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Abstract

We designed and implemented three middleware systems for efficient use of dynamically
joining and leaving computing resources.

Clusters of computers and computational grids, which have become increasingly im-
portant, are dynamic environments. Because of factors such as resource sharing and
failure, the quality of resources available to an application changes constantly. For ex-
ample, since non-dedicated machines such as desktop PCs are shared by multiple users
simultaneously, availability of their resources varies dynamically. For systems gather-
ing hundreds of nodes, machine or network failures occur frequently. These dynamic
changes in the availability of resources are a great problem for the deployment of clus-
ters and computational grids.

Our goal is to allow users to adapt to changes in their execution environments and
use dynamic resources. Towards this goal, we took two approaches with different foci.
One approach focuses on building a platform for parallel programming on large-scale
geographically-distributed resources. The other approach focuses on providing a sin-
gle system image for simplifying the utilization of dynamic resources. For the former
approach, we designed and implemented a Grid-enabled message-passing library and
a command shell for remote job submission. For the latter approach, we developed a
virtual machine monitor for providing a single system image.

The Grid-enabled message-passing library is based on a programming model called
Phoenix which provides a collection of logical machine identifiers that a programmer dy-
namically allocates (or de-allocates) to (or from) physical machines. With this dynamic
allocation of logical identifiers, the library supports nodes dynamically joining and leav-
ing computation during runtime. In addition, the system supports message routing be-
tween nodes not directly reachable due to firewalls and/or network address translation
(NAT). It also supports resource discovery, facilitating ease of configuration that allows
nodes without static names (e.g., DHCP clients) to participate in computation without
additional work. To implement these mechanisms, our system runs a distributed re-
source discovery and routing table construction algorithm, rather than assuming all such
pieces of information are available in a static configuration file or similar form. To im-
prove the performance of the routing algorithm, we devised a technique for eliminating
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the redundant transmission of routing update messages. We measured the performance
of the routing algorithm using 400 nodes in three LANs. The experimental results show
that the elapsed time of routing table construction by our algorithm is only about twice
as long as that of off-line route calculation.

The command shell enables users to access hundreds of remote computers spread
over wide area networks (WANs). In the shell, users can submit jobs to their remote
machines, with functions such as input/output redirection and network pipes, over the
remote machines. In addition, the shell allows users to easily access their machines be-
hind firewalls and NATs if routes to the target machines exist. We implemented this
system with our message passing library. We ran the system on approximately 100 nodes
(270 CPUs) and showed its high usability.

The virtual machine monitor virtualizes a shared-memory multi-processor machine
on a network of computers. This functionality greatly simplifies use of distributed envi-
ronments. For example, it enables legacy applications (e.g., Linux kernel for symmetric
multiple processor) installed on multi-processor systems to run on a number of less ex-
pensive machines. The system supports dynamic addition or removal of machines by
allocating one or more virtual processors to a physical processor and by changing the al-
location dynamically. We conducted experiments in which parallel coarse-grained tasks
were executed inside a virtual eight-way multi-processor machine built on top of eight
physical machines. The experimental result demonstrated the feasibility of our approach.
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論文要旨

本論文は，動的に参加・脱退する計算資源を効率的に利用するためのミドルウェアシステム
について述べる．
近年その重要度が増しつつある，計算機のクラスタやグリッドは，動的に変化する環境

である．資源共有や故障などの原因によって，アプリケーションが利用可能な資源の質は絶
えず変化する．例えば，デスクトップ PCなどの非占有マシンは複数の利用者によって共有
されるため，その可用性が動的に変化する．数百のノードからなるシステムにおいては，マ
シン・ネットワークの故障が頻繁に起こり得る．このような資源の可用性が動的に変化する
ことが，クラスタやグリッドの普及への大きな障害となっている．
本研究の目標は，利用者が自分の実行環境の変化に適応し，動的に変化する資源を有効

利用することを可能にすることである．この目標に向けて，我々は，それぞれ異なる焦点を
持つ 2つのアプローチで取り組む．一つのアプローチは，地理的に分散した大規模環境上で
の並列プログラミングのための枠組みを構築することに焦点を置いている．もう一つのアプ
ローチは，単一システムイメージを提供し，動的に変化する資源を簡便に利用可能にするこ
とに焦点を置いている．前者のアプローチのために，我々は，Grid-enabledメッセージパッ
シングライブラリと，遠隔ジョブ投入のためのコマンドシェルを設計・実装した．後者のア
プローチのために，単一システムイメージを提供するための仮想マシンモニタを開発した．

Grid-enabledメッセージパッシングライブラリは，Phoenixプログラミングモデルに基
づく．このモデルは，プログラマが動的に物理マシンに割り当て・解放できる論理マシン識
別子の集合を提供する．この論理識別子の動的割り当てによって，ライブラリは，実行時に
おけるノードの動的な参加・脱退を扱うことができる．さらに，このシステムは，ファイア
ウォールやNATなどの制限によって直接通信出来ないノード間でのメッセージ配送を扱う
ことができる．資源発見機構によって，静的な名前を持たないノード（例えばDHCPクラ
イアント）が，手間を必要とせずに計算に参加することも可能になっている．これらの機構
を実装するために，我々のシステムは，利用可能な情報が静的に設定ファイルなどの形で与
えられると仮定はせずに，分散資源発見とルーティング表の構築アルゴリズムを実行する．
ルーティングアルゴリズムの性能向上のために，我々はルーティング更新メッセージの重複
転送を除去する技術を考案し，そのアルゴリズムの性能評価を 3つの LANにまたがる 400
ノードを用いて行った．その結果，我々のアルゴリズムにおいてルーティング表の構築にか
かる時間が，経路情報が静的に与えられた場合の時間の約 2倍に収まることが示された．
コマンドシェルは，利用者がWAN上にちらばった数百の遠隔マシンにアクセスするこ
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とを可能にする．このシェルでは，遠隔マシンをまたがる入出力のリダイレクションやネッ
トワークパイプなどの機能を用いながら，利用者は遠隔マシンへのジョブ投入を行うこと
ができる．さらに，このシェルでは，何らかの経路が存在しさえすれば，利用者はファイア
ウォールやNATの内側のマシンにもアクセスできる．このシステムを，我々のメッセージ
パッシングライブラリを用いて実装した．このシステムを約 100ノード（270CPU）上で動
作させ，高い有用性を示した．
仮想マシンモニタは，ネットワークでつながれた複数のマシン上に，共有メモリ型マル

チプロセッサマシンを仮想的に構築する．この機能によって，分散環境を簡便に利用するこ
とが可能となる．例えば，マルチプロセッサマシン上にインストールされる既存のアプリ
ケーション（例えば SMP用の Linuxカーネル）を，コストのより低い複数のマシン上で動
作させることが可能になる．このシステムは，一つ以上の仮想プロセッサを一つの実プロ
セッサに割り当て，さらに，その割り当てを動的に変更させることによって，動的なマシン
の追加・削除を扱うことができる．我々は，8台の物理マシン上に仮想的に 8-wayのマルチ
プロセッサマシンを構築し，その上で粗粒度タスクを並列に実行した．この実験の結果は，
我々のアプローチが現実的に可能であることを示している．
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Chapter 1

Introduction

1.1 Motivation

Through the advent of high-speed network technologies, clusters of computers and com-
putational grids — infrastructures for a large number of geographically distributed re-
sources — are becoming indispensable to computational approaches for problem solv-
ing [Buy99, FK99]. These clusters and grids enable large-scale coordinated use and shar-
ing of resources, often with a high-performance orientation. For example, aggregating
hundreds of computers benefits computing-intensive applications (e.g., simulation sys-
tem for atmospheric prediction [TSTS03]) as well as data-intensive applications (e.g., web
search engines [BDH03], analysis of patabyte-scale archival data of astronomical obser-
vatories [YTS04]).

Despite the great promise of such clusters and computational grids, generalizing the
use of these systems requires overcoming many issues. One of problems that hinders
the wide deployment of clusters and grids is dynamic change in the quality of resources; the
quality of resources available to individual applications changes constantly because of
factors such as resource sharing and failure. For example, machine or network failures
are frequent event for clusters and grids gathering hundreds of nodes 1. Multiple users
may be competing for non-dedicated resources while parallel applications are executing.
As a result, applications — long running ones in particular — heavily suffer from dy-
namic changes of resource availability since they frequently encounter such changes in
the middle of computation, and restarting computation can be expensive.

To address this problem, applications designed to execute on clusters and/or compu-
tational grids should support adaptive control of parallelism and fault tolerance. Support of
adaptive parallelism allows applications to respond easily to addition and/or removal
of machines [GK92]. For example, upon receiving notification of addition of an idle

1The Google Cluster using about 8000 nodes experienced a node failure rate of 2-3% per year [ABB01].
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machine, a parallel application would balance its workloads dynamically by delegating
some amount of the workloads to the newly added machine. Fault tolerance guarantees
that applications continue operation in the event of unexpected hardware or software
failures [Tel01].

We are specifically concerned with support of adaptive parallelism. This is because
we believe that supporting adaptive parallelism is feasible in practice and is adequate as
a building block towards fault tolerance. Support of adaptive parallelism and fault tol-
erance are complementary; abilities required for adaptive control of parallelism cannot
be provided solely by support of fault tolerance. For example, fault tolerance does not
provide a way for handing machine addition. Furthermore, machine removal should be
handled in a more efficient manner than traditional roll-back protocols (e.g., checkpoint-
ing, message logging) [EAWJ02]. While a basic recovery process need stop the execution
of all running processes, a method that allows processes to leave computation without
stopping their entire execution process would be preferred.

1.2 Goal of Thesis

Our goal is to design and implement middleware systems that support adaptive par-
allelism. The middleware systems accommodate dynamic addition and/or removal of
machines by abstracting dynamic changes of resources. The systems should have:

Programmability Interfaces the systems provide should not be designed for specific ap-
plications but should be flexible and general enough to support a wide variety
of real-world parallel applications, including parameter-sweep applications, par-
allel divide-and-conquer applications (e.g., tree searching), and array-based appli-
cations (e.g., LU factorization).

Scalability The middleware systems should be implemented in a scalable fashion. Thus,
several issues for guaranteeing scalability need to be addressed. For example, the
systems must work without requiring bottleneck modules such as a central server
that manages all participating nodes. For another example, the systems should sup-
port addition and/or removal of nodes without stopping the entire computation.
Moreover, they should allow multiple nodes to be added to and/or removed from
computation simultaneously.

Usability The middleware systems should allow users to run their programs in paral-
lel as if the programs were only being run on local computers. More specifically,
the middleware systems should allow legacy parallel code to adapt to dynamic
changes in its execution environments and to continue operation with little or no
modification to the code.
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1.3 Previous Work on Middleware Systems for Adaptive Paral-
lelism

We reviewed several main areas of previous work on middleware systems for supporting
dynamic addition and/or removal of machines, and determined features that they lack
for meeting our goal. We classified these middleware systems into two categories: paral-
lel systems that support adaptive parallelism at the programming language or library level,
and distributed systems that provide remote process execution and/or process migration
to support adaptive parallelism at the process level.

1.3.1 Parallel Programming Systems

While many parallel programming languages and libraries have been developed so far,
they are insufficient for supporting adaptive parallelism; they lack either general pro-
gramming interfaces or efficient implementation that can scale to a large number of
(> 100) nodes.

Message Passing Interface. Message Passing Interface (MPI) [Mes] is a widely used
communication library for parallel and distributed computing, especially for high per-
formance computing. MPI-1 [Mes94] provides a simple flat name space. When an ap-
plication runs with N processes, the system gives the processes unique names, 0, . . . , N ,
to identify them. The processes interact by sending (or receiving) messages to (or from)
one another using their names. Adding to this basic model, MPI-2 [Mes03] provides in-
terfaces that allow dynamic creation of processes after an application has started (e.g.,
MPI COMM SPAWN) as well as interfaces for establishing connections between newly cre-
ated processes (e.g., MPI COMM OPEN and MPI COMM ACCEPT). These mechanisms were
introduced mainly for the purpose of master-slave model parallel applications.

Both of MPI-1 and MPI-2 provide little or no support for situation where nodes leave
or join computation at unexpected times. MPI-1 is not suitable for dynamic environ-
ments since it assumes the number of physical processors is fixed. Node names are
statically bound to user processes and do not allow programmers to change them dy-
namically. MPI-2 faces difficulties in supporting general-purpose applications in dy-
namic environments although it is sufficient for applications with simple communica-
tion patterns. For example, explicit connection management with MPI COMM CONNECT
and MPI COMM OPEN is not flexible enough for neither point-to-point communication be-
tween any two nodes nor collective operations (e.g., broadcast, all-to-all communication).

Extensions of MPI for Adaptive Load-balancing. Extensions of MPI with support of
adaptive load-balancing include Adaptive MPI (or AMPI) [HLK03] and Dynamic Mes-
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sage Passing Interface (Dyn-MPI) [WLNL03].
AMPI allows applications to adapt to dynamic changes of resources with less modi-

fication to their code. More specifically, physical processors are no longer visible to pro-
grammers in AMPI; programmers use a large number V of virtual processors, indepen-
dent of the number of physical processors P . In contrast to standard MPI programs that
divide computation into P processes, one for each of the P physical processors, an AMP
programmer divides the computation into V virtual processors that correspond to indi-
vidual user processes. The runtime of AMPI creates multiple user processes per each
physical processor and then, given different physical processor loads, migrates the user
processes as appropriate.

Since AMPI provides no sophisticated method to control the granularity of virtual
processes, programmers can have a difficult time creating an appropriate number of vir-
tual processors; both inappropriate increases and decreases of the granularity can lead
to poor performance. For example, fine-grain approaches may have significantly more
messages than their coarse-grain counterparts2. In addition, virtualization incurs over-
head costs for reasons such as process creation and management. On the other hand,
coarse-grain approach may cause load imbalance because of an inflexible allocation of
user processes.

Dyn-MPI is another extension of MPI. While the ultimate goal of Dyn-MPI is same
as AMPI, the approach that Dyn-MPI takes is different. Dyn-MPI supports adaptive par-
allelism by automatically re-distributing data on the fly when changes occur in the ap-
plication or the underlying environments. To support this facility, interfaces of Dyn-MPI
have several extensions, including relative ranks that vary over the course of computa-
tion when nodes are added to or removed from computation.

To support such automatic data re-distribution, Dyn-MPI restricts the kinds of ap-
plications it can support. More specifically, Dyn-MPI is designed only for iterative ap-
plications consisting of one or more phases, which are sections of code comprised of
computation followed by communication. In addition, programmers basically need to
identify data to be considered for redistribution.

Note that much of the work on supporting fault tolerance for MPI (e.g.,FT-MPI [FD00],
MPI/FT [BNC+01], MPICH-V [BBC+02]) is not sufficient for our purpose. As mentioned
in Section 1.1, these systems have inherent difficulties with dynamic accommodation.

Parallel Virtual Machine. Parallel Virtual Machine (PVM) [GBD+94] is a software sys-
tem that permits a heterogeneous collection of computers to be viewed as a single parallel
computer from a user program. More specifically, PVM users write their applications as

2Imagine a nearest neighbor communication pattern in which an individual node needs to send one
message per boundary edge. In this case, a fine-grain approach greatly increases the number of exchanged
messages.
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collections of cooperating tasks. Standard interfaces provided by PVM include initiation
and termination of tasks across networks as well as communication and synchronization
between tasks.

Although PVM provides several interfaces for dynamic addition and/or removal of
tasks and hosts (e.g., pvm addhosts and pvm delhosts), it suffers from the same draw-
backs that interfaces of MPI have. First, since an identifier called a task identifier (TID) is
statically bound to a newly created task3, programmers face difficulties in migrating TIDs
across different machines according to dynamic changes of available machines. More-
over, PVM requires programmers to deal with these explicitly and to implement their
own method for reassigning work to other tasks. Doing so is very cumbersome and may
be inefficient for applications involving frequent addition or removal of machines.

Note that although the first problem can be solved by extensions of PMV with support
of process migration (e.g., MPVM) [CCK+95], the second problem still remains unsolved.

Libraries Based on Bulk Synchronous Parallel Models. Several systems based on a
master-worker style programming model called the Bulk Synchronous Parallel (BSP)
model [Val90] have been developed. These systems include Bayanihan [Sar99], a Java-
based framework for volunteer computing systems. Bayanihan allows high-performance
parallel computing inexpensively by enabling ordinary Internet users to share the pro-
cessing power of their idle computers.

In BSP, a parallel program runs across a set of virtual processors and executes as a
sequence of parallel supersteps separated by barrier synchronizations. Each superstep is
composed of three ordered phases: the local computation phase, the global communica-
tion phase, and the barrier synchronization phase.

Drawbacks of BSP model are as follows. First, the model is not suited to implement an
efficient point-to-point communication facility. For example, the global communication
phase can be a serious and unnecessary sequential bottleneck in cases where such restric-
tions can be removed. Second, the model allows nodes to join and leave computation
only when programs reach the barrier synchronization phase.

Divide-and-Conquer Systems. Many programming languages designed for divide-and-
conquer parallelization have been developed. These systems include Cilk-NOW [BL97],
Satin [vNKB01], Javelin 2.0 [NPRC00], Atlas [BBB96], Dynasty [BPZ96], and DCPAR [FK95].
In these systems, programmers basically annotate potential parallelism in the form of
spawn and sync constructs, and then distribute parallel tasks over machines with schedul-
ing mechanisms such as random work-stealing.

These systems are designed only for kinds of parallel applications that have directed
acyclic graph (DAG) dependency between tasks; they are not suitable for general-purpose

3According to [GBD+94], the TID of task t contains a host number indicating a location where t runs.
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parallel applications.

Peer-to-Peer Content Distribution Technologies. Much work has been carried out to
build scalable self-organizing infrastructures for providing various services, such as per-
sistent storage, file sharing, and DNS lookup (e.g., Chord [SMK+01], CAN [RFH+01],
Pastry [RD01], Tapestry [ZKJ01], and Kademlia [MM02]). To implement such functional-
ities in a scalable manner, nodes act autonomously and construct overlay networks with-
out requiring intermediation or support of a centralized authority. In addition, nodes
re-construct overlay networks adaptively to tolerate failures both in network connections
and computers, as well as a transient population of nodes.

These systems provide a large and fixed name space abstraction, mediating commu-
nication to implement services. They all build a routing infrastructure so that involved
nodes can send messages to any name. For example, some peer-to-peer file-sharing sys-
tems use distributed hash-table (DHT) routing [ATS03] to map file names to their loca-
tions and to allow nodes to send requests (e.g., file insertion, deletion) to other nodes
where specified files are located.

The peer-to-peer technologies cannot be applied straightforwardly to building mid-
dleware systems for a wide variety of parallel applications. For example, most DHT rout-
ing algorithms are not suitable for high performance computing since insertion or dele-
tion of items requires O(log n) hops message delivery where n is the number of nodes.

1.3.2 Distributed Systems with Remote Process Execution and/or Mobile Pro-
cesses

We reviewed distributed systems that support adaptive-parallelism by providing ser-
vices such as remote process execution and/or mobile processes.

Task Scheduling Systems. Task scheduling systems aim to take advantage of 2avail-
able processing power (CPU cycles) of computers in distributed environments. This is
achieved by breaking down a computer-intensive task into small work units, distribut-
ing them to multiple computers, and gathering the results. A single server or several
central servers balance workloads adaptively by spawning tasks only to idle computers.
Practical examples include systems designed for computers inside a single local-area net-
work (e.g., Load Sharing Facility [Pla], Portable Batch System [Opea], Condor [LLM88])
as well as for wide-area environments (e.g., Ninf-G [TNS+03], Condor-G [FTF+01], Nim-
rod/G [BAG00], XtremWeb [CDF+05], SETI@home [SET], DCGrid [Ent], Grid MP [Uni]).

