
Virtual Private Grid : A Command Shell for Utilizing Hundreds of Machines
Efficiently

Kenji Kaneda
University of Tokyo

kaneda@yl.is.s.u-tokyo.ac.jp

Kenjiro Taura
University of Tokyo

tau@logos.t.u-tokyo.ac.jp

Akinori Yonezawa
University of Tokyo

yonezawa@yl.is.s.u-tokyo.ac.jp

Abstract

We design and implement Virtual Private Grid (VPG),
a shell that can easily and securely utilize a large num-
ber of machines distributed over multiple administrative do-
mains. Today, many people have an access to a large num-
ber of machines across multiple subnets or geographically
distributed places. These machines are managed by differ-
ent administrators, and for the sake of security and admin-
istration cost, they impose various restrictions on their use.
Methods to work around these restrictions are found on a
case-by-case basis and require human intervention. There-
fore, it increases the user’s cost to utilize remote machines
significantly, and consequently decreases the utilization of
computational resources. VPG works around these restric-
tions automatically and can easily utilize a large number
of machines in multiple administrative domains. We run
VPG on approximately 100 nodes (270 CPUs). Experimen-
tal results show that VPG utilizes remote machines more
efficiently than other job submission tools.

1. Introduction

The recent improvement of computers and networks
is impressive. Supercomputers and clusters of worksta-
tion/PCs become connected with high-speed networks and
spread over multiple subnets or geographically distributed
places (Computational Grid[10]). Consequently, many
people have a chance to harness a large number of com-
putational resources.

These machines are usually managed by different admin-
istrators, who impose various restrictions on their use for
the sake of security and ease of administration. Examples
of these restrictions are,

Firewall A firewall protects local machines by restricting
access from external hosts. For example, IP filtering
restricts connections from/to hosts with a particular IP
address.

Private IP A private IP is an IP address visible only within
a subnet. Hosts outside the subnet cannot initiate direct
connections to hosts that have only a private IP.

DHCP client DHCP is a mechanism to enable machines
to extract their network configuration from a server.
An IP address of a DHCP client changes dynamically
whenever it extracts a new configuration.

Ad-hoc methods to work around these restrictions are
found on a case-by-case basis and require human inter-
vention. For example, hosts behind a firewall are usually
reached first by logging on a gateway machine and then onto
the target. For another example, accessing a DHCP client
requires some database that stores its address. Situation is
even more complicated when those addresses are local IP
addresses. Overall, these restrictions significantly increase
the user’s cost to utilize remote machines, and consequently,
decrease the smooth utilization of computational resources.

We illustrate the above problem with a practical scenario.
Consider a network shown in Figure 1. Harp, tuba, � � � in
Figure 1 represent host-names and let us assume we would
like to submit jobs (commands) from tuba to all the other
hosts in this network. The network consists of three subnets
including private hosts and DHCP clients. Connections are
restricted by firewalls; the only allowed in-bound connec-
tion is SSH [3] to the gateway hosts (harp, cscl0, and ise0).
Such a configuration is fairly typical.

In this network, job submissions often become cumber-
some with commonly used tools (e.g., rsh, SSH, and PBS
[1]).

� Job submissions from outside a firewall to inside. We
typically must first log onto a gateway host ((i) in Fig-
ure 1).

� Job submissions to a host that has only a private IP
address. Similarly to the above, accessing such a host
requires first entering the subnet of the target machine
((ii) in Figure 1).



tuba

192.168.0.1
(private IP) 

ise1

133.11.12.220 ~ 239 
(DHCP client)

host subnet

gateway host

(ii)

(i)

(iii)

job submission

ise0
harp

cscl0

Figure 1. Practical example

� Job submissions to a DHCP client. We must somehow
obtain the current IP address of the machine ((iii) in
Figure 1).

When the number of machines is small, it may be possible
to work around restrictions by human intervention. The user
remembers intervening gateway machines to each host, and
keeps some ad-hoc database to keep track of DHCP clients.
However, this method obviously does not scale to a large
number of machines and subnets. The user would like to
have a solution in which all the machines can be reached
directly and transparently, with names fixed over time.

