ϕ and rule T-App, the following conditions must hold:

Γ ` 〈λx.e1〉% : τ1&ϕ1

(τ2
ϕ0−→ τ, ρ) ⊆ τ1

Γ ` v : τ2&ϕ2

ϕ = ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ρ}
The first condition must have been derived by using T-VAbs, so that the
following conditions must also hold:

Γ + {x 7→ τ2} ` e1 : τ&ϕ′0
ϕ′0 ⊆ ϕ0

By the substitution lemma (Lemma A.1), we have Γ ` [v/x]e1 : τ&ϕ′0.
Moreover, we have ϕ′0 ⊆ ϕ0 ⊆ ϕ as required.

– R-RApp: In this case, e = v[ρ̃] and e′ = 〈λx.[v/f ][ρ̃/%̃]e1〉[ρ̃/%̃]ρ′′ where v =
〈fix(f, Λ%̃.(λx.e1 at ρ′′))〉ρ′ . By the assumption Γ ` e : τ&ϕ, the following
conditions must hold:

Γ ` v : (π′, ρ′)&∅
π′ = ∀%̃ϕ1∀α̃∀ε̃.τ1

τ ≺ ∀α̃∀ε̃.[ρ̃/%̃]τ1

ϕ = {ρ′} ∪ [ρ̃/%̃]ϕ1

π = ∀%̃ϕ1∀ε̃.τ1

{%̃, ε̃, α̃} ∩ (fv(Γ ) ∪ {ρ′}) = ∅
Γ + {f 7→ (π, ρ′)} ` λx.e1 at ρ′′ : τ1&ϕ1



From the last condition, we obtain Γ + {f 7→ (π, ρ′)} ` 〈λx.e1〉ρ′′ : τ1&∅.
By Γ ` v : (π′, ρ′)&∅ and rule T-VFix, we also have Γ ` v : (π, ρ′)&∅. By
applying Lemma A.1, we obtain:

Γ ` [v/f ]〈λx.e1〉ρ′′ : τ1&∅.

By applying Lemma A.2, we further obtain

[ρ̃/%̃]Γ ` [ρ̃/%̃]([v/f ]〈λx.e1〉ρ′′) : [ρ̃/%̃]τ1&∅.

Since e′ = [ρ̃/%̃]([v/f ]〈λx.e1〉ρ′′) and [ρ̃/%̃]Γ = Γ , we have

Γ ` e′ : [ρ̃/%̃]τ1&∅.

By Lemma A.2 and the conditions τ ≺ ∀α̃∀ε̃.[ρ̃/%̃]τ1 and {%̃, ε̃, α̃}∩fv(Γ ) = ∅,
we have Γ ` e′ : τ&∅ as required.

– R-Fix: In this case, e = let f = fix(f, Λ%̃.(λx.e1 at ρ)) at ρ′ in e2 and
e′ = [〈fix(f, Λ%̃.(λx.e1 at ρ))〉ρ′/f ]e2. By the assumption Γ ` e : τ&ϕ, the
following conditions must hold:

π = ∀%̃ϕ1∀ε̃.τ1

{%̃, ε̃, α̃} ∩ (fv(Γ ) ∪ {ρ′}) = ∅
Γ + {f 7→ (π, ρ′)} ` λx.e1 at ρ : τ1&ϕ1

π′ = ∀%̃ϕ1∀α̃∀ε̃.τ1

Γ + {f 7→ (π′, ρ′)} ` e2 : τ&ϕ2

ϕ = {ρ′} ∪ ϕ2

From the first four conditions, we obtain Γ ` 〈fix(f, Λ%̃.(λx.e1 at ρ))〉ρ′ :
(π′, ρ′)&∅. By Lemma A.1, we have Γ ` e′ : τ&ϕ2. Moreover, we have ϕ2 ⊆ ϕ
as required.

– R-IfT: In this case, e = if0 〈0〉% then e1 else e2 and e′ = e1. By the
assumption Γ ` e : τ&ϕ, there must exist ϕ′ such that Γ ` e1 : τ&ϕ′ and
ϕ′ ⊆ ϕ.

– R-IfF: Similar to the case for R-IfT.
– R-Reg: In this case, e = letregion % in v and e′ = [•/%]v. By the assump-

tion Γ ` e : τ&ϕ, we have:
Γ ` v : τ&ϕ′

ϕ = ϕ′ \ {%}
% 6∈ fv(Γ, τ)

By the typing rules for values, ϕ′ = ∅. By applying Lemma A.2, we obtain
Γ ` [•/%]v : τ&∅.
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