While these systems are useful for scheduling loosely-coupled or independent tasks,
they are not appropriate for general parallel applications for several reasons. First, since
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central coordination is invariably required for distributing tasks and collecting the re-
sults, servers can become bottlenecks under dense communication among participating
nodes. Furthermore, these systems lack sophisticated methods for point-to-point com-
munication between clients. For instance, most of these systems do not provide a mech-
anism that allows individual clients to identify one another. Thus, the clients need to
somehow obtain information about other participating nodes (e.g., IP addresses, DNS
hostnames) and assig unique identifiers to all the nodes explicitly to communicate with
one another.

Process Migration Technologies. Process migration [MDP+00] is the ability to transfer
a process from one machine to another. It is a useful facility in distributed environments,
and its potential benefits include adaptive load balancing and fault resilience by mi-
grating processes running on faulty hosts. Operating systems and middleware systems
that support process migration include Accent [RR81], MOSIX [BL98], Sprite [OCD+88],
V [Che88], and Zap [OSSN02]. Added to process migration, systems that support mi-
gration of virtual machines have been developed recently (e.g, Xen [CFH+05], VMo-
tion [NLH05], Quasar [OOY05]).

These systems suffer from several drawbacks. First, these systems face difficulties
in load balancing like AMPI. Appropriately controlling the number of processes that
maximizes performance is difficult. Second, the implementation of inter-process com-
munication is inefficient. In most of the systems, IPC is typically handled by forwarding
requests to a home node on which the process originated. Although some systems (e.g.,
Zap) support persistent communication over mobile processes without leaving behind
any residual state after migration, these systems cannot migrate both end-points of a
connection simultaneously [SN02].

1.4 Our Approach and Contributions

Our basic approach to supporting adaptive parallelism is based on a traditional resource-
virtualization methodology in computer science — abstracting physical resources into a
large, fixed number of virtual resources as viewed by users. Our middleware systems
map virtual resources to physical resources in the following manner (See Figure 1.1):

• The systems initially create a larger number of virtual resources than physical re-
sources, and map one or more virtual resources to a single physical resource.

• The systems change the mapping dynamically, adapting to dynamic changes of
physical resources.

More specifically, we designed and implemented two middleware systems that virtu-
alize node names used for specifing message destinations and processor units. The system
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Figure 1.1: Resource-virtualization approach to supporting adaptive parallelism. vi and
pi denote a virtual and physical resource respectively. The number of virtual resources
n is larger than the number of physical resources m. A fixed virtual resources is viewed
although p2 is removed.

Table 1.1: Our middleware systems for supporting adaptive parallelism
Phoenix Virtual Multiprocessor

virtualized resources node names processor units
system overview message passing library virtual machine monitor

programmability strong strong
criteria scalability strong weak

usability fair strong

virtualizing node names is Phoenix, a message passing library, and the system virtualizing
processors is Virtual Multiprocessor, which is based on classic operating system concept of
a virtual machine monitor (VMM) [Gol74] (See Table 1.1).

We describe contributions we made through explanation of an overview of the Phoenix
library and Virtual Multiprocessor. Our contributions relevant to the Phoenix library are
as follows:

• We implemented the Phoenix library, which supports adaptive parallelism [TKEY03].
It is based on the Phoenix programming model that subsumes regular message
passing models (e.g., MPI) and supports general-purpose applications. In contrast
to traditional message passing systems like MPI, the model provides a collection of
virtual node names that programmers dynamically allocates to or de-allocates from
processes. With this dynamic allocation of virtual node names, the library supports
nodes joining and leaving computation at any time.

This approach completely differs from SIMD where there are as many threads of
control as the number of virtual node names (e.g., AMPI). Virtual node names in
Phoenix are just names given to user processes as a way for specifying message
destinations. Since each process only has as many threads of control as explicitly
created (usually one), Phoenix enhances scalable, efficient and flexible load balanc-
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ing.

The Phoenix library is designed for wide-area networks (WANs), of which config-
urations (e.g., firewalls, DHCP, network address translation: NAT) often restrict
communication among processes. To allow applications to be easily deployed un-
der WANs, the library supports message routing between nodes not directly reach-
able due to firewalls and/or NATs.

We evaluated the performance of the Phoenix library using several benchmark pro-
grams, including a parallel ray-tracing program based on Pov-Ray [Pov] and Inte-
ger Sort in NAS Parallel Benchmark suite [NASa]. Experimental results indicated
applications with a small task migration cost can quickly take advantage of dynam-
ically joining or leaving resources. The parallel ray-tracing that distributes work-
loads by a divide-and-conquer algorithm achieved a good speedup with a large
number of nodes across multiple LANs (about 78 times speedup using 104 CPUs
across three LANs).

• To improve the scalability of Phoenix, we devised several techniques for improv-
ing the performance of the routing algorithm [KTY04]. These techniques include
elimination of redundant transmission of routing update messages. In addition,
we extended Phoenix for support of resource discovery, facilitating ease of configu-
ration that allows nodes without static names (e.g., DHCP clients) to participate in
computation without specific efforts.

We measured the performance of the routing algorithm using 400 nodes in three
LANs. The experimental results showed the elapsed time of routing table construc-
tion by our algorithm is only about twice as long as that of off-line route calculation.

• To demonstrate the feasibility of Phoenix, we implemented Virtual Private Grid
(VPG), a command shell for easily and efficiently accessing hundreds of remote
machines spread over WANs.

VPG allows users to submit jobs to their remote machines with facilities, such as
input/output redirection and network pipes, over remote machines. In addition,
VPG allows users to easily access their machines behind firewalls and NATs if
routes to the target machines exist. Moreover, it tolerates dynamic changes of avail-
able machines.

While the original implementation of VPG constructs a self-stabilizing spanning
tree to support dynamic addition and removal of machines [KTY02, KTY03], the
implementation with the Phoenix library tolerates such changes with dynamic rout-
ing table construction. We ran VPG on about 100 nodes (270 CPUs) and showed its
high usability.

Our contributions relevant to Virtual Multiprocessor are as follows:
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• We designed and implemented Virtual Multiprocessor [KOY05, KOY06]. It virtual-
izes a shared-memory multi-processor machine on a commodity cluster to facilitate
porting of parallel applications as well as operating systems for shared-memory
multi-processor machines with no or little modification to the code.

We built a virtual eight-way multi-processor machine on eight physical machines,
with Linux installed. We ran parallel, coarse-grained tasks on the virtual machine.
The experimental results demonstrated the feasibility of our approach.

• We extended Virtual Multiprocessor for support of adaptive parallelism. More
specifically, we implemented a facility that provides a fixed number of processors
even if physical machines are added and/or removed dynamically. It allows paral-
lel applications to adapt to dynamic changes with no modification to their code.

1.5 Structure of Thesis

The thesis is structured as follows. In Chapter 2, we introduce the basic concepts of
Phoenix, a message passing library for accommodating computational grids. We de-
scribe its APIs and performance evaluation. In Chapter 3, we explain the communication
subsystem of the Phoenix in detail. We describe several optimization techniques devised
for routing table construction and resource discovery. In Chapter 4, we present Virtual
Private Grid, a command shell for utilizing hundreds of remote computers efficiently.
This command shell is implemented with the Phoenix library. In Chapter 5, we explain
the design, implementation, and evaluation of Virtual Multiprocessor, a virtual machine
monitor for providing a single system image. In Chapter 6, we conclude with general
discussions on future work.
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Chapter 2

Phoenix: A Grid-Enabled Message
Passing Library

Overview

This chapter presents the Phoenix library for accommodating dynamically joining and/or
leaving resources. In contrast to existing parallel libraries based on message passing
models (e.g., MPI), the Phoenix library has two distinguishing features. First, the li-
brary is based on the Phoenix programming model [TKEY03]. The model provides a
large and fixed virtual node name space of which elements are used for specifying message
destination. By mapping virtual node names to processes dynamically, a programmer
easily and efficiently distribute workloads over processes that joins and leaves compu-
tation. Second, the library supports message routing between nodes not directly reach-
able due to firewalls and/or NAT. We evaluated the performance of the Phoenix library
using several benchmark programs, including a parallel ray-tracing program based on
Pov-Ray [Pov] and Integer Sort in NAS Parallel Benchmark suite [NASa]. Experimen-
tal results showed the parallel ray-tracing with divide-and-conquer algorithm achieved
a good speedup with a large number of nodes across multiple LANs (about 78 times
speedup using 104 CPUs across three LANs).

2.1 Introduction

Computational grids are becoming increasingly important infrastructures for high per-
formance parallel computing. Aggregation of a large number of (e.g., > 100) processors
enables a wide variety of applications, such as scientific applications, to tackle large-scale
problems.
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Although a message passing model is a dominant programming model for computa-
tional grids, message passing libraries such as MPI suffer from the following drawbacks.
First, the message passing libraries lack a suitable programming model for efficiently uti-
lizing non-dedicated resources. Since most of resources in grids are shared by multiple
users, the quality as well as quantity of the resources available to an application changes
constantly. Although it becomes important for parallel programs to adapt to such dy-
namic changes, writing adaptive parallel programs with traditional message passing li-
braries requires large efforts. Second problem is that administrative policies often restrict
communication between nodes. For example, a machine behind a firewall or NAT can-
not accept incoming connections from outside the subnet. If nodes outside the subnet
attempts to send messages to the inside, they need to somehow forward messages via
bidirectional connections (e.g., TCP connections) established by machines inside the fire-
wall or NAT. As a result, many implementations of message passing libraries that assume
direct all-to-all communication do not work correctly across multiple LANs.

To address these two problems, we implemented the Phoenix message passing li-
brary. In contrast to existing parallel libraries based on message passing models (e.g.,
MPI), the Phoenix library has two distinguishing features. First, the library is based on
the Phoenix programming model [TKEY03]. The model provides a large and fixed virtual
node name space of which elements are used for specifying message destination. Basically,
an application distributes its data structures over a large number of virtual processors
rather than over physical processors (as MPI programs do). By mapping virtual node
names to processes dynamically, the application easily and efficiently distribute work-
loads over processes that joins and leaves computation constantly. Second, the Phoenix
library allows applications to be easily deployed under WANs, of which network config-
urations (e.g., firewalls, DHCP, NAT) often restricts communication among processes. It
supports message routing between nodes not directly reachable due to firewalls and/or
NAT.

We evaluated its performance using several benchmark programs, including a paral-
lel ray-tracing program based on Pov-Ray [Pov] and Integer Sort in NAS Parallel Bench-
mark suite [NASa]. Experimental results indicate applications that have a small task mi-
gration cost can quickly take advantage of dynamically joining/leaving resources. The
parallel ray-tracing that uses a divide-and-conquer algorithm achieved a good speedup
with a large number of nodes across multiple LANs (about 78 times speedup using 104
CPUs across three LANs).

The remainder of this chapter is organized as follows. Section 2.2 presents the Phoenix
programming model. We describes its basic concepts, APIs and several programming
examples. Section 2.3 describes the implementation of the communication mechanism of
the library. Section 2.4 presents performance measurements. Section 2.5 discusses related
work. The final section summarizes the chapter.
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Figure 2.1: An example of message delivery in the Phoenix model

2.2 Phoenix Programming Model

2.2.1 Basic Concepts

Like traditional message passing models, Phoenix provides an application with a flat
and per application node name space, which is a range of integers, say [0, . . . , L). A
node name specifies a message destination. Unlike regular message passing, L can be
much larger than the number of participating processes and must be constant regardless
of it. Given L, we call the space [0, . . . , L) the virtual node name space of the application.
Since the number of participating processes may not match L, each process assumes, or
is responsible for, a set of virtual node names.

This virtual node name space has two characteristics to efficiently support parallel
applications that change the number of participating processes at runtime. First, given
a message destined for a virtual node, the runtime system routes the message to some
process that currently assumes the specified virtual node. Figure 2.1 shows an example
of message delivery. When a process sends a message to virtual node 44, the message is
delivered to another process to which virtual node is mapped. Second, Phoenix allows
the mapping between processes and virtual nodes to change at runtime. Since the entire
virtual node space nevertheless stay constant, Phoenix supports parallel applications that
change the number of participating processes at runtime, while providing a programmer
with a simpler view of a fixed node name space.

We comment on how L can be chosen. L can be chosen for an application’s conve-
nience, as long as all participating processes can agree on the same value. As we explain
in Section 2.2.3, the primary purpose of virtual node names is to associate each piece of
application data with a virtual node name, so that mapping will derive data distribution.
So a reasonable choice is often determined by the size of the application data to be dis-
tributed over processes. For example, if the only distributed data structure used by the
application is a hash table with N (constant) keys, we may have L = N and associate
hash items of key x with virtual node x. For another example, Figure 2.2 illustrates how
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Figure 2.2: An example of matrix operation written in Phoenix

a program that operates a matrix is written in Phoenix. The programmer writes the ma-
trix operation by letting L be the number of the elements of the matrix by associating the
elements with virtual node names. If there are many distributed data structures of differ-
ent sizes or even unknown sizes, one can simply choose an integer much larger than any
conceivable number of data items, say 262.

As will be clear from the above description, processes participating in a Phoenix ap-
plication should cooperatively cover the entire virtual node space. More specifically,
Phoenix applications should maintain the following conditions:

• No two processes assume the same virtual node at any instant.

• There may be an instant at which no processes assumes a virtual node, but in such
cases, one must eventually appear that assumes it.

The intent is to always maintain the invariant that the entire virtual node name space is
disjointly covered by participating processes. We, however, slightly relax this condition
(the second bullet), allowing finite periods of time in which no process assumes a vir-
tual node. Messages to such a virtual node are queued until one appears that assumes it,
rather than lost, bounced, or redirected to a process in a way the programmer cannot pre-
dict. This is important for supporting applications that migrate application-level states
from one process to another, and/or applications that allow processes to permanently
leave.

2.2.2 Programming Interfaces

We describe simplified version of programming interfaces provided by the Phoenix li-
brary. These APIs are summarized in Table 2.1. The actual APIs for the C language,
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Table 2.1: Basic Phoenix APIs
Message send/receive functions:
ph send(v,m) sends message m to virtual node v

m = ph recv() receives a message destined
for assumed virtual nodes
and returns it

Virtual node name mapping functions:
ph assume vps(V ) assumes a set of virtual nodes V

ph release vps(V ) releases a set of virtual nodes V

Initialize/finalize functions:
ph initialize(p, f) initializes the Phoenix runtime

with loading messages from log file f
and listening to port p

ph add port(p) adds p to possible contact points
ph finalize(f) finalizes the Phoenix runtime

with logging messages at file f

Miscellaneous functions:
v = ph get resource name() returns a unique resource name

which is slightly more verbose, are shown in Appendix A.

Message Send/Receive Functions. ph send() sends a message to a specified virtual
node. If a destination virtual node v is mapped to some process p, the message is deliv-
ered to p. If v is not currently mapped to any processes, the message is enqueued to the
sender’s local message queue. It remains in the queue until v is mapped to some process.

ph recv() looks up caller process’ local message queue and dequeues a message
destined for any element in a set of virtual nodes mapped to the caller.

Virtual Node Name Mapping Functions. ph assume vps() and ph release vps()
change the mapping between processes and virtual nodes. When a process p assumes
new virtual nodes V , the system begins to deliver messages destined for some v in V to
p. When a node releases virtual nodes, the system stops delivering messages destined for
the virtual nodes.
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Initialize/Finalize Functions. ph add port() informs the Phoenix runtime of ports at
which the node accesses other nodes. By using this information, each node establishes
connections to construct an overlay network. A user lists such accessible ports according
to security polices as follows. If a node has only a private IP address, connections to this
node from outside its subnet will not be listed. Similarly, connections to DHCP clients
will not be listed, but those from them will. Note that this information needs not be very
precise. It does not affect correctness to add non-existing ports. Similarly, it does not
affect correctness to add connections that are actually blocked, or not to add connections
that are actually possible. In current implementation, Phoenix establishes connections
with either TCP, Secure Shell tunneling [Opeb], or Secure Socket Layer [Oped].

ph finalize() shuts down the system for temporal or permanent leave of nodes. A
node tries to leave after removing messages destined for other virtual nodes from its local
queue and sending them to its neighbors. It also tries not to receive further messages by
pretending that that no virtual nodes are reachable via the node. Note that Phoenix does
not ensure that the local queues always eventually become empty. For example, if every
node begins to leave simultaneously, it cannot necessarily make its queues empty. Thus,
in current implementation, Phoenix allows nodes to store remaining messages at a local
disk if they want.

ph initialize() initializes the system. When this function is called, the system
begins establish connections to construct an overlay network. It also begins to load mes-
sages stored by ph finalize() if necessary.

Miscellaneous Functions. ph get resource name() gets a resource name outside
a virtual node name space (e.g., resource names are in [263, 264)). Resource names are
bound to individual processes and do not change during program execution. The name
is used not for normal application messages, but for special protocols such as application
state migration protocol [TKEY03]. An Example of programs that use resource names for
migration is shown in Appendix B.

Collective Operations. Although the library provides no primitive for collective oper-
ations (e.g., broadcast, reduction), some of the collective collections can be emulated with
the combination of the unicast operations such as ph send and ph recv.

Figure 2.3 illustrates pseudo-code of an example implementation of multicast oper-
ation. Given a range of virtual nodes I = [l, u), a process assuming virtual node root
initiates multicast and delivers content to all processes assuming virtual node v ∈ I . To
deliver content to the nodes at least once, information about virtual nodes that have not
yet received content is attached to each message. When receiving a message, a process
forwards it to virtual nodes that have not yet received content according to the attached
information. Specifically, if the message indicates that virtual nodes I ′ have not yet re-
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Procedure multicast(I = [l, u), root , content):
begin

(* initiate the multicast *)
if root ∈ V then begin

send 〈[l, u), content〉 to l;
end;

(* wait until messages for all virtual nodes in I ∩ V arrive *)
R := ∅;
while R ∩ V ⊂ I ∩ V then begin

receive 〈I ′, content〉;
R := R ∪ I ′;
(* forwarded the message *)
multicast sub(I ′ \ (V ∪ R), content);

end;
end

Procedure multicast sub(I = [l, u), content):
begin

(* divide I to several (two in this figure) ranges *)
send 〈[l, (l + u)/2), content〉 to virtual node l;
send 〈[(l + u)/2), u), content〉 to virtual node (l + u)/2;

end

Figure 2.3: Pseudo code of multicast. A process that assumes virtual node root initiates
multicast, and content is delivered to all processes that assume virtual node v ∈ I at least
once. p, V , and R respectively denote a caller process, virtual nodes assumed by v, and a
set of virtual nodes attached with messages v has already received.

ceived content , the process forwards it to virtual nodes I ′ \ (V ∪ R) where V and R are
respectively a set of virtual nodes that the process assumes and a set of virtual nodes that
the process has already sent content to. We also note that processes forward messages in
parallel to reduce overall latency of multicast.

2.2.3 Writing Parallel Programs in Phoenix

The Phoenix model facilitates programming of parallel applications that support adaptive-
load balancing for high performance computing (e.g., LU factorization [ETKY04], dis-
tributed game-tree search [Kan04]) as well as distributed systems (e.g., a distrusted file
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system, massively multi-player online game system [YKaAY05]). This section describes
how programs are written in Phoenix, showing two examples: divide-and-conquer algo-
rithm and an integer sort program.

Divide-and-Conquer Algorithm. We shows how divide-and-conquer algorithm with
by random work-steal scheduling [BL97] is described in Phoenix. In the random work-
steal scheduling, each process has a task queue and executes tasks in its queue. When
its queue becomes empty, it tries to steal tasks from other nodes by sending a task-steal
request to randomly chosen node. Upon receiving the request, a process gives some tasks
in its queue to the sender.

This work-steal scheduling is implemented easily due to the disjoint-cover property
described in Section 2.2.1. Since the property implies that a message to any virtual node
is eventually delivered to some process, the application simply needs to send a task-steal
request to a randomly chosen virtual node. Even if the program does not know pro-
cesses that are currently participating in computation, requests are eventually delivered
to processes that assume destination virtual nodes.