One way to implement such a transparent job submis-
sion is to connect all the hosts via connections, and relay
commands through a path on the graph. This is how VPG
basically works, but there are issues in connection setup.
As the number of the machines increases, the number of al-
lowed connections each machine can initiate also increases,
so simply creating all allowed connections has a severe scal-
ability limitation. Thus, we would like to select a small
number of connections to make the graph connected, but
manually configuring such connections would be too cum-
bersome for users, especially when the available machines
change from time to time.

To summarize, it is cumbersome to submit jobs with
commonly available tools, and is not trivial to automate
construction of the connected graph. There must be an al-
gorithm that keeps only necessary connections in order to
reach all the available hosts.

The goal of this research is to enable a user to utilize all
his/her machines through a shell at his/her local host. Thus
we design and develop Virtual Private Grid (VPG), a shell
for Grid computing, which automatically works around the
aforementioned restrictions. VPG dynamically constructs
a spanning tree among hosts and provides the user with a
simple view in which any host can be reached with a name

path@nickname
path@nickname > file@nickname
path@nickname < file@nickname
path@nickname | path@nickname

Figure 2. Shell syntax

that does not change over time, even if its IP address does.
As a result, the user can easily harness a large number of
machines in multiple administrative domains.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the design and the user interface of VPG
and Section 3 its implementation. Section 4 details the al-
gorithm for spanning tree construction. Section 5 shows
experimental results. Section 6 mentions related work. The
final section summarizes the paper and states future work.

2. Virtual Private Grid (VPG)

2.1. Features

The following summarize functions provided by VPG.

� It gives each host a (per-user) unique name that doesn’t
depend on a DNS name or a fixed IP address. (nick-
naming).

� It provides a job submission to any nicknamed host.

� It provides a redirection from/to a file on any host.

� It provides a pipe between commands executed on any
host.

We make the above functions accessible by the combination
of the simple shell syntax and existing commands (See Fig-
ure 2). A user can submit a job to a remote host by adding
@ followed by its nickname. Standard input/output of a pro-
gram can be connected to output/input of a program running
on a different host (i.e., pipe over network).

With VPG, the user can directly access remote machines
which would have been several hops away from his/her lo-
cal host. VPG implements this by constructing a spanning
tree among available machines without changing adminis-
trative policy. In addition, VPG can tolerate dynamic ad-
dition/removal of machines by reconfiguring the tree auto-
matically.

2.2. Submission Example

We show two examples of remote job submissions with
VPG. Assume the same network topology as Figure 1 and
that tubais the home host, which a user initially logged in.

VPG constructs a tree on the network and gives each host
a unique nickname. Figure 3 illustrates a tree constructed



possible connection

connection for tree 
construction

home host

A

B

C

F

G D

E

Figure 3. Submission example

by VPG. A dashed arrow from host � to � is a possible
connection which � can initiate to �. A solid line between
� and � is a bi-directional connection which � and � keep
permanently between them.

A, B, � � �, and G in Figure 3 represent nicknames, which
do not change among execution of commands. For exam-
ple, A and B are nicknames of tubaand the DHCP client in
Figure 1 respectively.

The user submits jobs from the home host (i.e., host A).

ps@B
This command is executed on the DHCP client whose
nickname is B. Because host A and B belong to the
same subnet, the request is sent to B directly, in the
same way as common remote job submission tools
(e.g., rsh).

tar@E -c file | tar@G x
This command archives file on E, transfers it to G,
and extracts it on G. Because host A, E and G belong
to different subnets, VPG automatically detects a for-
warding route (� � � � � � �), submits the first
tar command to E through the route, and execute it
on E. Similarly, the second tar command is submit-
ted from A to G (its route is � � � � � � 	), and
the output of the first command is transfered from E to
G (its route is � � � � � � � � 	). As in the
UNIX pipe, they are executed in parallel.

3. Implementation

3.1. Overview of Implementation

A brief overview of implementation is as follows.

1. VPG daemons boot on all the available hosts a user
wishes to use. These daemons can boot in any order.

Configuration information that should be given to dae-
mons is described in Section 3.2.