Integer Sort. We show porting of Integer Sort in NAS Parallel Benchmark suite [NASa]
(written in MPI) to Phoenix. First, we briefly sketch an overview of the original pro-
gram written in MPI. It uses a bucket sort algorithm. Given an array of N elements,
each elements of which is in a range [0,M), it divides the range into L sub-ranges R0 =
[0,M/L), R1 = [M/L, 2M/L), . . . , RL−1 = [(L − 1)M/L,M). The set of elements in a
sub-range Ri is called a bucket i and denoted as Bi. The array is block-partitioned, and in
regular message passing code with P processors, process 0 sorts the buckets that roughly
cover the smallest N/P elements, processor 1 the buckets for next N/P elements, and so
on. Then each process collects elements that it should sort as follows:

1. First, each processor counts the number of elements in each its local bucket.

2. Next, each processor broadcasts the counts to all other processors and receives
counts from them by MPI Allreduce(). Now all processors know how many
elements are in each bucket of the entire array; it can determine which buckets each
processor should sort according to the above mentioned assignment.

3. Then, it actually distributes elements in its local buckets to appropriate processors
by calling MPI Alltoall() and MPI Alltoallv().

To re-write the above MPI program in Phoenix, we achieve block partitioning by
fixing the size of the virtual node space to the number of buckets (i.e., L). Then we
make a process that assumes virtual node i sorts elements in Bi. MPI Allreduce(),
MPI Alltoall(), and MPI Alltoallv() are essentially broadcast. In Phoenix, each
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process could accomplish broadcast by simply sending a message to each element in L.
Since it requires each node to send L messages in total, it obviously causes large overhead
if the number of processors is much smaller than L. Thus we accomplish the broadcast
as follows:

1. The sender attaches the range I = [0, L) with the message and sends it to virtual
node 0.

2. When receiving a message attached with range I = [p, q), a node removes from I
all elements that are corresponding to the assumed virtual nodes. The remaining
elements are divided into several ranges, and each range is forwarded to the least
element in the range (i.e., a message with range [p, q) is forwarded to virtual node
p).

3. Each process repeats step 2 until it receives the entire range that it assumes.

The above method can reduce the number of messages if receiving node assumes many
virtual nodes.

2.3 Implementation

This section describes an overview of the implementation of the Phoenix. In particular,
we briefly sketch the communication mechanism of the Phoenix — how the runtime sys-
tem delivers messages to destination virtual nodes. The details of the communication
mechanism are described in Chapter 3.

The implementation of the communication mechanism has two features. First, the im-
plementation is completely decentralized and self-organizing. Second, the system allows
processes to communicate with one another even if direct point-to-point communication
between some nodes is restricted for administrative and/or security policies.

To achieve the features, the system builds an overlay network among participating
processes and routes messages via the network. More specifically, the Phoenix runtime
acts as follows:

1. The runtime system tries to connect to ports specified by ph add port. Connec-
tions that cannot be established are retried in a fixed interval. The topology of the
overlay network is not necessarily a perfect graph.

2. Along with maintaining connections, the runtime systems cooperatively construct
a routing table by exchanging routing information. Each process announces virtual
nodes it assumes, and announcements are propagated to other nodes.

Among many proposed routing table construction protocols, we currently employ
Destination-Sequenced Distance Vector routing (DSDV) algorithm [PB94] originally

32



� � � � � � �

� � � � � ���

	

 � �  �

�

  � � � �

�

 � � � �  �

�

 �  � � � �

�

 � � � � � �

�

 � � � � � �

� �

Figure 2.4: Process of message delivery: node b sends a message to virtual node 22.

proposed in the context of mobile ad-hoc networks. It was chosen because it con-
sumes a relatively small amount of memory compared to other schemes based on
distance-vector and is relatively simple to implement.

3. When the ph send function is called, the runtime forwards a message to its pre-
ferred neighbor by looking up its routing table

4. Phoenix automatically re-constructs an overlay network whenever the topology of
the underlying network changes. Whenever the nodes join/leave or physical links
become broken, machines add/remove connections to keep the network connected.

Figure 2.4 illustrates how the Phoenix runtime forward messages. Nodes in Figure 2.4
indicate physical machines. Each node’s label indicates its hostname and virtual nodes
assumed by a process running on the machine. There are two subnets X and Y . Node a,
b, and c belong to subnet X while d, e, and f belong to subnet Y . A firewall blocks restrict
communication across X and Y except communication between a and d. Because of this
restriction imposed by the firewall, an overlay network is built as indicated by the solid
lines in Figure 2.4. Suppose b sends a message to virtual node 22, which is assumed by e.
Since there is no direct connection between b and e, the message is forwarded via b, a, d
and e as indicated by the arrow in Figure 2.4.
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Table 2.2: Experimental environments
Nodes CPU Number of CPUs Interconnect

Cluster A SunBlade 1000 Cluster 750MHz 2 CPU × 16 nodes 100 Mbps Ethernet
SMP B SunFire15K SMP 900MHz 72 CPU shared memory
Cluster C SunBlade 1000 Cluster 750MHz 2 CPU × 128 nodes 100 Mbps Ethernet

2.4 Experiments

We studied performance of two applications: a parallel ray-tracing program based on
Pov-Ray [Pov] and Integer Sort in NAS Parallel Benchmark suite [NASa]. The ray-tracing
uses divide-and-conquer algorithm with random work-stealing scheduling described in
Section 2.2.3. Integer Sort is also implemented as mentioned in Section 2.2.3.

2.4.1 Performance on Static Configurations

We measured a speedup of the parallel Pov-Ray both in a single cluster (Cluster C) and
across three SMP/clusters in Table 2.2. Nodes within a cluster are connected via 100Mbps
switches. Only SSH connections are allowed across LANs. The raw TCP bandwidth
(measured by the bandwidth of a large http GET request) between two LANs is approx-
imately 100Mbps, but the actual throughput over SSH is 30-60Mbps. This is clearly a
bottleneck for many parallel programs that would scale well within a LAN. For the multi-
LANs experiments, we mix CPUs from the three systems in a constant ratio (1 : 4 : 8).
Pov-Ray draws a picture of 8000 by 250 pixels, taking approximately two hours on a
single CPU.

Figure 2.5 shows a speedup of the ray-tracing program. Pov-Ray achieved a good
speedup both on the single LAN and on the multiple LANs. The experimental results
show that random work-stealing scheduling is in fact a very communication-efficient
load balancing scheme.

We also measured performance of Integer Sort (problem class C) on a heterogeneous
Pentium III cluster consisting of 16 processors of 800 MHz and 16 processors of 1.4 GHz.
All nodes in the both clusters are connected with 100 Mbps Ethernet. We allocated virtual
nodes equally on each process (the number of elements each processor sorts is roughly
equal). Figure 2.6 shows a speedup up to 32 processors and comparison of our Phoenix
implementation to its original MPICH [MPI] version. The results indicate that the over-
head of the above broadcast mechanism was not so large compared to MPICH, and that
the broadcast mechanism can be applied to other parallel programs (e.g., LU factorization
that uses block-cyclic partitioning technique [TKEY03]).
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Figure 2.5: Speedup with fixed processors

2.4.2 Performance on Dynamic Configurations

We measured performance of the ray-tracing on Cluster C in Table 2.2 with dynamic
configurations. More specifically, we begin with a small number of nodes and add one
node at a time in a regular interval, up to 64 nodes. After running with the 64 nodes for
a while, then we remove one node at a time. A newly added node sends a join request
to a randomly chosen virtual node name. Whichever process received the request splits
its range of assuming virtual nodes into two equal ranges and gives the latter half to the
requester.

Figure 2.7 demonstrates Phoenix’s capability of dynamically adding/removing nodes.
We defined a unit progress as a line of the picture whose image has been calculated,
and measured the number of unit progresses made in each second. The graph shows
“speedup” of each second, which is the number of unit progresses made in the second,
divided by the number of progresses per second in a single node run. Also shown as
“fixed” is the speedup obtained in the fixed-resource, single LAN experiment for the
number of processors participating at that moment. The graph shows Pov-Ray takes ad-
vantage of dynamically added nodes very quickly. This is not surprising because they
use dynamic load balancing and have relatively small application-level states that need
migrate or be copied to new nodes.
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2.5 Related Work

Message Passing Systems for WANs. Although many message passing systems for
WANs have been developed so far, to our knowledge, none of existing implementation
of message passing systems are feasible for several reasons.

Firstly, since their user interfaces and mechanisms for naming are based on traditional
message passing model, they face difficulties in handling machine addition and/or re-
moval. For example, although extensions of MPI for fault tolerance [BBC+02, FD00] can
manage leave of nodes, they cannot manage join of nodes or migration of node names.
In contrast to these systems, our contribution is that we proposed the user interface that
allows flexible adjustment of join/leave of nodes.

Secondly, they do not work well under common security polices. MPICH-G [FK98,
KTF03] is a grid-enabled implementation of the MPI. MPICH-G allows a user to run MPI
applications on multiple machines, potentially of different architectures. Moreover, its
authentication mechanism enables a user to run MPI programs on resources distributed
over multiple subnets. However, it needs to modify administrative restrictions to use
MPICH-G under common security polices such as firewalls since its implementation as-
sumes that any-to-any direct communication is allowed (e.g., no connections are blocked
by firewalls or NAT). On the other hand, Phoenix automatically works around common
security polices without modifying administrative restrictions. We believe Phoenix sig-
nificantly decreases a user’s cost for utilizing remote machines and provides smooth uti-
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lization of computational resources.
MPICH-V [BBC+02] is an automatic volatility tolerant MPI based on uncoordinated

checkpoint/rollback and distributed message logging. It provides fault-tolerance as well
as communication mechanism that bypasses firewalls. Even if some of computation
nodes are inside a firewall, every node can communicate with one another. This is be-
cause all the messages between computation nodes are relayed via Memory Channels
(CMs), which are globally reachable. Whereas this mechanism is suitable for providing
fault tolerance (e.g., message logging), it is less flexible than our communication mecha-
nism for the following reasons. Firstly, CMs must be configured manually and must be
stable. Secondly, computation nodes do not communicate with each other even if they
can connect directly. In contrast to MPICH-V, Phoenix calculates forwarding routes auto-
matically by routing algorithm.

Programming Models for Accommodating Dynamic Join and Leave of Nodes. Bayani-
hun [Sar99] proposed a programming models and interfaces for volunteer computing
systems called Bulk Synchronous Parallel (BSP) model. BSP provides programmers with
familiar message passing and remote memory primitives while remaining flexible enough
to be used in dynamic environments. However, in Bayanihun, computation must be sep-
arated into a local computation phase and a global communication phase. Each task can-
not send/receive messages in a local computation phase, and messages are exchanged
only in a global communication phase. Since it requires all the tasks to be synchronized
between two phases, it is not appropriate for general-purpose applications that involve
frequent and irregular communications between nodes.

JXTA [VNRS02] is a set of generalized peer-to-peer protocols for a dynamic and de-
centralized organization of computational resources. In JXTA, each node communicates
with one another as follows. When a node wants to send a message to another node,
it first sends a query to some accessible routers, which collect routing information from
the other routers. Then, the node sends the message to an appropriate node using the
routing information obtained from the routers. JXTA allows nodes to bypass firewalls
by relaying messages to a globally reachable nodes called relay peers. Since JXTA basi-
cally does not provide a method fpr configuring routers and relay peers automatically,
it must be configured manually. As previously mentioned, such manual configuration is
not feasible for networks where nodes join and leave dynamically.

Peer-to-Peer Information Sharing Systems. Peer-to-Peer information sharing systems
such as Pastry [RD01], Tapestry [ZKJ01], Chord [SMK+01] and CAN [RFH+01] provide
a distributed shared hash table. These systems are completely decentralized and self-
organizing. It automatically adapts to arrival, departure, and failure of nodes. They
proposed efficient routing algorithms to lookup/insert items in the hash table. For ex-
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ample, Pastry assigns each nodes a unique ID. Then it routes a message to the node with
a node ID that is a numerically closest to the destination address of the message. This
algorithm notably reduces both the size of the routing table and the number of routing
table update messages.

However, their algorithms assume that every node can communicate directly with
one another and that nodes can always forward messages to appropriate nodes. Thus
they cannot work on environments where some direct connections are blocked by secu-
rity policies (e.g., firewalls).

2.6 Summary

We have described the Phoenix library, a wide-area message passing system for accom-
modating dynamically joining/leaving resources. Phoenix provides a collection of vir-
tual node names that programmers dynamically allocates to or de-allocates from pro-
cesses. With this dynamic allocation of virtual node names, the library supports nodes
joining and leaving computation at any time. In addition, Phoenix supports message
routing between nodes not directly reachable due to firewalls and/or NATs.

We evaluated the performance of the Phoenix library using several benchmark pro-
grams, including a parallel ray-tracing program based on Pov-Ray and Integer Sort in
NAS Parallel Benchmark suite. The parallel ray-tracing that distributes workloads by a
divide-and-conquer algorithm achieved a good speedup with a large number of nodes
across multiple LANs (about 78 times speedup using 104 CPUs across three LANs).

Our future work is to make Phoenix more feasible for the deployment of wide-are
applications on real network environments, including:

Efficient implementation of collective operations The Phoenix library currently provides
no primitive for collective operations; a programmer need emulate collective oper-
ations (e.g., broadcast, multicast) with combining unicast operations as mentioned
in Section 2.2.2.

The proposed mechanism for supporting collective operations by forwarding the
message multiple times at the application level is clearly inappropriate. As exist-
ing message-passing infrastructures support broadcast (e.g., MPI Alltoall), true
broadcast must be supported.

Convenient Programming Interface In current implementation, Phoenix provides only
the primitive interfaces for message passing. For example, it is too complex and
cumbersome for a user to manually deal with migration of virtual nodes and appli-
cation data structures in a deadlock-free manner [TKEY03].
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Thus, we would like to provide more convenient programming interfaces that al-
low easy and efficient implementation of parallel applications, such as a shared
object space like Linda [CG89] or divide-conquer systems like Clik-NOW [BL97].

Failure detection mechanism When Phoenix is unable to forward messages to a certain
virtual node, it queues them for an unbounded period of time. This does not seem
like a sufficient solution. Queuing many messages will induce a major overhead,
first on storage space, and then on bandwidth once the missing nodes re-join.

The usual solution in the distributed computing world (e.g., in group communica-
tion systems) is to bound the time period in which messages are queued, and after a
certain timeout, notify the application of the failure and discard the messages. The
application will be able to process these tasks by itself or send them to others.

We should note that some of future work has been carried out by other members of
our Phoenix project. Performance evaluation of other applications (e.g., LU factoriza-
tion) is described in [ETKY04]. The implementation of efficient collective operations for
WANs is described in [STC05]. A scalable fault detection mechanism is presented in
[HTC05].
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Chapter 3

Routing and Resource Discovery in
Phoenix

Overview

We describe a communication subsystem of the Phoenix message passing library. It sup-
ports (1) message routing between nodes not directly reachable due to firewalls and/or
NATs, (2) resource discovery facilitating ease of configuration that allows nodes without
static names (e.g., DHCP nodes) to participate in computation without additional work,
and (3) nodes dynamically joining/leaving computation during runtime. We argue that,
in future Grid environments, all of the above functions, not just routing across firewalls,
will become important issues of Grid-enabled message passing systems including MPI.
Unlike solutions commonly proposed by previous work on a Grid-enabled MPI, our sys-
tem employs a distributed resource discovery and routing table construction algorithm,
rather than assuming all such pieces of information are available in a static configuration
file or similar form. Experimental results using 400 nodes in three LANs indicate that our
algorithm is able to dynamically discover participating peers, connect them, and calcu-
late a routing table. The elapsed time of our algorithm is only about twice as long as that
of offline route calculation that just connects nodes based on a fully given configuration.

3.1 Introduction

A message passing model is a dominant programming model for high performance par-
allel computation involving a large number of (e.g., > 100) nodes. It may be even more so
in future multi-clusters and/or computational grids, where programmers carefully need
to optimize communication of applications. Thus it is natural for researchers on HPC to
seek a message passing library suitable for such environments.
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There have been a great deal of work with this end, most of which aim at building
“Grid-enabled” MPI libraries [FK98, KHB+99, ITKT00, BBC+02, AM03]. A primary de-
sign/implementation issue is how to deal with the fact that nodes may not be directly
reachable in the underlying communication layer (e.g., TCP). This issue arises due to IP
filtering as well as NAT/DHCP.

As far as we know, all existing systems essentially let a user specify the routes offline
(e.g., in a configuration file). Most typically, a configuration file groups nodes and spec-
ifies a gateway node (either for each group or for the entire nodes) via which messages
between directly unreachable nodes are routed. This solution is simple to implement and
feasible for a small number of nodes distributed over a couple of clusters. The solution,
however, must be generalized and extended in several ways for future environments, as
discussed below.

One obvious issue is a scalability limitation due to gateways. A user should be able to
specify as many gateways as permitted by a network administrator, rather than just one
for each cluster. More important, having more resources spread over the Grid implies
that resource selections tend to become more dynamic and adaptive. It will thus quickly
become impractical for the user to maintain a complete resource description, which works
for all possible set of resources that might be selected. Note that in the Grid setting, a
complete description not only involves a list of resources, but also specifies routing (i.e.,
connectivity between nodes). Nodes that have dynamic IP addresses are more trouble-
some. Though they are able to participate in computation with a suitable resource man-
ager support, it would be difficult for the MPI user even to specify such nodes in what
would be called a “complete” configuration file.

All in all, neither routing nor the names of participating nodes should be completely
specified by the user; communication libraries must learn them whatever resources are
selected by the scheduler.

To this end, we have developed the Phoenix message passing library. This chapter
describes design and implementation of its enhanced routing and peer discovery facility
only briefly addressed in Chapter 2. Specifically, it allows nodes to connect each other
without initially knowing all the peer names participating in computation. Then the
nodes build a routing table according to the resulting graph of connections. The initial
knowledge of the nodes is only the names of a small (arbitrary) number of “hub” nodes,
through which nodes learn names of other participating nodes and bootstrap the entire
connection graph.

The mechanism is implemented in a fully dynamic fashion, in that it allows nodes
to join and leave at an arbitrary point of execution. Such a fully dynamic peer dis-
covery and routing table construction is mandatory if a parallel programming model
supports dynamic processes (e.g., Phoenix, Dyn-MPI [WLNL03], PVM [GBD+94], and
MPI2 [Mes03]). In addition, the mechanism is a natural facility even if the model, per
se, only supports static processes. This is because, as we have mentioned, dynamic and
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adaptive resource schedulers, and/or even a very primitive form of fault tolerance (e.g.,
a mechanism that avoids initially dead nodes) makes selected resources not completely
predictable by a user. Migration of MPI jobs and fault-tolerant MPIs [FD00, BNC+01,
BBC+02] also need such mechanism since it enables nodes and networks to change dy-
namically.

Technically, our system consists of routing table construction and resource discov-
ery. Thus, we borrowed basic ideas from a body of work on routing [RT99] and resource
discovery [HBLL99, KPV01, KP02, AD03]. Specifically, our routing table construction
algorithm is based on the Destination Sequenced Distance Vector (DSDV) routing al-
gorithm [PB94], originally proposed in the context of mobile ad-hoc network routing.
Our experiments indicated, however, that naively adopting the algorithm for our pur-
pose does not scale because, in our setting, the connection graph is dense and/or the
connection graph sometimes changes very rapidly (e.g., at start up). By carefully en-
gineering propagation and scheduling of routing events, we dramatically improved its
performance. We also show this is achieved even when nodes initially know only a small
number of other processes. That is, resource discovery does not affect the performance.

The remainder of this chapter is organized as follows. Section 3.2 reviews existing
Grid-enabled MPIs. Section 3.3 describes our problem setting. Section 3.4 gives the de-
tails of the routing and resource discovery algorithm. Section 3.5 presents experimental
results. Section 3.6 discusses related work. The final section summarizes the chapter.