2. The daemons create and keep some bi-directional
(TCP) connections. They create connections necessary
to make a single connected graph of all the hosts by ex-
changing information with neighbors. In this scheme,
hosts with dynamic and/or private IPs become reach-
able because they initiate bi-directional connections to
the outside.

3. Eventually, the spanning tree among the hosts is con-
structed, and daemons stop creating connections.

4. A shell starts on the home host. It keeps track of the
topology of the whole network. It detects a route to
any participating host in order to submit jobs, redirect
input/output of a command, and so on.

5. Hosts and connections may fail, or new hosts may
become available. Whenever the network topology
changes, the daemons create a new spanning tree by
adding/removing connections to make all the hosts
available.

Many firewalls block connections to all the unprivileged
ports, and in this case, SSH is usually the only way to log
on to hosts behind them. VPG daemons use SSH port for-
wardingin order to connect to such machines when regular
connections are not allowed.

3.2. Daemon Configuration

Currently, VPG daemons need the following configura-
tion information about the network.

nickname Each daemon needs a nickname, a name of the
host that does not change over time. Each nickname
must be unique throughout all the available hosts.

port number A daemon tries to contact other daemons at
this port.

list of connections Network configuration is specified by a
list of connections each daemon can initiate. For ex-
ample, if a host has only a private IP address, con-
nections to this host from outside its subnet will not
be listed. Similarly, connections to DHCP clients will
not be listed, but those from them will. Each connec-
tion is labeled either as ‘regular’ or ‘ssh’, the former
indicating it can be a regular connection and the lat-
ter it should tunnel through SSH. Daemons construct
a spanning tree by selecting only a small number of
connections from this list.



The amount of configuration is fairly large and may be cum-
bersome for users. Note, however, that a configuration file
is typically written only once, and need not be very pre-
cise. For example, it does not affect correctness to add non-
existing hosts to the list. They are simply regarded as down
hosts, and our algorithm tolerates them. Similarly, it does
not affect correctness to list connections that are actually
blocked and not to list connections that are actually possi-
ble.

They are currently required only for performance. List-
ing too many hosts or connections that do not exist causes
daemons to try many connections that only fail. We are
planning to address this issue in our future work. The tree
construction algorithm operates in such a way that each dae-
mon only needs information about allowed connections ad-
jacent to it. Thanks to this distributed nature of the algo-
rithm, probing necessary configuration online should not
involve much technical difficulty.

3.3. Other Implementation Issues

In this section, we describe several implementation is-
sues which have not been mentioned yet.

SSH port forwarding Because daemons need to create
SSH connections automatically without entering a
user’s password, SSH must use the public key authen-
tication with an empty pass-phrase.

daemon sharing An original design criteria of VPG is to
run daemons in the user level, thereby not requiring
changes to system administration. This design, on the
other hand, may impose a large overhead on the system
if many users run their daemons. This problem can be
fixed by running a daemon at the root privilege that,
with an appropriate authentication, forks a user process
on demand. We are going to implement VPG so that it
can be run either way. This is not a peculiar problem to
VPG, but a common problem in any network service.
Whether a service is run with the root privilege or with
individual user’s privilege is a matter of choice at each
host, based on the popularity of the service, system
administration policy, and so on.

4. Spanning Tree Construction

In this section, we describe a network model and the al-
gorithm to construct a spanning tree. The network model
formalizes administrative restrictions (e.g., Private IP) and
is used by the tree construction algorithm. The algorithm
is composed of two parts: construction of self-stabilizing
spanning tree and calculation of routing table. Daemons
select necessary connections to form a spanning tree by us-
ing the former algorithm. The shell detects a route to any

participating host for a job submission by using the latter
algorithm.

4.1. Network Model

We model a configuration of a network as a directed
graph	 � �
���, where 
 is the set of hosts, and� the set
of possible (i.e., allowed) connections. An edge is labeled
either ‘regular’ or ‘ssh’. Let � and � be hosts. If ��� �� is in
� and labeled ‘regular’, � can initiate a regular connection
to �. If ��� �� is in � and labeled ‘ssh’, � can initiate a con-
nection to � through SSH port forwarding. In the following,
labels are omitted when not important.