3.2 Grid-Enabled MPIs

3.2.1 Requirements

We summarize requirements on Grid-enabled communication systems , especially focus-
ing on MPI. First, message forwarding routes must be shortest. For high performance
communication, nodes must be able to transmit messages directly if possible. Second,
they must work on various network topologies where many restrictions are imposed.
Third, in many contexts, it is highly desirable for them to allow dynamic changes of the
connection topology. This is true even if the computation model only allows a static
number of processes. For example, many fault tolerant MPIs such as MPI/FT [BNC+01]
have been developed. In these systems, crashed processes may be restarted on differ-
ent machines. There are also systems that balance system loads adaptively (e.g., Dyn-
MPI [WLNL03], dynamic load balancing on LAM/MPI [MSK03]). These systems dy-
namically change the allocation of MPI ranks or the number of nodes that participate in
computation. To support such systems, the routing mechanism must adapt to dynamic
changes of nodes and connections.
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3.2.2 Existing Systems

MPICH-V [BBC+02] is an automatic volatility tolerant MPI based on uncoordinated check-
point/rollback and distributed message logging. It provides fault-tolerance as well as a
communication mechanism that enables nodes to communicate across firewalls. To by-
pass firewalls, MPICH-V prepares Channel Memories (CMs), which must be globally
reachable from all the nodes. The system enables nodes to communicate with one an-
other by relaying messages via CMs. This indirect communication of MPICH-V has
three drawbacks. First, every node always needs to communicate with each other via
CMs even if they can communicate with each other directly. Second, the network topol-
ogy that MPICH-V supports is limited. It requires as least one globally reachable node in
networks. Third, it cannot tolerate dynamic changes on network topology since CMs are
assumed to be fixed.

Stampi [ITKT00] and PACX-MPI [GRBK98] provide unified MPI interfaces for hetero-
geneous networks. They can exploit multiple clusters that may belong to different pri-
vate networks. Stampi creates a message routing process that relays messages between
them when machines in different clusters cannot communicate directly with each other
through IP. PACK-MPI provides a similar facility by having proxies that handle inter-
cluster communication. They cannot tolerate dynamic changes to connection topologies.
In addition, they support only limited connection topologies; routing processes/proxies
must be globally reachable.

MPICH/MADIII [AM03] offers a forwarding mechanism for inter-cluster communi-
cation. It automatically calculates forwarding routes for every machine using manually
given information about the entire network. Since the forwarding routes are calculated
statically at start up, MPICH/MADIII cannot tolerate dynamic changes of the connection
topology.

3.3 Problem Setting

We assume the system assigns each participating node one or more application level names,
or simply logical names. Node rank in MPI is an example of a logical name. The program-
mer uses logical names to specify message destinations. In contrast, a physical name refers
to a name used to communicate in the underlying communication layer. For example, if
we build MPI on top of TCP, a physical name is a pair 〈hostname, port number〉. The basic
job of the communication library is to route messages with their destinations specified by
logical names to the right destination node, even though it may not be directly reachable
in the underlying communication layer.

As we mentioned in the introduction, we generalize the problem as follows. First,
the communication library allows network connectivity to change at runtime. It changes
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routing accordingly. Second, it allows nodes to be added at runtime without initially
knowing their (either physical or logical) names. When a new node joins a computation,
the new node must know, of course, at least one physical name of an already participating
node. On the other hand, any participating node does not have to know the new node
in advance. Nodes may also be deleted at runtime. As mentioned previously, they are
slight generalization of a minimally dynamic process model where resources are selected
by the scheduler at a job start up depending on the availability and loads of resources.

Although our system has been implemented in the context of Phoenix message pass-
ing model [TKEY03], none of the algorithms described in this chapter depend on the
specifics of Phoenix model.

3.4 Routing and Resource Discovery Algorithm

3.4.1 Overview

We briefly sketch the behaviour of our algorithm using an example network illustrated
in Figure 3.1. It consists of two subnets X and Y . Node a and e are gateways of X and
Y respectively, and they have fixed names. Node b, c, and d are configured with DHCP
in subnet X . Node f and g are also DHCP clients in subnet Y . They do not have any
static names. Firewalls are installed on both subnets. They block connections between
non-gateways belonging to different subnets. The only allowed connection across the
firewalls is SSH [Opeb] connection (port 22) between a and e.

The system roughly works as follows.

Step 1: Initial setup A set of processes bring up on resources chosen by a scheduler or a
user. Each process knows physical names of some (not necessarily all) participating
nodes. Let us assume in Figure 3.1, nodes only know the physical names of the two
gateway nodes. This is a small piece of configuration information comfortably kept
in each node or even passed upon command submission. The system currently
supports three underlying communication protocols: direct TCP, OpenSSL [Oped],
and SSH tunneling. SSH is useful in many cases where the only inbound connection
allowed is SSH port (22).

Step 2: Overlay network construction Each node tries to establish connections to ma-
chines it knows. In Figure 3.1, the DHCP clients will succeed in establishing direct
TCP connections to one of the gateways. The gateways also establish SSH connec-
tions between them.

Step 3: Resource discovery and routing table construction Each node constructs its rout-
ing table by exchanging messages on the overlay network. By looking up the rout-
ing table, each node determines which neighbor a message should be transmitted
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Figure 3.1: Process of route calculation. Nodes and solid lines respectively indicate ma-
chines and established connections between machines. (a) shows initial configurations.
(b) shows an overlay network constructed only by the initial configurations. (c) shows
an overlay network completely constructed when the system stabilizes. (d) shows a re-
constructed network when h is added to the network.

46



to. On the receipt of messages destined for other nodes, a node also looks up the
table to determine a forwarding route.

Each node also learns new machines it initially does not know from messages it
receives. When a node finds physical names it does not know, it retraces step 2 and
step 3. The steps are repeated until each node knows all the participating machines
and all the possible connections are established. This mechanism can minimize the
number of hops each message travels. For example, in Figure 3.1, the DHCP clients
in the same subnet can eventually communicate with each other directly even if
they initially do not know each other.

The system guarantees that each node eventually knows all the available machines
if the graph is connected after the first execution of step 2.

Note that step 2 and step 3 may interleave. Thus the system can route messages be-
fore the routing table is fully stabilized. Whenever the connection topology changes, the
overlay network and the routing tables are updated. For example, suppose machine h
is added to subnet Y , and h initially knows e. In this case, the overlay network is re-
constructed and finally h becomes directly connected to e, f , and g.

3.4.2 Destination-Sequenced Distance-Vector Routing

Our routing algorithm is based on Destination-Sequenced Distance-Vector Routing (DSDV)
algorithm [PB94] proposed for mobile ad-hoc networks. It gives us a good starting point
because it adapts to changes of the connection topology and consumes a relatively small
amount of memory compared to other schemes based on distance-vector. In DSDV, each
routing table, at each node, lists all available destinations. Specifically, the entry for des-
tination node v consists of:

• fwd : a node to which messages destined for v are forwarded.

• nhops : the number of hops of the route from the local node to destination v.

• seq : a sequence number that implies the freshness of the entry, as will be explained
later.

Hereafter Ru[v] is used to denote the entry for destination node v in u’s routing table.
Ru[v].fwd , Ru[v].seq , and Ru[v].seq are used to describe fwd , nhops , and seq of Ru[v] re-
spectively.

To maintain the consistency of the routing table in dynamically varying topology,
each node transmits (a subset of) its routing table to update its neighbor’s routing table.
Each node basically broadcasts when its routing table is updated by significant new in-
formation (e.g., discovery of a shorter path, break of a connection). On the receipt of a
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message, each node updates its routing table by the following rules: routes with larger
sequence numbers are always preferred as the basis for making forwarding decisions;
and of the path with the same sequence number, shorter routes are chosen.

To calculate the shortest paths without any loops, the sequence number is maintained
in such a way that the most recently updated entry has the largest sequence number
among all nodes. For example, when a node finds a broken link, the entries of which
route depends on the broken link become obsolete. In such a case, the node broadcasts
these entries with incrementing their sequence number to update the other nodes’ rout-
ing tables correctly.

Note that the receipt of update messages may cause another transmission of update
messages to make the routing table of all the nodes consistent. The message transmission
is repeated until all the nodes in the network have received a copy of the update message
with a corresponding metric.

3.4.3 Resource Discovery Algorithm

As described in Section 3.4.1, each node needs to discover available machines that it
does not know in the beginning. Each node needs to collect information about available
machines by exchanging messages with other nodes.

The node discovery is performed as follows. Initially each node only knows a part of
machines participating in the application. When a node transmits a routing table message
to update u’s entry, it attaches u’s physical name. On the receipt of this message, the
receiver learns u’s physical name, and tries to establish a connection to it.

3.4.4 Performance of the Naive DSDV

As we will show in section 3.5, performance of a naively implemented DSDV is just poor
when the number of nodes becomes large (> 50). We investigated this and found there
are two primary reasons.

• Sending routing update messages to every neighbor result in many useless or re-
dundant messages when the network is dense, as is usually the case in our problem
setting.

• When the application brings up or when many nodes are simultaneously added to
the application, the set of known node names as well as the topology of the graph
change very rapidly. Naively running DSDV update protocol per each small change
in the graph turns out to be a very inefficient way of calculating the final routing
table, as we will see below.

For the first bullet, the topology of the overlay network in our problem setting is
typically dense since many nodes can, and would like to, directly communicate with
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each another via the underlying communication layer. For example, the topology of the
network consisting of multiple clusters is usually a collection of cliques. These dense
networks cause a large number of redundant message transmissions. Suppose that one
node updates its routing table. The minimum number of messages required to update
all the routing tables is N − 1 where N is the current number of nodes. This is because a
message must be transmitted to each node at least once to deliver new information. On
the other hand, the number of the messages that are transmitted until the naive DSDV
stabilizes is O(E) where E is the number of edges. This is because DSDV propagates
update messages via all the edges. In dense networks, E is much larger than N (e.g.,
E = Ω(N2)). Thus the number of exchanged messages becomes large compared to the
minimum N − 1. We should point out this will not be a big issue in the context of mo-
bile ad-hoc networks because the networks are typically sparse; neighbors of a node are
limited to those physically close to the node. In contrast, connections are established
between every allowed pairs of nodes in our problem setting.

For the second bullet, consider what will happen when many nodes are simultane-
ously added to the network (or when an application brings up). When a node accepts a
connection from a new node or receives an update from a neighbor, it updates its routing
table and sends update messages to neighbors. In general, this must be done promptly
to propagate the new piece of information as fast as possible. When many nodes join
an application almost simultaneously, however, updating neighbor nodes too eagerly re-
sult in many small messages that could have been merged when we know there will be
subsequent updates.

3.4.5 Optimizations

We optimize the naive DSDV based on the two observations discussed above.

Eliminating Redundant Updates. Suppose that node u transmits an update messages
to its neighbors Nu. The algorithm guarantees that nodes in Nu do not propagate the
update message to each other, as they get it from u anyways.

This is implemented simply by adding two fields trans and rcpt , to each entry of the
routing table. Ru[v].trans is the collection of nodes to which u has already transmitted
Ru[v], whereas Ru[v].rcpt the collection of nodes that received or will soon receive the
entry corresponding to Ru[v] from some node 1.

Thus w ∈ Ru[v].trans∪Ru[v].rcpt indicates that u does not need to transmit a message
to w; w has already received Ru[v] or will soon receive Ru[v]. Node u must transmit Ru[v]
to u’s neighbor w only if w does not belong to Ru[v].trans ∪ Ru[v].rcpt .

1To identify each node uniquely, we basically use an IP address. When IP addresses are not unique among
nodes, random bits are added to each node’s identifier.
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a

Figure 3.2: An example of elimination of redundant message transmission

Fields trans and rcpt are maintained as follows. When u sends Ru[v] to a set of nodes
V , V is added to Ru[v].trans . When w receives an entry e from u, Rw[v] is updated
as follows. If either Rw[v].fwd , Rw[v].nhops , or Rw[v].seq is updated by this message,
Rw[v].trans becomes an empty set and Rw[v].rcpt becomes a singleton that only contains
sender u. Otherwise sender u and e.trans are added to both Rw[v].trans and Rw[v].rcpt .

Figure 3.2 shows an example of the elimination of redundant message transmission.
Let us consider entries for destination v. Suppose that for all u both Ru[v].trans and
Ru[v].rcpt are initially empty. Then a broadcasts Ra[v], which is freshest among all the
nodes. As the arrows in Figure 3.2 indicate, only a needs to broadcast update messages
to make all the nodes’ entry fresh.

Merging Clustered Updates. Our second optimization tries to merge messages for many
routing table updates that occur almost simultaneously. Simply buffering messages for a
fixed period would sacrifice performance when an update occurs in isolation. Thus we
address the problem by the following scheduling policy of events related to routing.

1. If a node knows another node but does not have a connection to it, it connects to
the node with the highest priority.

2. If a node connects to all its acquaintance, but has some unprocessed messages up-
dating its local routing table, it processes these messages.

3. Otherwise, it sends update messages to its neighbors.

In short, we give priorities to routing-related events in the following order. (1) making
connections, (2) updating the local table, and (3) propagating updates to the neighbors’
tables. Here, all updates that have not been propagated to a neighbor are merged into a
single message.
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Table 3.1: Experimental environments
CPU # of CPUs

subnet A UltraSPARCIII 750MHz 2CPU x 112 nodes
subnet B Xeon 2.40GHz 2CPU x 64 nodes
subnet C PentiumIII 800MHz 2CPU x 16 nodes

PentiumIII 1.4GHz 1CPU x 16 nodes

3.5 Experiments

Table 3.1 summarizes the experimental environment. Machines in the same subnet can
communicate directly with each other. The inter-subnet communication is restricted:
each subnet has a gateway, which is the only machine that can accept inbound connec-
tions, at SSH port (22).

First, we measured the elapsed time of routing table construction without node dis-
covery. That is, we give all node names to each node offline (via a configuration file). We
conducted the experiment on a single subnet (A) and the three subnets.

To begin with, let us confirm that the naive DSDV performs poorly, as shown in Fig-
ure 3.3 and Figure 3.4. It does not scale at all when the number of processes become > 50.
Thus we removed it from further investigation. Our interest is the price we pay for sup-
porting the general, fully dynamic process model. So we compared our algorithm with
two “easier” cases where processes are assumed to be static, or the process configuration
is completely given offline.

Figure 3.5 shows the result. The upper graph is for the single subnet experiment
and the lower graph for the three subnets case. For the latter, we proportionally mixed
CPUs from the three subnets 2. The curve labeled “offline” is the simplest and the easi-
est setting. A configuration file describes a complete process configuration (which pro-
cess should connect to which) and processes simply follow it. Thus, the elapsed time is
mostly of just establishing connections. The curve labeled “master” assumes processes
are static and their names known to every process, but connectivities between nodes are
not known. It also assumes there is a master node and every process knows the path to
the master node. Under this assumption, each process tries to connect to all other pro-
cesses, learns its neighbors, and sends their names to the master. The master collects the
messages and then calculates the all-to-all shortest paths. It finally sends the result to all
processors.

When the number of processors is less than 100, all three cases have the approxi-
mately equal elapsed time. That is, our dynamic routing table construction has almost
no overhead. Up to 400 processors, the elapsed time of our algorithm is within a factor

2UltraSPARCIII 750MHz : Xeon 2.40GHz : PentiumIII 800MHz : PentiumIII 1.4GHz = 14 : 8 : 2 : 1
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Figure 3.3: Number of transmitted messages of Naive DSDV compared with our opti-
mized DSDV in a single subnet (upper) and three subnets (lower)
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of 2.3 of the offline case, and 1.5 of the master case.
Recall that our routing algorithm is fully dynamic, which means message send/receive

can take place before the routing table is completely stabilized. Figure 3.6 gives us a sense
of how much of the routes become “ready” at which point of calculation. The upper
graph shows how much node pairs out of all the possible N2 pairs are reachable at each
moment (either directly or indirectly). All nodes are in a single cluster. As we can see,
although it took 14 seconds to completely stabilize the routing table, more than 90% of
node pairs become reachable at 10 second. The lower graph shows the average number
of hops between reachable pairs at each moment. It should converge to one, and we al-
most get there at 10 second. In summary, it is fair to say most of the work has been done
much earlier than the completion of the routing table construction.

Figure 3.7 shows how routes become ready on a dynamically changing network. In
this experiment, we began with 224 processes and killed a half of the processes after 30
seconds have passed. Then after another 5 seconds have passed, we restarted the killed
112 processes. The result shows that the routing tables can be updated rapidly according
to the addition/deletion of processes.

Finally, Figure 3.8 compares cases with or without node discovery. The result shows
that the overhead of node discovery is negligible.

3.6 Related Work

Peer-to-Peer Information Sharing Systems. Peer-to-Peer information sharing systems
such as Pastry [RD01], Tapestry [ZKJ01], Chord [SMK+01] and CAN [RFH+01] provide
a distributed shared hash table. These systems are completely decentralized and self-
organizing: each node automatically adapts to arrival, departure, and failure of nodes.
They proposed efficient routing algorithms for looking up and inserting items in the hash
table. For example, Pastry assigns each node a unique ID. Then it routes a message to
the node with a node ID that is a numerically closest to the destination address of the
message. This algorithm notably reduces the size of the routing table and the number of
routing table update messages.

However, their algorithms assume that every node can communicate directly with
one another and that nodes can always forward messages to appropriate nodes. Thus
they cannot work on environments where direct communication may be prohibited by
security policies (e.g., firewalls). In addition, these systems require forwarding messages
via multiple nodes (e.g., in Pastry, O(log N) hops where N is the number of nodes in its
network) even if nodes can communicate with one another directly. Since this unneces-
sary forwarding degrades communication performance heavily, their algorithms are not
feasible for high-performance computing that involves dense communication.
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Resource Discovery. A resource discovery problem introduced by Harchol-Balter, Leighton
and Lewin in [HBLL99] is relevant for our algorithm. The resource discovery problem
is to efficiently discover all the nodes that currently exist in the systems when each node
initially knows only a small number of nodes. Though several algorithms for the re-
source discovery problems are proposed [KPV01, KP02, AD03], they do not suffice for
our system. This is because they focus on only discovering node names and do not care
routing.

3.7 Summary

We have described a communication subsystem for message passing systems for the
Grid. It provides routing and resource discovery that tolerate dynamic changes of con-
nection topologies. We evaluated the performance of the algorithm by running the sys-
tem on 400 nodes in three LANs. When the number of processors is less than 100, our dy-
namic routing table construction adds almost no overhead to the case where the network
connectivity is completely given offline. In all cases, the elapsed time of our algorithm is
within a factor of 2.3 of the offline case. Furthermore, 90% of node pairs become reach-
able much earlier than completion and messages can be routed when the routing table is
being constructed.

Improvement of scalability We plan to improve the scalability of Phoenix to utilize emerg-
ing computational grids approaching thousands of nodes (e.g., Grid’5000 project [CDD+05]).
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Possible optimization techniques include compaction of a routing table, reduction
of the number of routing update messages, and efficient connection management
that considers underlying physical networks. Although much work on optimiza-
tion techniques of routing algorithms has been carried out both in theoretical and
practical research fields (e.g., compact routing [TZ01]), most of these algorithms
have not yet been applied to computational grids. Further studies must to be con-
ducted to reason that the algorithms can be applied to Phoenix.

Support of reliable data transmission The current implementation assumes that no mes-
sage is lost by link failure and that links are never broken while the system is send-
ing messages. Obviously, this assumption is not feasible for wide-area networks
where link failure occurs frequently.

In addition, the current implementation does not guarantee that the order of deliv-
ered messages is preserved when the topology of networks changes dynamically.