The real network can be modeled in this framework as
follows.

DHCP client If � is a DHCP client, 	 satisfies the follow-
ing.

�� � 
 � ���� ��� �� �� �

That is, because a DHCP client has no fixed IP address,
any other host cannot initiate a connection to the client.

Private IP If � is a host with a private IP address, we have,

�� � �hosts outside the subnet�� ��� �� �� �

Firewall If a firewall blocks all in-bound connections to a
subnet,

�� � �hosts outside the subnet��

�� � �hosts inside the subnet��

��� �� �� �

Let � be a gateway reachable via SSH from any host.
Then we have,

�� � 
� ��� ����� � �

The above pieces of information come from the configu-
ration file.

4.2. Self-stabilizing Spanning Tree Algorithm

We use the self-stabilizing spanning tree algorithm[7][8]
for automatic tree construction. This algorithm has fol-
lowing features: (1) each daemon asynchronously builds a
spanning tree without knowing the whole network. (2) it
can construct a tree even if the network topology changes
dynamically.

The algorithm regards the graph as a spanning forest, that
is, a set of rooted tree. Initially, this forest consists of single-
node trees (each node is a root). Starting from this state, the



possible connection

connection for tree 
construction

4

6

2

3
1

5

4

6

6

4
4

5
Priority 
changed

root node

child node

Priority
changed

Priority 
changed

6

6

6

6
6

6

Priority 
changed

Priority 
changed

Priority 
changed

Priority 
changed

Figure 4. Process of tree construction

nodes gradually coalesce into large trees. Eventually, all the
nodes in the graph form a single spanning tree. When the
network topology changes dynamically, they cope with it
by resetting their local states.

Each node maintains three variables: 
��, ������, and
��������. We subscript a variable with node name. 
���

is a unique identifier of node � and ������� a node name
of �’s parent. �������� is explained shortly.

Each daemon asynchronously connects to its neighbors
specified in 	, and when two daemons find them to be
in different trees, these two trees are merged. ��������

determines how they are merged. Omitting some details,
��������� is initialized to 
���, and when node � no-
tices a neighbor � that has a higher �������� value, � be-
comes a child of �’s tree, and ��������� becomes equal to
��������� . Therefore, trees with higher �������� overrun
trees with lower ones, and finally the algorithm constructs a
single spanning tree with the highest ��������.

Figure 4 illustrates a process of tree construction. A
dashed edge from � to � means that ��� �� � �. A solid
edge from � to � means that � is �’s parent. The value of
each node indicates its �������� and changes when connec-
tions are created. For example, a node whose �������� is
1 initiates a connection to a node whose �������� is 4, and
its �������� becomes equal to 4. Eventually, �������� of
all the nodes becomes equal to 6 and the tree is constructed.

We refer the reader to [7][8] for the detail of the algo-
rithm.

��������

if �� is the home host)
then
������� � � [A]

else if �� is a leaf�
then
������� � �’s parent [B]

else if ���� � ��	
���������� �� ��� � ��
then
������� � the element of the above set [C]

else if ��� � ��	
��
�������� �� nil� and �������� �� ���

then
������� � any such � [D]

else
������� � nil [E]

where:
��	
����� � ����	
���� � ��
��	
�� � ��	
����� � ��	
�����

Figure 5. Routing algorithm

4.3. Routing Algorithm

When submitting jobs, the shell needs to calculate the
shortest path to the destination host. For this purpose, the
shell keeps track of the whole network topology by receiv-
ing fragments of topology information from daemons and
joining them together. Every time the network topology
changes, the daemons send their new information to the
shell and the shell updates its topology information.

Note that at first the daemons do not know the location
of the home host where the shell is running. Then, each
daemon calculates a route from itself to the home host by
using an additional variable ������. ������� is ba-
sically equal to �, where � is �’s neighbor on the tree and
one hop nearer to the home host than �. Only if � is the
home host, ������� is equal to �. If � has not detected
the route to the home host yet, ������� is equal to nil
(������ is initialized to nil).