To solve the above limitations, we plan to implement a message re-transmission
mechanism on the application layer.
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Chapter 4

Virtual Private Grid: A Command
Shell for Utilizing Hundreds of
Machines Efficiently

Overview

We describe design and implementation of Virtual Private Grid (VPG), a shell that uti-
lizes many machines distributed over multiple subnets easily and efficiently. VPG works
around common security policies (e.g., firewall, private IP, DHCP) that restrict com-
munication between machines and even break uniqueness of IP addresses. VPG pro-
vides the following functions. (1) A unique nickname to each machine that does not
depend on a DNS name or a fixed IP address. (2) Job submissions to any nicknamed
machine. (3) Redirections from/to a file on any nicknamed machine. (4) Network pipes
between commands executed on any nicknamed machine. We present two ways for im-
plementing the communication mechanism of VPG on dynamic environments. The first
method is based on the Phoenix library, and the second method on construction of self-
stabilizing spanning tree. We ran VPG on about 100 nodes (270 CPUs) to demonstrate
its feasibility. We measured a turn around time of a small job submission with VPG
and other tools: rsh, SSH, and globus-job-run (a remote job submission tool provided by
Globus []). The experimental result shows that VPG can submit a job faster than SSH and
globus-job-run since VPG performs authentication only when it constructs a tree.
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4.1 Introduction

Today, computer users commonly have an access to hundreds of machines across multi-
ple subnets and geographically distributed places. In such environments, they can poten-
tially archive high performance for certain types of parallel applications (e.g., parameter
sweep applications). Job submission tools, such as Condor [FTF+01] and Portable Batch
System (PBS) [Opea], enable a user to submit many jobs to clusters/supercomputers in a
local network.

However, when available machines are distributed over multiple subnets, it becomes
difficult and cumbersome to utilize them with these tools. We explain this problem below.

Machines distributed over multiple subnets are usually managed by different admin-
istrators, who impose various restrictions on their use for the sake of security and ease of
administration. Examples of these restrictions are,

Firewall A firewall protects local machines from malicious attacks by restricting accesses
from external machines. For example, IP filtering—a typical firewall configura-
tion—restricts connections from/to machines with a particular IP address.

Private IP A private IP is an IP address that is visible only within a subnet. Machines
outside a subnet cannot establish direct connections to machines that have only a
private IP address. In addition, since a private IP address is visible only within a
subnet, machines in different subnets may have the same private IP address with-
out confusion. This breaks the uniqueness of IP addresses.

DHCP client DHCP is a mechanism that enables machines to extract their network con-
figuration from a DHCP server. An IP address of a DHCP client changes dynami-
cally whenever it extracts a new configuration (typically when it reboots).

Because of the above restrictions, machines cannot necessarily establish a direct connec-
tion to every other machine or may even not have unique addresses. Hence, a user may
not submit a job easily across multiple subnets with existing tools; s/he has to work
around the restrictions with ad-hoc methods, which are found on a case-by-case basis
with human intervention. For example, when submitting a job to machines behind a
firewall, a user usually has to first log onto a gateway machine and then onto the target.
Accessing a DHCP client requires some database that stores its IP address. A situation
becomes more complicated if those addresses are private IP addresses.

In addition, we must consider that the number of available machines is large (e.g.,
> 100) and that the topology of the network usually changes dynamically (e.g., machines
may crash or the network may become disconnected). These also make it difficult for a
user to manually work around the administrative restrictions. For instance, a user has
to know which machines are available at present; and s/he may need to find a new job
forwarding route whenever a machine crashes.
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To summarize, the administrative restrictions significantly increase the user’s cost
for utilizing remote machines, and consequently, obstruct smooth utilization of compu-
tational resources. A user would like to have a solution in which all machines can be
reached directly and transparently, with names fixed over time.

To this end, we have developed Virtual Private Grid (VPG), a command shell that can
utilize hundreds of machines efficiently. It enables a user to easily submit jobs to remote
machines by providing the following mechanisms.

Nickname mechanism It gives each machine a unique name that does not depend on a
DNS name or a fixed IP address.

Communication mechanism A user can directly access remote machines that would be
reachable by using existing tools (e.g., rsh, SSH [Opeb]) several times from her/his
local machine. A user can access these machines merely by specifying them with
their nickname.

The above mechanisms can be implemented without modifying administrative policies
and can tolerate dynamic changes of the topology of the network, though some manual
configurations are required. We implemented VPG in two ways: implementation based
on a self-stabilizing spanning tree construction [AKY91, AK93] and based on the Phoenix
library.

We ran the original implementation of VPG on about 100 nodes (270 CPUs) to demon-
strate its feasibility. We measured a turn around time of a small job submission with VPG
and other tools: rsh, SSH, and globus-job-run (a remote job submission tool provided by
Globus []). The experimental result shows that VPG can submit a job faster than SSH and
globus-job-run since VPG performs authentication only when it constructs a tree.

The remainder of this chapter is organized as follows. Section 4.2 shows difficulties in
working around administrative restrictions through a practical motivating scenario. Sec-
tion 4.3 describes the user interface of VPG. Section 4.4 and Section 4.5 present the details
of the implementation of inter-process communication. Section 4.4 and Section 4.5 ex-
plain the implementation based on spanning tree construction and Phoenix respectively.
Section 4.6 discusses limitations of VPG and solutions for overcoming these limitations.
Section 4.7 shows experimental results. Section 4.8 mentions related work. The final
section summarizes the chapter and states future work.

4.2 A Motivating Scenario

In this section, we show the difficulty of working around administrative restrictions
through a practical motivating scenario. Consider the network shown in Figure 4.1. Harp,
tuba, . . . in Figure 4.1 represent host names. This network consists of three subnets includ-
ing a DHCP client and a machine that has only a private IP. Firewalls restrict connections
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between different subnets; SSH to the gateway machines (harp, cscl0, and ise0) is the only
allowed in-bound connection. Such a configuration is fairly typical.

Suppose a user would like to submit jobs (commands) from tuba to all the other ma-
chines in the network. She/He needs to do the following depending on

• job submission from outside firewall to the inside. A user must typically first log
onto a gateway machine ((i) in Figure 4.1).

• job submission to a machine that has only a private IP address. Similarly to the
above, accessing such a machine requires first entering the subnet of the target ma-
chine ((ii) in Figure 4.1).

• job submission to a DHCP client. A user must somehow obtain the current IP ad-
dress of the machine ((iii) in Figure 4.1).

If the number of machines is small, users may be able to perform the above steps manu-
ally. They may remember gateway machines to each machine and keep track of current
addresses of DHCP clients. However, such ad-hoc solutions obviously do not scale to a
large number of machines and subnets. Thus, we require a mechanism to access all the
available machines directly, with names fixed over time.

One way to implement such a mechanism is to connect all the machines with bi-
directional (e.g., TCP) connections and to route messages (e.g., job submission requests)
via these connections. This enables a user to submit a job easily across multiple subnets.
For example, even if a firewall blocks in-bound connections, a user can submit a job
from outside firewall to the inside. She/He can forward the job via the connections that
machines behind the firewall have initiated.

4.3 Design

4.3.1 User Interfaces

The following summarizes the functions provided by VPG.

• It gives each machine a (per-user) unique name that does not depend on a DNS
name or a fixed IP address (nicknaming).

• It provides a job submission to any nicknamed machine.

• It provides a redirection from/to a file on any nicknamed machine.

• It provides a pipe between commands executed on any nicknamed machine.
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Figure 4.1: A practical example of a network on which various administrative restrictions
are imposed

path@nickname
path@nickname > file@nickname
path@nickname < file@nickname
path@nickname | path@nickname

Figure 4.2: Shell syntax of remote job submission, redirection, and pipe

We make the above functions accessible by a combination of the simple shell syntax and
existing commands (See Figure 4.2). For example, a user can submit a command to any
remote machine by adding @ followed by its nickname. A pipe can connect standard
input/output of a program to output/input of another program running on a different
machine.

The above functions require no modifications to existing administrative policies, and
adapt to dynamic changes in the network conditions.

4.3.2 An Example of Job Submission

We show several examples of remote job submissions with VPG. Assume the same net-
work as Figure 4.1 and that tuba is the home host, which a user initially logged in.

Figure 4.3 shows the machines’ nicknames and the tree constructed by VPG. A, B,
. . ., and G in Figure 4.3 represent nicknames, which do not change during execution of
commands. For example, the DHCP client and the machine with a private IP in Figure 4.1
have unique and fixed nicknames B and G respectively. A dashed arrow from machine
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connection that a daemon has established

B
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possible connection that a daemon can initiate

A

F

D
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Figure 4.3: Job submission example

u to v is a possible connection that u can initiate to v. A solid line between u and v is a
bi-directional connection that u and v have established between them.

Then, the user inputs the following command lines on the home host (i.e., host A).

ps@B
This command line submits ps command to a DHCP client B. Note that the user
can specify the target host by its nickname, rather than its IP addresses.

tar@E -c file | tar@G x
This command archives file on E, transfers it to G, and extracts it on G. Note that
A, E, and G belong to different subnets. VPG automatically detects a forwarding
route (A → C → D → E), submits the first tar command to E through the route,
and executes it on E. Similarly, the second tar command is submitted from A to
G (through the route A → C → F → G), and the output of the first command is
transferred from E to G (through the route E → D → C → F → G). As in UNIX
pipes, the two commands are executed in parallel.

4.4 Implementation Based on Spanning Tree Construction

We describe the implementation of the inter-process communication mechanism of VPG
based on a spanning-tree construction [AKY91, AK93]. VPG builds a spanning tree with-
out knowing the topology of the whole network, and re-constructs it whenever the topol-
ogy changes. This mechanism allows VPG to keep available machines connected with the
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minimal number of connections, even if machines occasionally crash or networks become
disconnected.

First, we formalize administrative restrictions. Next, we mention the self-stabilizing
spanning tree algorithm [AKY91, AK93]. With this algorithm, VPG daemons select nec-
essary connections to make all the machines available. Then, we present the algorithm
that calculates routes to participating machines for job submissions, redirections, and so
on.

4.4.1 Network Model

We model the configuration of the network as a directed graph G = (V,E), where V is the
set of machines, and E the set of possible (i.e., allowed) connections. An edge is labeled
either ‘regular’ or ‘ssh’. Let u and v be machines. If (u, v) is in E and labeled ‘regular’, u
can initiate a regular connection to v. If (u, v) is in E and labeled ‘ssh’, u can initiate an
SSH connection to v. In the following, labels are omitted when not important.

In this framework, administrative restrictions are modeled as follows.

Firewall For example, if a firewall blocks all in-bound connections to a subnet, we have

] ∀u ∈ {machines outside the subnet},
∀v ∈ {machines inside the subnet},
(u, v) 6∈ E

Let g be a gateway reachable via SSH from any machine. Then we have

∀u ∈ V, (u, g)ssh ∈ E

Private IP If u is a machine with a private IP address, we have

∀v ∈ {machines outside the subnet}, (v, u) 6∈ E

DHCP client If u is a DHCP client, G satisfies the following.

∀v ∈ V − {u}, (v, u) 6∈ E

That is since a DHCP client does not have a fixed IP address, no other machines can
initiate a connection to it.

The above pieces of information come from the configuration file that will be described
in Section 4.6.

66



4.4.2 Self-stabilizing Spanning Tree Algorithm

The self-stabling spanning tree algorithm [AKY91, AK93] has following features. (1) Each
daemon asynchronously builds a spanning tree without knowing the whole network. (2)
It can keep a tree even if the network topology changes dynamically.

The algorithm regards the graph as a spanning forest, that is, a set of rooted trees.
Initially, this forest consists of a number of single-node trees (each node is a root). Starting
from this state, the nodes gradually coalesce into large trees. Eventually, all the nodes in
the graph form a single spanning tree. When the network topology changes dynamically,
they cope with it by resetting their local states.

Each node maintains three variables: UID , Parent , and Priority . Subscripts of these
variables represent node names. UIDu is a unique identifier of node u and Parentu a
node name of u’s parent. Priority is explained shortly.

Each daemon asynchronously connects to its neighbors specified in G, and when two
daemons find them to be in different trees, these two trees get merged. Omitting some
details, Priority determines how they are merged as follows.

• Priorityu is initialized to UIDu.

• When u finds that its neighbor v has a higher Priority value, u becomes a child of
v’s tree. Then Priorityu becomes equal to Priorityv.

As a result, trees with higher Priority overrun trees with lower ones, and finally the
algorithm constructs a single spanning tree with the highest Priority .

Figure 4.4 illustrates a process of tree construction. A dashed edge from u to v indi-
cates that (u, v) ∈ E. A solid edge from u to v indicates that v is u’s parent. The value of
each node shows its Priority , which is updated during tree construction.

For example, the node that has Priority = 1 initiates a connection to the node that has
Priority = 8. Then, their Priority become 8. Eventually, all the nodes have Priority = 9,
and they finish tree construction.

We refer the reader to [AKY91, AK93] for the details of the algorithm.

4.4.3 Routing Algorithm

The shell needs to calculate a path to any participating machine in order to submit a job,
redirect input/output of a command, and so on. For this purpose, the shell keeps track
of the whole network topology by receiving fragments of topology information (e.g., a
list of connections that a daemon currently maintains) from daemons. Every time the
network topology changes, the daemons send their new information to the shell and the
shell updates its topology information.

Initially, the daemons do not know the home host (where the user logged in). Thus
each daemon needs to calculate the path from itself to the home in the spanning tree.
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Figure 4.4: Process of spanning tree construction

68



Each node u maintains an additional variable ToHomeu, which will be set to its neighbor
one hop closer to the home in the spanning tree. In the sequel, we call such a neighbor its
parent. Do not confuse it with the parent used in building the spanning tree. Each node
periodically and asynchronously runs the algorithm depicted in Figure 4.5 at regular
intervals to determine its parent, which works as follows.

• Initially ToHomeu =nil for all u. It is reset to nil whenever a path to the home host
is broken.

• If u is the home host, ToHomeu becomes equal to u ([A] in Figure 4.5).

• If u is a leaf of the tree, its parent is determined uniquely; u regards its neighbor as
its parent and sends a message to the home host via the neighbor ([B] in Figure 4.5).

• If all u’s neighbors except v are u’s children, v must be u’s parent (c.f., w is u’s child
only if ToHomew = u). In such a case, u sends a message to the home host via v ([C]
in Figure 4.5).

• If u’s neighbor v is not u’s child and v satisfies ToHomev 6= nil, v has already de-
tected a route to the home host and this route does not include u. Thus, u regards v
as its parent and sends a message to the home host via v ([D] in Figure 4.5).

• If u does not satisfy all the above conditions, u cannot find a route to the home host
yet; ToHomeu is set to nil ([E] in Figure 4.5).

4.5 Implementation Based on Phoenix

We describe the implementation of the inter-process communication with the Phoenix li-
brary. The inter-process communication is simply implemented in the following manner:

1. Individual nicknames of hosts are mapped to virtual node names of Phoenix in a
one-to-one fashion. The current implementation uses 62-bits prefix of nicknames as
virtual node names.

2. When booting, daemons assume virtual nodes corresponding to their nicknames.
The daemons construct an overlay network and calculate message forwarding routes
as mentioned in Section 2.3.

3. When a user attempts to submit a job to a remote machine, the local daemon re-
ceives a request and submits the job to the target remote machine via the overlay
network.
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if (u is the home host)
then

ToHomeu ← u [A]
else if (u is a leaf)
then

ToHomeu ← u’s parent [B]
else if (|{v ∈ Neighu|ToHomev 6= u}| = 1)
then

ToHomeu ← the element of the above set [C]
else if (∃v ∈ Neighu,

(ToHomev 6= nil) and (ToHomev 6= u))
then

ToHomeu ← any such v [D]
else

ToHomeu ← nil [E]

where:
Childrenu = {v|Parentv = u}
Neighu = Childrenu ∪ {Parentu}

Figure 4.5: Algorithm for node u to detect a route to the home host

70



4.6 Discussion

Manual Configurations. A user needs to configure VPG manually before using it.
First, a user must boot daemons on all the available machines that s/he would like

to use. The user can boot these daemons in any order. They create and keep some bi-
directional (TCP) connections to make a single connected graph of all the machines. Af-
ter a while, they construct a spanning tree and stop establishing new connections. When-
ever the topology of the network changes, the daemons re-construct a spanning tree by
adding/removing some connections.

Next, the user must run a shell on a host, which s/he initially logged in. We call it
the home host in the rest of the chapter. The home host keeps track of the whole network
topology by receiving fragments of topology information (e.g., a list of connections that a
daemon is keeping) from all the daemons. By using this information, the shell can detect
a route to any participating machine for job submissions, redirections, and pipes.

Then, the user needs to set up SSH. Many firewalls block connections to all the un-
privileged ports, and in this case, SSH is usually the only way to log on machines behind
them. Thus VPG daemons use SSH to establish connections to such machines when reg-
ular connections are not allowed. Because they need to create SSH connections automat-
ically without entering the user’s password, SSH must use the public key authentication
with an empty pass-phrase. The user, on the other hand, may want stronger authentica-
tion than an empty pass-phrase. Thus we are planning to allow non-empty pass-phrase
authentication in the next implementation.

Finally, the user must write a configuration file and give the following information to
VPG daemons.

Nickname As previously mentioned, each daemon needs a nickname, a name of the ma-
chine that does not change over time. Each nickname must be unique throughout
all the available machines. Basically, a user must manually give a nickname to each
machine. However, if machines have DNS host names and nicknames are not given
manually, the same nicknames as their host names are automatically assigned to
them.

Port number A daemon tries to contact other daemons at this port.

List of connections Network configuration is specified by a list of connections each dae-
mon can initiate. For example, if a machine has only a private IP address, connec-
tions to this machine from outside its subnet will not be listed. Similarly, connec-
tions to DHCP clients will not be listed, but those from them will. Each connection
is labeled either as ‘regular’ or ‘ssh’, the former indicating it can be a regular con-
nection and the latter it should tunnel through SSH. Daemons construct a spanning
tree by selecting connections from this list.

71



The amount of configuration is fairly large and may be cumbersome for a user. Note,
however, that a configuration file is typically written only once, and need not be very
precise. For example, it does not affect correctness to add non-existing machines to the
list. They are simply regarded as down machines, and the spanning tree algorithm can
tolerate them. Similarly, it does not affect correctness to list connections that are actually
blocked and not to list connections that are actually possible.

Currently, they are nevertheless required for performance. Listing too many machines
or connections that do not exist causes daemons to try many connections that only fail.
We are planning to address this issue in our future work. The spanning tree algorithm
operates in such a way that each daemon only needs information about allowed connec-
tions adjacent to it. Thanks to this distributed nature of the algorithm, probing necessary
configuration online should not involve much technical difficulty.

Security Issues. VPG runs at the user level and does not modify existing security poli-
cies; it works completely under the existing security policies. For example, a user needs
her/his own account on machines in which s/he wants to boot VPG daemons. If SSH is
the only method to access remote machines, VPG accesses these machines with it.

Though VPG satisfies the existing polices, it may weaken system security This is be-
cause common security policies usually allow a user to access a different user’s daemon.
A malicious user may access different users’ daemons and execute dangerous commands
with their privilege. Hence, VPG daemons should authenticate each other when connec-
tions between them are established.

Note that VPG creates new connections only when it constructs a tree. VPG need not
perform an authentication whenever submitting a job (an authentication is assumed to
be valid while connections are maintained). As a result, even if it performs an involved
authentication, VPG does not incur large overhead for every job submission. This mecha-
nism is different from common job submission tools (e.g., Globus [CFK+98]). These tools
establish a new connection and perform an involved authentication whenever submitting
jobs.

Currently, authentication between daemons has not yet been implemented. We are
planning to implement this mechanism in the next release.

4.7 Experiments

4.7.1 Experimental Environments

We ran the original implementation of VPG in the network shown in Figure 4.6. The
network consists of three subnets, and machines are equipped with several operating
systems (Solaris, Linux, and IRIX) and CPU architectures (SPARC, x86, PowerPC, and
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Figure 4.6: Experimental environments

MIPS). VPG daemons on about 100 nodes and demonstrates its feasiblity. In this experi-
ment, daemons constructed a spanning tree that had a diameter of five.

4.7.2 Job Submission Time

We compared VPG with three other job submission tools: rsh, SSH, and globus-job-run
(globus-job-run is a remote job submission tool provided by Globus [CFK+98]). Rsh used
Rhost authentication, SSH public key authentication (1024-bit RSA), and globus-job-run
X.509 authentication (1024-bit RSA).

We measured a turn around time of a small job submission. This time is almost equal
to overhead of a remote job submission. In addition, we measured the time of a job
submission to machines several hops away from a local host with rsh, SSH, and VPG.
Rsh and SSH submit a job to a destination machine by relaying job submissions several
times (e.g., ssh hostA ’ssh hostB command’).

Figure 4.7 illustrates the result of this experiment. The overhead of VPG was less than
that of SSH and globus-job-run. In addition, the overhead of job submissions except VPG
increased with the number of relays. This is because the overhead of the job submission
was mainly caused by authentication. SSH and globus-job-run create a new connection
and perform an involved authentication using a public key whenever submitting a job.
In contrast to these tools, VPG does not require authentication whenever submitting a job
as mentioned in Section 4.6. Authentication is performed only when it creates a logical
network. Jobs and their input/output are routed via connections that have already been
created. Hence, the overhead of SSH and globus-job-run were larger than that of rsh and
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VPG.

4.8 Related Work

Remote Job Submission Systems. Although many remote job submission systems tar-
geting at clusters and computational grids have been developed (e.g., Globus [FK97],
Condor [LLM88], Nimrod [BAG00], GLUnix [GPR+98]), none of them are focusing on
integrating many ‘desktop’ resources that are typically configured without DNS names
and with DHCP/private IP addresses. Such machines constitute a large fraction of com-
pute resources. The original Globus is blocked by typical firewall configurations and
cannot submit jobs from outside firewall to the inside. In addition, because globus-job-
run needs to specify a target with its host name or IP address, it is difficult to submit jobs
to a machine that has no unique and consistent IP address. Both Condor and Nimrod can
automatically submit jobs to remote machines that satisfy the requirements of the jobs.
However, their implementation also requires that the machine a user logs in can initiate
a direct connection to all the remote machines.

SSH [Opeb] is one of the most common tools for submitting a job to machines behind
a firewall. However, when the number of available machines is large and complex ad-
ministrative restrictions are imposed on these machines, SSH cannot utilize them easily
and efficiently. For example, s/he may need to use SSH several times in order to reach
a target machine. In addition, it incurs large overhead to initiate SSH connections every
time s/her submits a job, as we have described in Section 4.7.
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Traversal of NATs and Firewalls. SOCKS [LGL+96] is closest to our work, but has a
limited functionality. It is a proxy protocol that provides general framework for circuit
level gateway. In typical scenarios, machines inside NAT/firewalls connect to a SOCKS
server and machines outside NAT/firewalls reach these machines through the server.
There are two main differences between SOCKS and VPG. First, SOCKS does not have
nicknames, so naming DHCP clients remains as an issue, and ensuring the uniqueness
of local IPs (in different subnets) is up to the user. Second, more importantly, forwarding
connections through multiple SOCKS servers is supported but must be configured man-
ually. Therefore it will be difficult to manage hundreds of machines across many (e.g.,
> 5) subnets. VPG provides a unique naming scheme for clients with DHCP/private
addresses. In addition, its communication mechanism minimizes the need for manual
configuration.

RMF (Resource Manager beyond Firewall) [TSH+99] is a modified Globus Resource
Allocation Manager (GRAM), which can utilize resources behind firewalls. For example,
RMF supports job submissions from outside firewall to the inside, whereas the original
Globus does not. RMF implements this function by using a proxy that relays messages
beyond a firewall. It is similar to SOCKS and thus incurs the same problems as SOCKS
does. RMF requires cumbersome manual configuration to manage machines across mul-
tiple subnets and has no naming scheme for private IPs and DHCP clients.

Virtual Private Network (VPN) [SWE98] is a mechanism to securely connect multiple
subnets through a public network. Because VPN usually requires manually modifying
administrative policies (e.g., tunneling), VPG mainly differs from VPN in that VPG auto-
matically constructs a private network at the user level and places major emphasis on a
remote job submission.

4.9 Summary

In this chapter, we have described Virtual Private Grid (VPG), a shell that can easily utilize
hundreds of machines distributed over multiple subnets. The shell gives each machine a
unique nickname that does not depend on a DNS name or a fixed IP address. In addition,
it provides a job submission, redirection, and pipe on any nicknamed machine. VPG
implements these functions by constructing a self-organizing network among machines
and by forwarding messages on the network.

Our future work is to provide easier and more efficient utilization of remote compu-
tational resources.

Reduction of the amount of manual configuration As we have described in Section 4.6,
VPG requires some manual configuration (e.g., a user needs to write a configuration
file). We are planning to reduce the amount of configurations by automatically
discovering available machines and possible connections wherever possible.
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Authentication between daemons As mentioned in Section 4.6, authentication between
daemons should be performed. We are planning to implement simple authentica-
tion mechanism using a method similar to MIT-MAGIC-COOKIE-1.

Daemon sharing An original design criteria of VPG is to run daemons at the user level,
thereby not requiring help from system administrators. This design, on the other
hand, may impose a large overhead on the system if many users run their dae-
mons. We can fix this problem by running a daemon at the root privilege that, with
an appropriate authentication, forks a user process on demand. We are going to
implement VPG so that it can be run either way. This is not a peculiar problem to
VPG, but a common problem in any network service. Whether a service is run with
the root privilege or with individual user’s privilege is a matter of choice at each
host, based on the popularity of the service, system administration policy, and so
on.

Automatic resource selection With hundreds of machines, a user wants jobs and data
to be distributed over remote machines automatically without explicit annotations.
We are planning to develop a simple task placement algorithm that takes the loca-
tion of input/output files, communication through pipes, and machine architecture
into account.
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Chapter 5

A Virtual Machine Monitor for
Providing a Single System Image

Overview

We designed and implemented a virtual machine monitor that virtualizes a shared-memory
multi-processor machine on a commodity cluster. It permits parallel applications to run
on them without modifications. In addition, commodity operating systems that support
multi-processors (e.g., Linux) can be installed on a virtual machine with only a small
amount of modification. We built a virtual eight-way multi-processor machine on eight
physical machines, with Linux installed. We present here the results of parallel, coarse-
grained tasks that ran on this system. The experimental results demonstrated the feasi-
bility of our approach.

5.1 Introduction

With the recent increase in the performance/price ratio of personal computers (PCs),
there is rapidly expanding interest in the use of computing clusters composed of com-
modity computers. While clusters of commodity PCs can range from small (less than 64
nodes) to large (approaching 10,000 nodes), small clusters are gaining widespread use,
particularly at the workgroup and departmental levels.

A major problem for utilizing small commodity clusters has been the complexity of
resource management. Without global (cluster-wide) mechanisms for resource allocation,
it is difficult to efficiently utilize resources such as processors, memory, and disks.

To overcome this problem, we propose a method for providing a single system im-
age (SSI) on top of a cluster. While various systems (e.g., SCore [SCo], Condor [LLM88])
have been proposed to provide an SSI, we focus on a technique for achieving an SSI with
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Figure 5.1: Creation of a virtual multi-processor machine

hardware virtualization. More specifically, we designed and implemented a virtual ma-
chine monitor (VMM) called Virtual Multiprocessor. Like existing VMMs [VMw, WSG02,
BDF+03, BDR97, ES03, HBS02, Use, Mic, Coo], Virtual Multiprocessor takes complete
control of the machine hardware and creates virtual machines, each of which behaves
like a complete physical machine that can run its own operating system. In contrast to
existing VMMs, Virtual Multiprocessor has two distinguishing features. First, it virtual-
izes a shared-memory multi-processor machine on a commodity cluster. For example, it
gives a user the illusion of an N -way multi-processor machine on top of a collection of N
single-processor machines (See Figure 5.1). Inside the virtual machine, the user installs
an operating system that supports multi-processor machines and executes parallel pro-
grams on the operating system. Second, Virtual Multiprocessor supports dynamic load
balancing. By migrating processors of a virtual machine, our VMM enables the virtual
machine to provide a fixed number of processors even if physical machines are added
and/or removed dynamically.

Our approach to achieving an SSI has three advantages over existing approaches.
First, a wide variety of parallel applications for shared-memory multi-processor systems
can run in the virtual machine without any changes to the applications. In particular, a
user can write parameter sweep applications or parallel tasks that have directed acyclic
graph (DAG) dependency between them using familiar languages and tools designed for
shared-memory systems (e.g., parallel make, shell script), without resorting to parallel
programming languages such as MPI [Mes].

Second, in addition to parallel applications, execution of multiple sequential applica-
tions also benefits from our approach. By installing a commodity operating system that
supports multi-processors (e.g., Linux) in a virtual machine, the user can manage dis-
tributed resources with a familiar interface. If the user forks multiple processes on Linux
running inside the virtual machine, these processes are automatically allocated on the vir-
tual machine’s processors by the scheduling mechanism of Linux. The processes are then
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allocated on the physical machines’ processor which the virtual machine’s processors are
mapped onto.

Third, resource encapsulation with Virtual Multiprocessor provides security and reli-
ability. For example, suppose a cluster is used for server hosting. Since a VMM provides
strong isolation between virtual machines and physical machines, the administrator of
a VMM can give full control of the virtualized hardware to the users of the virtual ma-
chines, without exposing critical resources to danger. This functionality of VMMs greatly
facilitates secure and convenient virtual hosting [WSG02, Wal02]. In addition, a snap-
shot/resume feature of virtual machines reduces the effects of system crashes and break-
ins [VMw, WCG04, SPYH03].

Our current implementation of the VMM is designed for the IA-32 architecture. The
VMM virtualizes processors, shared memory, and I/O devices as follows. To virtualize
processors, the VMM achieves para-virtualization of the IA-32 instruction set architecture
(ISA) [BDF+03, ES03]. A guest operating system is statically modified to run optimally
on a virtual machine. To virtualize shared-memory, the VMM uses a mechanism similar
to software distributed shared memory. The VMM implements the consistency protocol
of the shared memory with the virtual memory page protection mechanism of physical
machines. To virtualize I/O devices, the VMM prepares a central server that keeps track
of the states of all the devices. The VMM communicates with the server whenever a
virtual processor issues an I/O operation.

We conducted several experiments to demonstrate the feasibility and performance of
our approach. We built a virtual eight-way multi-processor machine with Linux installed
on eight physical machines. We ran eight processes that simultaneously calculate a Fi-
bonacci number and measured the execution time. Execution on our virtual eight-way
multi-processor machine was about 6.6 times faster than on both virtual and physical
one-way processor machines. These results indicate applications that do not require a
large amount of the VMM’s intervention (e.g., do not access I/O devices very frequently)
achieve good performance.

The remainder of this chapter is organized as follows. Section 5.2 presents an overview
of Virtual Multiprocessor. Section 5.3 describes the implementation of the virtualization
of hardware resources. Section 5.4 gives the details of the memory consistency algo-
rithm. Section 5.5 presents performance measurements. Section 5.6 discusses limitations
of our system and solutions for overcoming these limitations. Section 5.7 discusses re-
lated work. The final section summarizes the chapter.

5.2 Design

This section presents an overview of Virtual Multiprocessor. First, we describe the basic
design decisions. Next, we explain how Virtual Multiprocessor maps virtual resources to
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physical resources.

5.2.1 Functionality of Virtual Machines

Functionality of virtual machines built by our VMM is summarized as follows:

• An interface provided by the virtual machines is not at the Application Binary In-
terface (ABI) level but at the Instruction Set Architecture (ISA) level. The virtual
machines provide a complete system environment that supports an operating sys-
tem along with user processes.

• Both the virtual machines and underlying physical machines are designed for the
IA-32 architecture1.

• The VMM achieves partial virtualization of an underlying machine (i.e., para-virtua-
lization [BDF+03, WSG02]) as opposed to full virtualization [VMw].

Because of para-virtualization, the ISA of the virtual machines is similar, but not iden-
tical, to that of underlying hardware. This improves performance, however, the kernel of
operating systems running inside the virtual machine requires a small amount of modi-
fication. The technique of our VMM for modifying operating systems is similar to that of
LilyVM [ES03]. We describe the details of the technique in Section 5.3.

5.2.2 Mapping of Hardware Resources

Virtual Multiprocessor maps hardware resources (processors, memory, and I/O devices)
of a virtual machine onto those of physical machines to virtualize a shared-memory
multi-processor machine. As shown in Figure 5.2, the resources are mapped in the fol-
lowing manner:

Processors Virtual processors are basically mapped onto physical processors in a one-to-
one fashion. N individual processors of a virtual machine are respectively mapped
onto a processor of N different physical machines.

Memory A virtual machine’s shared memory available to any of the virtual processors
is mapped onto a portion of physical machines’ memory. Each physical machine
needs to reserve M MB of memory to virtualize M MB of the shared memory.

I/O devices I/O devices of a virtual machine are mapped onto devices belonging to one
of physical machines. For example, a disk image file located at one of physical

1In particular, we chose to target the Pentium 4, Intel Xeon, and P6 family processors, which allow a more
relaxed memory ordering model than the earlier Pentium processors (e.g., the Intel 486 processor) [Int03].
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Figure 5.2: Mapping between a virtual machine and physical machines

machines is used as a hard disk image of a virtual machine. A virtual console of a
physical machine is used for a serial terminal of a virtual machine.

5.3 Implementation

This section describes how Virtual Multiprocessor virtualizes the IA-32 architecture: pro-
cessors, shared memory, and I/O devices. The virtualization of shared memory consists
of the virtualization of address space and the memory coherence mechanism. First, we
explain basic strategy for virtualizing hardware. Next, we explain how individual hard-
ware resources are virtualized. We give just an outline of the virtualization of processors
and address space, as it is similar to that of a single-processor virtual machine, particu-
larly LilyVM [ES03]. The virtualization of the memory coherence mechanism and I/O
devices is described in more detail because these mechanisms are unique to a multi-
processor virtual machine. Then, we describe a migration mechanism of virtual proces-
sors.

5.3.1 Basic Strategy for Virtualizing Hardware

Like LilyVM [ES03] and FAUmachine [HBS02], our VMM is placed on top of a native
operating system running on physical hardware and is implemented solely in user mode
with no modification to the native operating system. Although this architecture incurs
a larger overhead than when the VMM is placed directly on bare hardware [WSG02,
Wal02, BDF+03], it overcomes several technical and pragmatic hurdles [SVL01]. First,
our system permits virtualization of the Intel Pentium architecture, which is not naturally
virtualizable [RI00]. Second, by relying upon a native operating system, it allows a virtual
machine to support a diversity of peripheral devices with minimal programming effort.
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1. The VM process runs a guest operating system
in native mode.

2. A signal is generated when
the VM process executes an instruction
that requires the software emulation.

3. The monitor process traps the signal.

4. The monitor process emulates the instruction.

5. The monitor process restarts
the execution of the VM process

VM process

Monitor process

Figure 5.3: A basic execution cycle of the VM process and the monitor process

Third, it allows an operating system installed inside a virtual machine to co-exist with
a pre-existing native operating system. Hereafter, we call an operating system running
on a virtual machine a guest operating system and an operating system running on a
physical machine a host operating system.

To virtualize hardware resources with no modification to host operating systems, the
VMM prepares two user processes for each virtual processor. These user processes are:

VM process The VMM assigns this process to run a guest operating system as one of the
processors of a virtual machine. The individual VM processes map assigned virtual
processors onto physical processors where the VM processes are running. If the VM
process attempts is about to execute an instruction that would interfere with the
state of the underlying VMM or a host operating system, a signal is generated by
a host operating system. For example, the SIGSEGV signal is generated when the
VM executes a privileged instruction which cannot be executed by a user process.

Monitor process This process supervises the VM process using the ptrace system call.
The monitor process intercepts execution of the VM process by trapping a signal
generated by the VM process. The monitor process then emulates the instruction
executed by the VM process by modifying the state of the VM process’s registers
and memory.

Figure 5.3 summarizes a basic execution cycle of these processes.

5.3.2 Processor Virtualization

The virtualization of processors consists of (i) the virtualization of instructions that would
interfere with the state of an underlying VMM (or a host operating system) and (ii) the
virtualization of interrupts and exceptions.
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Figure 5.4: Translation of kernel code with a modified assembler

First, we describe the virtualization of instructions that would interfere with under-
lying systems. As mentioned in Section 5.3.1, a large portion of a virtual processor’s
instructions is executed by a physical processor without VMM intervention. Only in-
structions that would interfere with an underlying VMM or host operating system are
interpreted by the VMM. These instructions that require VMM intervention are called
sensitive instructions. For example, instructions that access IA-32 system registers, such
as control register 3, are sensitive.

The sensitive instructions are classified into privileged instructions and non-privileged
instructions [RI00]. Execution of privileged instructions at the most privileged hardware
domain will cause a general protection exception, whereas non-privileged instructions
do not cause an exception. For example, the lgdt instruction, which loads the value in
the source operand into the global descriptor table register (GDTR), is a privileged instruc-
tion. The sgdt instruction, which stores the content of GDTR in the destination operand,
is non-privileged.

The monitor process traps the execution of privileged instructions and non-privileged
instructions in different ways. Trapping of privileged instructions is straightforward:
since a VM process runs in user mode, a monitor process needs only to trap exceptions
caused by the execution of privileged instructions. On the other hand, trapping of non-
privileged instructions is complex and requires modifications to a guest operating sys-
tem. More specifically, the kernel code of a guest operating system is modified at compile
time in such a way that an illegal instruction is inserted before every non-privileged in-
struction [ES03]. By trapping the exception caused by an illegal instruction, the monitor
process intercepts the non-privileged instruction that follows the illegal instruction in the
kernel code.

This technique of static modification of kernel code has merits and shortcomings.
One of the merits is that numerous operating systems can be hosted with small manual
implementation costs. A modified assembler automatically inserts illegal instructions
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at kernel compile time. On the other hand, due to static code modification, the VMM
cannot support system-level binaries for which the source code is not available. These in-
clude binary-only Linux kernel modules and operating systems such as Windows, whose
source code is not public.

Second, we describe the virtualization of interrupts and exceptions. To virtualize
interrupts and exceptions, the VMM needs to detect and deliver them. The method for
detecting interrupts and exceptions varies depending on how they are generated. For
example, when a virtual machine generates an exception that can be seen as a signal
generated by the VM process, the monitor process detects it by trapping the signal with
the ptrace system call. When the virtual machine generates an interrupt by accessing its
Advanced Programmable Interrupt Controller (APIC), the monitor process detects it by
intercepting write access to memory regions which the virtual machine’s APIC is mapped
onto.

A detected interrupt (or exception) is delivered to an appropriate virtual processor by
the monitor process. Basically, the monitor process delivers it to the local VM process.
The monitor process makes the VM process enter an interrupt (or exception) handler
by looking up the virtual machine’s descriptor tables. Only when an inter-processor
interrupt is generated, the monitor process delivers it to a specified remote VM process
via TCP/IP communication. The delivery of external interrupts triggered by I/O devices
is described in detail in Section 5.3.4.

5.3.3 Shared Memory Virtualization

The virtualization of a shared memory requires the virtualization of the address space
and a memory coherence mechanism.

First, we briefly explain the virtualization of the address space. A guest operating
system running inside a virtual machine expects a zero-based physical address space,
as provided by real hardware. To implement such an address space, the VMM needs
to virtualize both the segmentation mechanism and the paging mechanism. The former
mechanism translates virtual addresses to linear addresses while the latter translates lin-
ear addresses to physical addresses. In current implementation, the segmentation mech-
anism is not fully virtualized. Only the minimal mechanism required to host Linux is
implemented. Specifically, reading from and writing to a virtual machine’s segment reg-
isters are implemented, though translation from virtual addresses to physical addresses
is not fully supported. The base address of every segment must be zero inside a virtual
machine.