Node � calculates ������� by repeating the algorithm
shown in Figure 5 at regular intervals. Note that in the fol-
lowing, we regard the root of the spanning tree as the home
host. Therefore, calculating ������� corresponds to de-
tecting �’s parent.

� If � is the home host, ������� becomes equal to �

([A] in Figure 5). Node � does not need to calculate a
route to itself.

� If � is a leaf of the tree, � has the only one neighbor
on the tree. Therefore, � must send a message to the
home host via the neighbor and regard the neighbor as



1 node (64 CPUs)

SMP

45 nodes (90 CPUs)

workstation cluster
24 nodes (48 CPUs)

PC cluster

7 nodes (7 CPUs)

PC cluster

16 nodes (32 CPUs)

workstation cluster

16 nodes (32 CPUs)

PC cluster

connection for tree 
construction

subnet

Figure 6. Experimental environment

its parent ([B] in Figure 5).

� Note that if �’s neighbor � satisfies ������� � �, �
is �’s child. If all �’s neighbors except � are �’s chil-
dren, � must be �’s parent. Node � sends a message to
the home host via � ([C] in Figure 5).

If there are more than two neighbors which are not �’s
children, � cannot judge which node is actually �’s
parent. Thus ������� does not change.

� If �’s neighbor � is not �’s child and � satisfies
������� �� nil, � has already detected a route to
the home host and the route does not go through �.
Therefore, � can send a message to the home host via
�. Node � regards � as its parent ([D] in Figure 5).

� If � does not satisfy all the above conditions, � can-
not find a route to the home host. Thus �������
becomes equal to nil ([E] in Figure 5).

5. Experiments

5.1. Experimental Environment

We ran VPG in the network shown in Figure 6. The net-
work consists of three subnets, and machines are equipped
with several operating systems (Solaris, Linux, and IRIX)
and CPUs (SPARC, x86, PowerPC, and MIPS).

We ran 160 daemons on approximately 100 nodes.
In this experiment, daemons constructed a spanning tree
whose diameter was 5. The topology of a spanning tree
depends on 
��s.

�

�

�

�

�

�

�

���� ����� �����

��
��

��
�
�
�
�
�	


�
�

�

�	�
���
�
����

������ ���		

���

���

Figure 7. Comparison to other remote job
submission tools

5.2. Comparison to Other Job Submission Tools

We compare VPG with three other job submission tools
(rsh, SSH, and globus-job-run1). Rsh uses Rhost authenti-
cation, SSH public key authentication (1024 bit RSA), and
globus-job-run X.509 authentication (1024 bit RSA).

We measure the turn around time by submitting a small
job. This time is almost equal to the overhead of a re-
mote job submission itself. In addition, we measure the
time of the job submission to hosts several hops away from
the home host with rsh, SSH, and VPG. Rsh and SSH sub-
mit a job to a destination host by relaying a job submis-
sion itself several times (e.g., ssh hostA ’ssh hostB
command’).

Figure 7 illustrates the result of this experiment. The
overhead of VPG is less than that of SSH and globus-job-
run. In addition, the overhead of job submissions except
VPG increases in keeping with the number of relays. The
main overhead of SSH and globus-job-run is authentication.
Because globus-job-run and SSH perform involved authen-
tication using a public key, their overhead is larger than that
of rsh and VPG.

VPG forms a tree by keeping connections permanently.
Because jobs and their input/output are relayed through
connections which have already been created, it does not
require creation of new connections (i.e., authentication)
when submitting jobs. Therefore, VPG can submit jobs
through secure connections without a large overhead.

5.3. Low Level Interface

A communication mechanism of VPG is mainly com-
posed of a redirection and pipe (i.e., unidirectional com-
munication through standard input/output). Thus, whereas
simple programs can take advantage of VPG infrastructure,
many network programs cannot. For instance, VPG cannot
utilize client-server programs which require bi-directional
connections.

1globus-job-run is a remote job submission tool provided by
Globus[14]



Therefore, we have derived a communication library out
of VPG implementation. This library is similar to SOCKS
[4], and low level programs that use sockets can take advan-
tage of VPG infrastructure with the library. For example,
the library enable parallel programs to communicate with
each other transparently without considering administrative
restrictions.

The library relays communications by using VPG dae-
mons as proxies. The following indicates how process A
and B communicates with the library.

1. When process A intends to connect to process B on
a remote host, it calls vpg connect() instead of
connect() by specifying the host where B is run-
ning with a nickname. Then, the connect request is
sent to daemon Ã running on the same host as A. Ã
accepts the request from A, and a connection is estab-
lished between them.

2. Ã tries to relay a communication to B. But it does not
know a location of B. Therefore, Ã asks the shell to a
route from A to B, and relays the request through a path
on a tree constructed by VPG.

3. The request from Ã is sent to daemon B̃ running on the
same host as B. When accepting the request, B̃ sends
a connect request to B by calling connect(). When
B accepts the request, the connection is established be-
tween B and B̃.

4. Hereafter, process A and B can communicate with each
other by relaying messages via VPG daemons.

We compare the overhead of this library with the origi-
nal UNIX socket library by measuring the execution time of
distributed ray-tracing program on 4, 8, 16, and 32 nodes.
The result of the experiment shows that the overhead of the
VPG library is very small (less than 1%). We can conclude
that the library takes advantage of VPG with a small over-
head.

6. Related Work

6.1. Resource Management

Many remote job submission tools on clusters or on
Grid environments have been developed (e.g., Condor[11],
Nimrod[9]). Most of them have been focusing on schedul-
ing. Globus Meta-computing Toolkit[14] provides basic in-
frastructure for global computing environment.

To the author’s knowledge, none of them provide effi-
cient methods to work around restrictions imposed by ad-
ministrators. The original Globus is blocked by typical fire-
wall configurations and cannot submit jobs from outside a
firewall to inside. In addition, because globus-job-run needs

to specify a host with its host-name or IP address, it is diffi-
cult to submit jobs to a host that has no unique and consis-
tent IP address. In Condor, jobs are automatically submitted
to a machine which satisfies the requirements of jobs. Its
implementation requires that the host which a user logs in
can initiate a direct connection to the destination host.

JXTA[2] is a set of generalized peer-to-peer protocols,
and JXTA shell[6] is a command-line interpreter which in-
teracts with the JXTA core services. In the project, a method
to bypass firewalls or NAT seems ongoing [5].

SSH provides secure access to remote machines. As the
number of machines increases, it becomes difficult for hu-
man to utilize many machines easily and efficiently with
SSH. If a user establishes and keeps a connection per-host
permanently, he/she must maintain many shell windows. If
a user initiates connections every time he/she submits a job,
it incurs a large overhead as we have mentioned in Section
5.2.

6.2. NAT & Firewall

There are several mechanisms to work around NAT and
firewalls.

SOCKS[4] is closest to our work, but has a limited func-
tionality. It is a networking proxy protocol and provides
general framework to bypass a firewall transparently and
securely. In typical scenarios, hosts inside NAT/firewalls
connect to a SOCKS server and hosts outside reach these
hosts through the server.

There are two main differences between SOCKS and
VPG. First, SOCKS does not have nicknames, so naming
DHCP clients remains as an issue, and ensuring the unique-
ness of local IPs (in different subnets) is up to the user.
Second, more importantly, forwarding connections through
multiple SOCK servers is supported but must be configured
manually. Therefore it will be difficult to manage hundreds
of machines across many (e.g., � �) subnets.

VPG provides a unique naming scheme for DHCP
clients or private hosts. In addition, the tree construction
and routing algorithm minimize the need for manual con-
figurations.

To be fair, SOCKS is implemented as a general commu-
nication library, whereas VPG only exposes shell functions,
that are, remote job submissions, redirections, and pipes.
We, however, have derived a similar communication library
out of VPG implementation as described in Section 5.3.

RMF (Resource Manager beyond Firewall)[13] is a mod-
ification of Globus Resource Allocation Manager (GRAM),
and utilizes resources inside firewalls. For example, RMF
supports a job submission from outside a firewall to inside,
whereas the original Globus does not.