The virtualization of the paging mechanism is implemented in the following manner.
First, an individual VM process reserves a portion of its memory for a virtual machine.
Then, the VM processes map their pages onto the reserved memory region by looking up
the page directory and the page table of the virtual machine.
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Figure 5.5: Memory layout of the monitor process

More specifically, the VM processes use the mmap and munmap system calls to update
the mapping of pages. Since these system calls incur a large overhead, the system calls
are issued only when the modification to the page directory and the page table needs to
become valid. For example, suppose that a virtual machine modifies its page table so that
page p is mapped onto its physical memory. In this case, the VM process delays issuing
the mmap system call until the process actually accesses p and the SIGSEGV signal is gen-
erated. Similarly, the VM process issues the munmap system call to release obsolete page
mapping only when modification to the page table or page directly becomes valid. For
instance, munmap is issued to release obsolete mapping when a virtual machine changes
the value of the control register 3 or executes the invlpg instruction.

The virtual address space that a guest operating system can access is limited. The
upper bound of the address space is changed to 0xafffffff for the following reasons:

• A memory region with lower bound 0xc0000000 and upper bound 0xffffffff
is used for the kernel address space for a host operating system. A VM process,
which runs not in supervisor mode but in user mode, is not allowed to access this
region by a host operating system.

• A memory region with lower bound 0xb0000000 and upper bound 0xbfffffff
is reserved for hardware emulation. This region is used for storing information
required for the virtualization of hardware such as values of system registers.

For the above reasons, a guest operating system is statically modified such that its kernel
address space does not overlap with the non-accessible regions. The lower and upper
bounds of the kernel address space are changed to 0xa0000000 and 0xb00000000,
respectively (See Figure 5.5).
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Next, we describe the virtualization of the memory coherence mechanism. The VMM
implements the consistency protocol of the shared memory using the virtual memory
page protection mechanism of physical machines. Specifically, the VMM uses the mprotect
system call to control access to shared pages in such a way that any attempt to perform
a restricted access on a shared page generates the SIGSEGV signal. Upon trapping this
signal, the VMM updates the contents and protection level of the page on the physical
machine. The details of the memory sharing mechanism are described in Section 5.4.

Finally, we mention two implementation techniques required for both the virtualiza-
tion of address space and the virtualization of the memory coherence mechanism. One
technique is necessary for the invocation of the mmap, munmap, and mprotect system
calls. Since the specification of these system calls allows only a caller process to modify its
page mapping and access privilege, for the memory virtualization the system calls need
to be issued not by a monitor process but by a VM process. For this reason, a special code
for issuing the system calls is mapped on a memory region [0xb0000000, 0xc0000000)
of VM processes [ES03]. When trapping the SIGSEGV signal, a monitor process makes
corresponding VM process execute the special code.

Another technique is required for the SIGSEGV handling. The SIGSEGV signals are
generated for several reasons, including a page fault exception of a virtual machine and
access to a shared page whose privilege is downgraded. Since the way a SIGSEGV signals
is handled varies depending on the reason the signal is generated, the VMM classifies the
signal according to the flow-chart in Figure 5.6.

5.3.4 I/O Device Virtualization

I/O devices currently supported by the VMM include a hard disk and a serial terminal.
The supported access methods to these devices include programmed I/O (with in/out
instructions) and direct memory access (DMA). Access through memory-mapped I/O is
not currently implemented.

To emulate I/O devices, the VMM prepares one central server that keeps track of the
states of all the devices. We call this the I/O server. The I/O server communicates with
monitor processes to emulate the I/O devices. For example, when a guest operating sys-
tem tries to read a value from an I/O port with the in instruction, the I/O server and a
monitor process emulate the instruction as follows. First, the monitor process intercepts
the execution of the in instruction and sends a request to the I/O server. Upon receiving
the request, the server reads a value from the specified I/O port and sends it to the mon-
itor process. The monitor process then copies the value to the destination operand of the
instruction.

To trigger external interrupts generated by I/O devices, the I/O server checks the
state of the devices at regular intervals and tries to find devices that can trigger an inter-
rupt. If such a device is found, the server delivers an external interrupt of the device to a
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generated by the execution of instruction i.
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Figure 5.6: Flow chart of the SIGSEGV signal handling
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virtual processor in the following manner. First, the server decides a destination virtual
processor to which the interrupt is delivered. In the current implementation, the inter-
rupt is delivered to virtual processor v, such that v and the I/O server run on the same
host 2. Second, the I/O server transmits some signal (e.g., SIGUSR1) to the VM process
corresponding to v to stop its execution. Finally, the monitor process traps the signal and
makes the VM process enter an interrupt handler.

5.3.5 Support of Adaptive Parallelism

Virtual Multiprocessor allows a virtual machine to provide a fixed number of processors
even if available physical machines are added and/or removed dynamically. For exam-
ple, an application running inside a virtual machine sees N processors all the time even
if the number of available physical machines decreases and becomes less than N .

To provide a fixed number of virtual processors, the VMM maps one or more virtual
processors to a physical processor and changes the mapping dynamically. More specifi-
cally, the VMM moves virtual processor p from host s to host d in the following manner
(See Figure 5.7).

1. Monitor process Ms, which is responsible for p sends requests to other monitor
processes not to receive further incoming messages.

2. Monitor processes that receive the request shut down a connection to Ms.

3. If all the connections to the remote monitor processes have been shut down, Ms

starts to take a snapshot of p. The snapshot includes states of registers of p, local
memory, drivers, and messages that have not yet been handled by Ms.

4. The VMM creates a new VM process and a monitor process Md at host d.

5. Ms sends the snapshot to Md, kill its VM process, and exits.

6. Md establishes connections to other remote monitor processes and resumes the
snapshot at host d. Md also begins to handle messages that were pending.

The current implementation is still naive. For example, migration of virtual proces-
sors needs to be triggered manually by a user. Dynamic mapping may cause asymmetric
speeds of virtual processors, and may lead to load in-balance. To solve these problems,
we plan to implement automatic scheduling of virtual processors and an efficient load
balance mechanism of virtual processors using a time ballooning technique [ULSD04].

2The scheduling of destinations with dynamic priority has not been implemented yet.
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Figure 5.7: Migration of virtual processor p from host s to host d

5.4 Memory Consistency Algorithm

This section explains the virtualization of the memory consistency mechanism in detail.
First, we describe the IA-32 memory model. The VMM needs to satisfy this memory
model to allow existing programs for the IA-32 architecture to run inside a virtual ma-
chine without modification. Then, we present a simple memory consistency algorithm
that satisfies the IA-32 memory model. Note that the memory model our algorithm tar-
gets differs from that of most existing memory consistency algorithms for distributed
shared-memory systems, such as release consistency [KCDZ94, BCZ90].

5.4.1 IA-32 Memory Model

The IA-32 memory model specifies the order in which processors see updates to memory
as if they appear to be accessing a single memory. According to the specification of IA-
32 [Int03], its memory model is processor consistency and guarantees that the following
ordering rules apply in multi-processor machines:

• Individual processors use the same ordering rules as in a single-processor machine.

• Writes by a single processor are observed in the same order by all processors.

• Writes from the individual processors are not ordered with respect to each other.

Added to the above ordering rules, the IA-32 architecture provides several mech-
anisms for strengthening or weakening the memory ordering model to handle special
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proci : virtual processor i
Mi : message queue of virtual processor i
pagesn

i : nth page of virtual processor i
p.state : state of page p (invalid, read only, or read write)
p.content : content of page p
p.owner : processor that own the latest content of page p
p.copyset : a collection of processors that have a replica of page p
p.busy : flag which is true while page p is being updated

Figure 5.8: Variables for algorithm description

programming situations. These mechanisms include the I/O instructions, locking in-
structions, the LOCK prefix, and serializing instructions that force stronger ordering on
processors. For instance, mfence is one the serializing instructions. It ensures that every
load-from-memory and store-to-memory instruction that precedes the mfence instruc-
tion in machine code is globally visible when the mfence instruction is issued.

5.4.2 Algorithm Description

We explain a simple memory consistency algorithm that satisfies the IA-32 memory model.
This algorithm is based on a simple sequentially consistent, multiple-reader/single-write
protocol used in Ivy [LH89]. The machine pages of the virtual machine are distributed
over nodes such that each node manages a subset of the pages. Figure 5.8 and Figure 5.9
describe the algorithm in more detail. Figure 5.8 shows variables used in the algorithm
description. Figure 5.9 describes actions of virtual processor i. When one of the condi-
tions listed on the left side of the figure holds, the corresponding action on the right side
of the figure is taken.

We plan to optimize the algorithm by relaxing memory consistency as far as pos-
sible why satisfying the IA-32 memory model. This optimization plan is discussed in
Section 5.6.

5.5 Experiments

We implemented a prototype of Virtual Multiprocessor and conducted several experi-
ments to demonstrate the performance of our system. This prototype system builds a
virtual eight-way multi-processor machine on top of eight physical machines. The vir-
tual machine can host the Linux kernel for SMP and allows various applications (e.g.,
gcc, make) to run on Linux.
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Guard Action
access(i, a, n) =⇒ stop the execution of the VM process;

∧ send 〈fetch, n, a, i〉 to manager(n);
violation(pagesn

i , a)

〈fetch, n, a, s〉 ∈ Mi =⇒ remove 〈fetch, n, a, s〉 from Mi;
∧ let p be pagesn

i ;
pagesn

i .busy = false p.busy := true;
match a with
read ⇒
send 〈invalidate, n, a, s, p.owner〉 to p.owner ;

write⇒
forall x ∈ p.copyset such that x 6= procs ∨ x = p.owner do
send 〈invalidate, n, a, s, p.owner〉 to x;

end
〈invalidate, n, a, s, o〉 ∈ Mi =⇒ remove 〈invalidate, n, a, s, o〉 from Mi;

let p be pagesn
i ;

match a with
read ⇒ p.state := read only;
write⇒ p.state := invalid;

end;
if o = proci then send 〈ack, n, a, p.content〉 to procs;

〈ack, n, a, c〉 ∈ Mi =⇒ remove 〈ack, n, a, c〉 from Mi;
let p be pagesn

i ;
p.content := c;
match a with
read ⇒ p.state := read only;
write⇒ p.state := read write;

end;
send 〈finish, n, a, i〉 to manager(n);
restart the execution of the VM process;

〈finish, n, a, s〉 ∈ Mi =⇒ remove 〈finish, n, a, s〉 from Mi;
let p be pagesn

i ;
match a with
read ⇒ p.copyset := p.copyset ∪ { procs };
write⇒ p.copyset := { procs }; p.owner := procs;

end;
p.busy := false;

where
manager(n) : manager of the nth page(e.g., manager(n) = procn mod N where the number of processors is N )
access(i, a, n) : This predicate holds when processor i accesses with a (read or write) to nth page
violation(p, a) ≡ p.state = invalid ∨ (p.state = read only ∧ a = write)

Figure 5.9: Simple memory consistency algorithm (for virtual processor i)
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Table 5.1: Sequential benchmark programs and their execution time on a physical and a
virtual single-processor machine (units: seconds)

Name Description Execution time Execution time Overhead
(physical) (virtual) ratio

fib Calculate a Fibonacci number 22.6 22.1 0.97
getpid Issue getpid 100, 000 times 0.05 18.1 354
ls List file information 0.03 6.64 255
gcc Compile a C program 0.14 0.98 6.81

Specifically, we conducted the following experiments. First, we ran several sequential
programs on a virtual single-processor machine to measure the overhead of hardware vir-
tualization, excluding the memory coherence mechanism. The hardware virtualization
involves emulation of sensitive instructions, access to I/O devices, and so on. Second, we
ran parallel, coarse-grained tasks on a virtual multi-processor machine to measure the
overhead of the memory coherence mechanism. Third, we ran NAS parallel benchmarks
on a virtual dual-processor machine to measure performance of parallel programs that
are more complex than parallel, coarse-grained tasks. Finally, we measured overheads of
migration of virtual processors.

All the experiments were conducted on 2.4 GHz Intel Xeon machines with 2 GB RAM
and a 1 Gigabit Ethernet NIC. In Section 5.5.1 and Section 5.5.2, Linux 2.4 was used for
both the host operating system and the guest operating system. In Section 5.5.3 and
Section 5.5.4, Linux 2.6.8 was used for both the host operating system and the guest op-
erating system.

5.5.1 Execution of Sequential Programs

We ran several sequential programs on a virtual single-processor machine to measure the
overhead of hardware virtualization, excluding the memory coherence mechanism.

Table 5.1 shows a description of benchmark programs and their execution times on
a physical machine and a virtual machine. Although the experimental results indicate
that overheads incurred by the execution of getpid, ls, and gcc are large, the over-
heads can be reduced, as indicated by the performance of existing IA-32 VMMs (e.g.,
VMware [VMw], Xen [BDF+03]). Section 5.6 discusses several techniques for reducing
the overheads.

5.5.2 Execution of Parallel Coarse-grained Tasks

We measured the execution time of parallel coarse-grained tasks on a virtual multi-processor
machine to evaluate the overhead of the memory coherence mechanism. Specifically, we
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Figure 5.10: Speedup of parallel Fibonacci

ran eight processes that calculate a Fibonacci number simultaneously on a one-way, . . . ,
eight-way virtual multi-processor machine built on top of one, . . . , eight physical ma-
chines respectively. The overheads of these programs are mainly due to emulation of the
following hardware mechanism:

• System calls such as fork, used for creating processes.

• Access to a hard disk for loading the executable file and shared libraries.

• The memory coherence mechanism (especially necessary for processes running in
kernel mode).

Figure 5.10 shows a speedup of this program. fib(n) denotes the calculation of the
nth Fibonacci number. As shown in this figure, the program achieved a better speedup as
tasks were coarser. The execution of fib(46) on an eight-way multi-processor machine
is about 6.6 times faster than on a one-way processor machine.

Table 5.2 gives the breakdown of the execution of Fibonacci numbers. ’Total’ denotes
the total execution time. ’Native’ denotes how long the virtual machines ran in native
mode. ’Shmem’ denotes the time spent for the virtualization of the memory coherence
mechanism. ’Misc’ denotes the time spent for the hardware virtualization, excluding the
memory coherence mechanism. ’Idle’ denotes how long the virtual machines executed
the hlt instruction. For more than one processor, the table shows the average of the ex-
ecution times of individual processors. Table 5.2 indicates that the overhead of fib(40)
and fib(44) is mainly caused by the virtualization of the memory coherence mecha-
nism, which becomes larger as the number of processes increases.
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Table 5.2: Breakdown of execution time of fib(40) and fib(44) (units: seconds)
fib(40)
# of procs. Total Native Shmem Misc Idle
1 26.2 25.8 0.0 0.4 0.0
2 14.3 12.9 0.7 0.4 0.2
4 10.1 6.5 2.1 0.2 1.3
8 11.3 3.6 3.6 0.1 3.9

fib(44)
# of procs. Total Native Shmem Misc Idle
1 180.0 177.8 0.0 2.2 0.0
2 90.3 87.9 1.0 1.1 0.3
4 52.4 43.7 3.0 0.4 5.3
8 27.9 22.1 3.7 0.1 2.0

Total : total execution time
Native : time for a virtual machine to run native mode
Shmem : time for the virtualization of the memory coherence mechanism
Misc : time for the virtualization, excluding the memory coherence mechanism
Idle : time for a virtual machine to execute the hlt instruction

We further investigated the overhead incurred by the virtualization of the memory
coherence mechanism for fib(44). We measured the distribution of virtual addresses
fetched by the monitor processes for memory sharing (Figure 5.11) and the distribution
of times to complete individual page fetch requests (Figure 5.12). Figure 5.11 indicates
that page fetch requests frequently occurred at the beginning and end of fib(44) (in
both user and kernel mode). Note that the base address of the kernel space of the guest
operating system is changed to 0xa0000000, as mentioned in Section 5.3.3. Figure 5.12
shows that some fetch requests took tens of milliseconds to complete, whereas most page
fetches were completed in less than ten milliseconds. These experimental results indicate
that the overhead of the parallel coarse-grained tasks is due to frequent page fetches
caused by false sharing.

5.5.3 Execution of NAS Parallel Benchmarks

We built a virtual dual-processor machine on two physical machines and ran NAS Paral-
lel Benchmarks (NPB) 2.3 [NASa] on the virtual machine. All the benchmarks are written
in OpenMP [NASb]. More specifically, we measured execution time of Embarrassingly
Parallel (EP), Conjugate Gradient (CG), LU Decomposition Simulated CFD Application
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Table 5.3: Execution time of the NAS Parallel Benchmarks 2.3 written in OpenMP (units:
seconds)

Benchmark Class Physical machine Virtual Machine Virtual Machine
(single processor) (single processor) (dual processor)

EP S 6.35 6.73 7.36
A 101.48 102.69 58.74

CG S 0.24 1.11 48.76
A 5.23 14.00 N/A

LU S 0.16 0.64 56.23
A 332.06 345.52 N/A

SP S 0.24 0.87 778.68
A 374.81 392.55 N/A

(LU), and Scalar Pentadiagonal Simulated CFD application (SP) benchmarks.
Table 5.3 shows execution time of the benchmarks on a physical single-processor ma-

chine, a virtual single-processor machine, and virtual dual-processor machine. First, we
compare execution of the benchmarks on the virtual single-processor machine and on
the physical machine. Although the former took a longer time than that on the latter be-
cause of interventions the VMM (e.g., context switch, system calls), the overhead became
smaller as the problem size became larger. Next, we compare execution on the virtual
dual-processor machine and on the physical machine. Though EP of which class size is
A achieved an approximately linear speedup, the other benchmarks (CG, LU, and SP)
suffered from virtualization overheads. The overheads are mainly caused by communi-
cation time required for shared memory emulation.

5.5.4 Migration of Virtual Processors

We evaluated overheads that migration of virtual processors incurs. Specifically, we cre-
ated a virtual dual multi-processor machine with 32 MB RAM over host X and Y , and
moves one of the virtual processors running at X to X ′. The monitor process at X took a
snapshot of the virtual processor and store it as a local file of an NFS file system. A newly
created monitor process at X ′ got the snapshot via the NFS. We measured a time for the
monitor process at X to shut down a communication channel among remote monitor
processes and to take a snapshot. We also measured a time for monitor process at X ′ to
resume the snapshot and a downtime of the monitor process at Y (e.g., time to wait for
the recovery of connections).

Table 5.4 shows elapsed times of each action that the monitor process took. The ex-
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Table 5.4: Breakdown of overheads of virtual-processor migration
Action of the monitor process Elapsed time in seconds
Shut down connections at X 2.96 × 10−3

Take a snapshot at X 2.54
Resume a snapshot at X ′ 7.98 × 10−1

Wait for connection recovery at Y 2.79

perimental result obviously indicates that taking a snapshot 3 was a dominating cost in
migration of virtual processor. To reduce this migration cost, optimization techniques
proposed so far (e.g., VMotion [NLH05], Xen [CFH+05]) can be used.

5.6 Discussion

In this Section, we discuss limitations of the current implementation of Virtual Multipro-
cessor and propose several solutions for overcoming these limitations.

Optimization of Hardware Virtualization. Currently, our VMM is placed on top of
a host operating system and is implemented solely in user mode, without any modifi-
cations to the host operating system. Although this architecture requires only a small
amount of implementation effort, the virtualization of IA-32 architecture (e.g., issues of
system calls, access to I/O devices) incurs a larger overhead as shown in Section 5.5.1.

To reduce these overheads, we plan to apply existing optimization techniques devel-
oped by numerous IA-32 VMMs (e.g., Xen [BDF+03], CoVirt [KDC03]) to our VMM. For
example, the number of context switches caused by the ptrace system call can be re-
duced by placing the VMM directly on bare hardware like Xen. We also plan to port
the VMM to other architectures whose designs are more suitable for hardware virtualiza-
tion [Adv05, Int05].

Optimization of Memory Consistency Algorithm. Since the memory consistency al-
gorithm described in Section 5.4.2 is simple sequentially consistent, we plan to develop
an algorithm that relaxes memory consistency as long as the IA-32 memory model can be
satisfied.

An example of optimization techniques we are planning is to allow multiple nodes to
write to the same page simultaneously. The sequentially consistent algorithm does not al-
low multiple nodes to write to the same page at the same time since write updates need to
become globally visible immediately. In contrast, our optimized algorithm delays write

3The size of the snapshot was 41 MB.
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updates until a synchronous instruction or an atomic instruction is issued. Note that this
relaxation of memory ordering does not violate the IA-32 memory model according to
the specification [Int03].