RMF implements this function by using a proxy which
relays TCP communications beyond a firewall. It is similar



to SOCKS and thus incurs the same problems as SOCKS
does. RMF requires cumbersome manual configurations to
manage machines across multiple subnets and has no nam-
ing scheme for private IPs and DHCP clients.

Virtual Private Network (VPN)[12] is a mechanism to
connect multiple private networks through a public net-
work. For instance, subnets over geographically distributed
places share their file system through the Internet. Because
packets are relayed through the public network, VPN re-
quires establishing secure connections by using authentica-
tion, packet tunneling, etc.

These technologies usually require changing administra-
tive restrictions. Therefore, VPG mainly differs from VPN
in that VPG constructs a private network at the user level
and places major emphasis on a remote job submission.

7. Summary and Future Work

In this paper, we have described Virtual Private Grid
(VPG)that can easily and securely utilize a large number of
machines distributed over multiple administrative domains.
It constructs a self-stabilizing spanning tree on the network,
and a user can utilize remote machines reachable from the
home host through a path on the tree.

We ran VPG daemons on approximately 100 nodes
(270 CPUs) and compare VPG with other remote
job submission tools. The results of the experi-
ments show that the overhead of VPG is less than
that of SSH and Globus. The latest implementation
of VPG is available at http://web.yl.is.s.u-
tokyo.ac.jp/˜kaneda/vpg

Our future work is to provide easier and more efficient
utilization of remote computational resources.

Simplification of daemon configuration As we have de-
scribed in Section 3.2, the current design requires a
user to write configuration files. It consists of a dae-
mon’s nickname, a list of connections which the dae-
mon can initiate, etc.

We are planning to minimize the amount of required
information. One simple scheme is to omit a list of
connections from configurations and to assume that all
the hosts can communicate with each other. Because
daemons can construct a tree in spite of false configu-
rations, this scheme seems useful.

However, because daemons try to connect to all the
other hosts, it takes considerable time to detect a neigh-
bor node with the highest priority and to construct a
tree. We are planning to modify the tree construction
algorithm to solve the above problem.

Automatic resource selection With hundreds of ma-
chines, the user wants jobs and data to be distributed

over remote hosts automatically without explicit
annotations. We are planning to design a simple
task placement algorithm that takes the location of
input/output files, communication through pipes, and
machine architecture into account.

References

[1] Portable Batch System. http://pbs.mrj.com/.
[2] Project JXTA. http://www.jxta.org/.
[3] Secure Shell. http://www.ssh.com/.
[4] SOCKS Version 5 Protocol.

http://www.socks.nec.com/rfc/rfc1928.txt.
[5] Project JXTA: An Open, Innovative Collaboration.

http://www.jxta.org/project/www/docs/, 2001.
[6] Project JXTA: Technical Shell Overview.

http://www.jxta.org/project/www/docs/, 2001.
[7] Y. Afek, S. Kutten, and M. Yung. Memory Efficient Self

Stabilizing Protocols for General Network. 4th Workshop
on Distributed Algorithms, 1990.

[8] S. Aggarwal and S. Kutten. Time optimal self-stabilizing
spanning tree algorithms. 13th Conferences on Foundations
of Software Technology and Theoretical Computer Science,
1993.

[9] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Archi-
tecture for a Resource Management and Scheduling System
in a Global Computational Grid. 4th International Confer-
ence on High Performance Computing in Asia-Pacific Re-
gion, 2000.

[10] I. Foster and C. Kesselman. The GRID: Blueprint for a New
Computing Infrastructure. Morgan kaufmann Publishers,
1998.

[11] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A Computation Management Agent for Multi-
Institutional Grids. 10th IEEE Symposium on High Perfor-
mance Distributed Computing, 2001.

[12] C. Scott, P. Wolfe, and M. Erwin. Virtual Private Networks,
2nd Edition. O’Reilly, December 1998.

[13] Y. Tanaka, M. Sato, M. Hirano, H. Nakada, and
S. Sekiguchi. Resource manager for globus-based wide-
area cluster computing. 1st IEEE International Workshop
on Cluster Computing, pages 237–244, 1999.

[14] The Globus Project. http://www.globus.org/.