Fault Tolerance. A machine crash is a frequent event in commodity clusters because
of the large number of machines involved. Hence, we require that the system can con-
tinue to run even if some machines fail. We plan to implement a fault-tolerance mecha-
nism using techniques such as the checkpointing/recovery [EAWJ02] and replication for
VMMs [BS96, DH05].

Efficient scheduling for heterogeneous environments. Because the scheduling mech-
anism of commodity operating systems assumes that underlying processors have the
same performance, scheduling is not efficient for heterogeneous environments, which
commodity clusters are usual. To alleviate this problem, we plan to develop an efficient
scheduling mechanism using a technique such as time ballooning [ULSD04].

5.7 Related Work

Virtual Machine Monitors for Multi-Processor Machines. Recently several VMMs that
build a virtual multi-processor machine have been developed. These VMMs include
vNUMA [CH05], Virtual Iron [Vira], Disco [BDR97], and VMware ESX Server [Wal02].

vNUMA virtualizes a cc-NUMA machine on top of physical machines with the Ita-
nium architecture. Whereas the memory coherence mechanism of vNUMA based onv
Ivy invalidates memory pages synchronously, pages are invalidated asynchronously in
Virtual Multiprocessor. This asynchronous page update reduces downtime when a guest
operating system is not running though the total number of messages required for each
page fetch increases (See Table 5.5).

Virtual Iron [Vira] builds a virtual multi-processor machine on top of clusters. The
basic mechanism of Virtual Iron is similar to that of our system. A comparison between
Virtual Iron and our system has not been made yet, since details of Virtual Iron are not
public.

Disco and VMware ESX Server require a physical machine that has an equal or greater
number of processors than they are attempting to virtualize. In contrast, our VMM can
build a virtual multi-processor machine regardless of the number of physical processors
or the number of machines on which these processors reside. This functionality of our
VMM allows users to harness distributed resources efficiently and transparently.

Middlewares and Operating Systems for Providing an SSI. Middleware systems for
clusters (e.g., SCore [SCo] and Condor [LLM88]) provide a single software image for
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Table 5.5: Comparison of memory consistency algorithm between Ivy and Virtual Multi-
processor. “normal” denotes a process is neither a requester nor an owner.

access manager # of messages critical path length
read requester 2 2

owner 2 2
Ivy normal 3 3

write requester 2 + 2c 4
owner 2 + 2c 4
normal 3 + 2c 5

read requester 2 2
Virtual owner 3 2
Multiprocessor normal 4 3

write requester 2 + c 2
owner 3 + c 3
normal 4 + c 4

c : the number of processors that have a page replica
except the requester of page fetch

high-performance parallel programming environments. However, the interface provided
by these systems differs from that of the commodity operating system. In contrast, our
system’s interface is same as that of commodity operating system. This functionality
greatly simplifies the utilization of distributed resources.

There are several systems (e.g., MOSIX [BL98], OpenSSI [Opec] and Kerrighed [MLV+03])
that enhance the Linux kernel with cluster computing capabilities. Drawbacks that these
systems suffer include large implementation costs for kernel modification and difficulty
in supporting diverse operating systems.

Software Distributed Shared Memory Systems. Shasta [SGT96] and cJVM [AFT99] are
software distributed shared memory systems that transparently support a shared address
space across a cluster of workstations. Shasta implements the shared address space by
transparently rewriting the application executable to intercept loads and stores. cJVM
implements the shared memory space by modifying Java Virtual Machine.

While Shasta and cJVM support only user programs, our system allows an entire
operating system for SMP to run on clusters. Furthermore, our system is targeted at the
IA-32 architecture, whereas Shasta is targeted at the MIPS architecture and cJVM at Java
Virtual Machine.
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Simulators and Emulators. SimOS [RHWG95] performs a complete machine simula-
tion that helps investigators better understand the behavior of machines running com-
mercial OSes, as well as any applications designed for these Oses. SimOS supports the
simulation of a multi-processor machine in which individual processors are emulated
by different Unix processes. Compared with our system, SimOS requires that the nodes
where the Unix processes run physically share the same memory.

Bochs [Boc] is an open source IA-32 emulator. Although Bochs also supports the
emulation of a multi-processor machine, its emulation is not parallel but sequential, like
co-scheduling. As a result, it is not useful for enhancing parallel computing.

5.8 Summary

We have presented Virtual Multiprocessor, a software layer that virtualizes a multi-processor
machine on a commodity cluster. The experimental results show that our system achieved
good performance for embarrassingly parallel coarse-grained tasks. Since this kind of
parallel programs include various useful applications such as parameter sweep applica-
tions and parallel make, our system can be applied for the wide deployment of commod-
ity clusters.

As mentioned in Section 5.6, we plan a number of extensions and improvements to
our system. Furthermore, we plan to evaluate our system using real-world applications
such as the SPLASH-2 suite [Sta] and Apache [Apa].
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Chapter 6

Conclusions

6.1 Summary of Results

We have presented the middleware systems that enable users to efficiently adapt dy-
namic changes in their computing environments: (i) Phoenix — a Grid-enabled message
passing library for accommodating dynamic addition and removal of machines, (ii) Vir-
tual Private Grid — a remote job-submission system for accessing hundreds of machines
seamlessly, (iii) Virtual Multiprocessor — a virtual machine monitor that provides a sin-
gle system image on cluster systems. Several techniques for improving the scalability of
the routing mechanism of Phoenix have been also described.

Our thesis was that these middleware systems have advantages over existing mid-
dleware systems from the view point of programmability, scalability, and usability. More
specifically, the Phoenix library enables better programmability than existing message-
passing systems (e.g., MPI) by providing virtual node names that a programmer maps
to processes dynamically. In addition, the implementation of library is comparable in
scalability to previous implementations of the message-passing systems. Virtual Multi-
processor achieves good usability by creating a shared-memory multiprocessor machine
on a cluster of computers. It allows a user to run parallel applications (and operating
systems) for shared-memory multi-processor machines on commodity clusters with no
or little modification to their code.

The evaluation of the middleware systems has been also described. The performance
of the Phoenix library was evaluated using several benchmark programs, including a
parallel ray-tracing program based on Pov-Ray and Integer Sort in the NAS Parallel
Benchmark suite. The parallel ray-tracing with a divide-and-conquer algorithm achieved
a good speedup with a large number of nodes across multiple LANs (about 78 times
speedup using 104 CPUs across three LANs). Experimental results indicated applica-
tions with a small task migration cost can quickly take advantage of dynamically join-
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ing/leaving resources. In addition, we measured the performance of the routing algo-
rithm of the Phoenix library using 400 nodes in three LANs. The experimental results
showed the elapsed time of routing table construction by our algorithm is only about
twice as long as that of off-line route calculation. We also demonstrated the feasibil-
ity of Virtual Multiprocessor. We built a virtual eight-way multi-processor machine on
eight physical machines, with Linux installed, and ran parallel, coarse-grained tasks on
the virtual machine. Experimental results indicated applications that do not require a
large amount of the VMM interventions (e.g., do not access I/O devices very frequently
) achieves good performance.

6.2 Directions for Future Work

Among the possibilities of future work discussed in the previous chapters, the most in-
teresting is to make our middleware systems fault tolerant. Fault tolerance is vitally im-
portant for clusters and grids suffering from their high machine-failure rates. Although
many failure-recovery algorithms (e.g., replication, checkpointing) have been proposed
so far, these algorithms are not straightforwardly applied to our middleware systems.
Overhead costs incurred by the algorithms (e.g., long system downtime) need to be re-
duced.

Another direction is to realize a fusion of Phoenix and Virtual Multiprocessor. We
plan to build virtual execution environments that facilitate the deployment of clusters
and computational grids using these two middleware systems. More specifically, we
plan to build customizable, safe execution environments by combining overlay networks
of Phoenix and the resource encapsulation mechanism of Virtual Multiprocessor. The
overlay-networks of Phoenix separate virtual networks viewed by users from physical
IP networks in which communication among nodes may be restricted by administrative
configurations such as firewalls or NATs. The resource encapsulation mechanism allows
a user to access consistent, customized application environments that are decoupled from
physical resources. These customizable platforms are useful because the heterogeneity of
underlying hardware (and software) configurations makes it difficult to run popular pro-
grams depending on specific operating systems or libraries. The resource encapsulation
also ensures that untrusted users or applications can only compromise their own operat-
ing system within a virtual machine, not physical resources. Compared with existing sys-
tems that provide virtual machines designed for efficient use of clusters or computational
grid (e.g., Xenoserver [FHH+03], SODA [JX03a], Violin [JX03b], PlanetLab [BBC+04], Vir-
tuoso [SD04], vMatrix [AR04], VMPlants [KGZ+04], Virtuozzo [Virb]), our system would
be preferable because of its multi-processor virtualization facility and routing facility.

We also plan to improve various aspects of each of our middleware systems. In par-
ticular, we plan to improve the scalability of Phoenix to utilize emerging computational
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grids approaching thousands of nodes (e.g., Grid’5000 project [CDD+05]). Since experi-
mental results we conducted indicated that scalability limitations of Phoenix are mainly
due to overheads incurred by the current implementation of routing table construction,
we would like to develop a more efficient routing algorithm. Possible optimization tech-
niques include compaction of routing table, reduction of the number of routing update
messages, and efficient connection management that considers underlying physical net-
works. Although much work on optimization techniques of routing algorithms has been
carried out both in theoretical and practical research fields (e.g., compact routing [TZ01]),
most of these algorithms have not yet been applied to computational grids. Further stud-
ies must to be conducted to reason that the algorithms can be applied to Phoenix.
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Appendix A

Specification of the Phoenix Library

This chapter describes APIs of Phoenix library, which is currently implemented for C
language. This chapter is organized as follows. Section A.1 explains data types, con-
stants, and global variables. Section A.2 explains initialization and finalization functions.
Section A.3 explains virtual node mapping functions. Section A.4 explains message trans-
mission functions. Section A.6 explains low-level interfaces that allows flexible initializa-
tion and finalization of the library. Section A.7 explains machine/network configurations
that are required to use the library.

A.1 Data Types, Constants, and Global Variables

A.1.1 Data Types

ph vp t ph vp t denotes a single virtual node. This data type is mainly used for spec-
ifying a destination address of messages. For example, the ph send function uses
ph vp t as the type of its first argument, which specifies a message destination.

ph vp t is implemented as a 64-bit integral type. In the 32-bit Linux, it is defined
as long long.

ph vps t ph vps t denotes a collection of virtual nodes. This data type is mainly
used for mapping virtual nodes to processes. For example, ph assume vps and
ph release vps use ph vps t as the type of their first argument, which specifies
a set of virtual nodes to be assumed and released respectively.

A virtual node set is created by functions such as ph vps create singleton and
ph vps create range. A newly created set of virtual nodes is allocated in heap
space by the Phoenix library. After the finish of its use, the destruction function
ph vps destroy should be invoked for recycle of the heap space.
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field name type description
body void * pointer to the body of the message
len size t length in bytes of the body
dest ph vp t message destination
tag int message tag

Table A.1: Fields of ph msg t

ph vps iter t ph vps iter t is a type for iterator over a collection of virtual nodes.
This data type is mainly used for iteratively accessing a virtual nodes set of which
type is ph vps t.

ph msg t ph msg t is a type for messages that are sent and received in the context
of Phoenix. This data type is mainly used as the type of the return value of the
ph recv function. ph msg t is designed as a pointer to a data structure of which
fields are listed in Table A.1.

A newly created message is allocated in heap space by the library. After the finish
of its use, the destruction function ph vps destroy should be invoked for recycle
of the heap space.

A.1.2 Constants

PH INVALID VP PH INVALID VP (= -1LL) is a constant value that denotes an in-
valid virtual node. For example, the ph vps get min elem and ph vps get max elem
functions return PH INVALID VP if an empty set of virtual nodes is given and they
cannot return any valid virtual node.

PH MSG ANY TAG PH MSG ANY TAG (= 0) indicates a wild card of a message tag. A mes-
sage sent with PH MSG ANY TAG will be received with any tag. A receive operation
with PH MSG ANY TAG receives a message sent with any tag. Section A.4 details
how message tags work.

A.1.3 Global Variables

PH VP LOWER BOUND PH VP LOWER BOUND is the lower bound of a virtual node space
that an application is allowed to manipulate. This value is specified by the ph init
function.

Note: PH VP LOWER BOUND = ph get vp lower bound() holds. ¤
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PH VP UPPER BOUND PH VP UPPER BOUND is the upper bound of a virtual node space
that an application is allowed to manipulate. This value is specified by the ph init
function.

Note: Note that PH VP UPPER BOUND = ph get vp upper bound() holds. ¤

A.2 Initialization and Finalization Functions

This section describes the ph init and ph finalize functions, which are used for
the initialization and finalization of the Phoenix library respectively. The ph init (or
ph finalize) function is basically called before (or after) the invocation of any other
Phoenix APIs.

void ph init (ph vp t lower, ph vp t upper, const char *config file, const char
*config tag, const char *session, const char *msg log file)

ph init(lower, upper, config file, config tag, session, msg log file)
initializes the Phoenix library. The initialization of the library takes three steps: (1)
invocation of the Phoenix runtime system, (2) set up of contact points (with inter-
pretation of a machine/network configuration file), and (3) message loading. The
arguments lower, upper, and session are used for the first step, config file
and config tag for the second step, and msg log file for the third step. The
second step and the third step are not essential and can be skipped. More specifi-
cally, the second step and the third step are skipped if config file and msg log file
are NULL respectively.

lower and upper respectively specify the lower bound and upper bound of a vir-
tual node space that will be used by a program. A program is allowed to access
(e.g., assume, release) only virtual nodes inside the specified range [lower, upper).

session is used for restricting communication among processes. More specifi-
cally, session specifies a session name, a null-terminated string determined by a
user. The runtime aborts if it receives a message from a remote process which has
a different session name. If a user does not need such restriction, session can
be NULL. If session is NULL, the runtime does not care the difference of session
names.

Note: The concept of session has been introduced to detect ‘cross talk’ among dif-
ferent programs caused by a user’s mistake. The ‘cross talk’ may occur when differ-
ent programs share the same communication port numbers on the same hosts. Such
mistakes can be detected if a user assigns a unique session name to each program. ¤
config file specifies a machine/network configuration file that basically con-
tains information about IP numbers (or hostnames) of available machines and port
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numbers. The caller process retrieves the information from the file to set up its
contact points. If config file is NULL, no contact points are set up.

config tag allows the caller process to explicitly control the information that
the process retrieves from the file. config tag is NULL if the caller does not re-
quire such explicit control. Examples of cases when a programmer need to specify
config tag are:

• Among many listen ports listed in the file, the programmer would like to ex-
plicitly specify the port to which the caller process listens.

• Among many contact points listed in the file, the programmer would like to
explicitly specify some of the contact points where the caller process connects.

The details of the syntax of the machine/network configuration file and how config tag
is used are described in Section A.7.

msg log file specifies a log that contains information about flying messages. If
msg log file is NULL (this is usually OK), nothing is done. If msg log file is
not NULL, ph init function reads msg log file and restores messages into the
local message queue. See also the description of ph finalize.

Note: lower and upper must be greater than or equal to zero and must be smaller
than 263. ¤

void ph finalize (const char *msg log file, int timeout)
ph finalize(msg log file, timeout) function finalizes the Phoenix library.

Before closing communication sockets and disposing data structures, ph finalize
makes efforts to prevent flying messages (in this context, they are messages that
happen to be in the local message queue of the caller process) from being lost. The
arguments of this function are used for this purpose.

This function waits until timeout seconds passes or the caller’s message queue
becomes empty. ph finalize just returns if the message queue becomes empty
before timeout. If timeout seconds has passed, ph finalize saves contents of
messages in the local message queue to msg log file and returns. Afterward,
those messages should be restored in the invocation of ph init by other processes.
If msg log file is NULL, flying messages are not saved; those messages may be
lost.

In addition to ph init and ph finalize, the Phoenix library provides low-level
primitives for the initialization and finalization. While it is complex for a beginner to
write the initialization and finalization process with these primitives, they allow more
flexible control than ph init and ph finalize. The details of the primitives are de-
scribed in Section A.6.
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A.3 Virtual Node Name Mapping Functions

This section describes functions used for mapping virtual nodes to processes and for
accessing currently assumed virtual nodes.

void ph assume vps (const ph vps t vps)
ph assume vps(vps) lets a caller process assume virtual nodes vps. After the
end of function invocation, messages destined for a virtual node in vps are deliv-
ered to the caller process.

Note: Virtual nodes that have already assumed by the previous call of ph assume vps
are still assumed. For example, suppose that a caller process assuming S calls
ph assume vps(T ). Then, the caller assumes S ∪ T when the function returns. ¤

void ph assume vp (ph vp t vp)
ph assume vp(vp) lets a caller process assume single virtual node vp.

void ph release vps (const ph vps t vps)
ph release vps(vps) lets a caller process release virtual nodes vps from its as-
sumed virtual node sets. After the function returns the caller does not receive any
messages destined for a virtual node in vps.

void ph release vp (ph vp t vp)
ph release vp(vp) lets a caller process release single virtual node vp.

ph vps t ph get assumed vps (void)
ph get assumed vps() returns a set of virtual nodes that a caller process cur-
rently assumes. Since the returned data structure is newly allocated in heap space
by the runtime system, ph vps destroy needs to be invoked for freeing the allo-
cated memory region.

Note: A virtual node set returned by this function does not contain the caller
process’s resource name. ¤

ph vp t ph get resource name (void)
ph get resource name() returns the resource name of the caller process. The
resource name is a special virtual node that is randomly chosen by the Phoenix
library for each process. It is outside of the range [ph get vp lower bound(),
ph get vp upper bound()), and remains constant from the invocation of ph init
to the invocation of ph finalize.

The resource name will be useful for the migration protocol that involves processes
that have no ‘ordinary’ virtual nodes [TKEY03].
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ph vp t ph get vp lower bound (void)
ph get vp lower bound() returns the lower bound of a virtual node space that
an application is allowed to use. It is specified by the first argument of the ph init
function.

Note: ph get vp lower bound() = PH VP LOWER BOUND holds. ¤

ph vp t ph get vp upper bound (void)
ph get vp upper bound() returns the upper bound of a virtual node space that
an application is allowed to use. It is specified by the second argument of the
ph init function.

Note: ph get vp upper bound() = PH VP UPPER BOUND holds. ¤

ph vp t ph get random vp (void)
ph vps get random vp() returns a virtual node chosen randomly from a virtual
node space that an application is allowed to use (i.e., inside [ph get vp lower bound(),
ph get vp upper bound()).

A.4 Message Transmission Functions

This section describes functions for sending and receiving messages.

void ph send (ph vp t dest, const void *body, size t len, int tag)
ph send(dest, body, len, tag) transmits a message to a specified virtual
node.

dest specifies the destination address of the message. The runtime tries to deliver
the message to a physical node that currently assumes dest.

body and len specify the address and the length in bytes of the message respec-
tively.

tag is an integer used for message matching. A receive operation specifying a tag
will complete successfully only when a message sent with a matching tag arrives.
This allows a programmer to deal with the arrival of messages in an orderly way,
even if the arrival of messages is not in the order way. PH MSG ANY TAG indicates a
wild card. A message sent with PH MSG ANY TAG will be received with any tag.

Note: This function is non-blocking; it does not wait until the message is transmitted
to the specified destination. If the runtime finds that no physical node assumes
dest at the sending time, the message is enqueued to the caller process’s local
message queue. It remains in the queue until dest is assumed by some physical
node. ¤
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Caution: Phoenix does not strictly preserve the order of message delivery. The
correct order may become broken due to dynamic changes of network topologies.
For example, if an application split large data into some pieces and send them one
after another by repeating ph send, the pieces of the data may arrive in out of
order. A programmer should write applications that do not rely on such property,
or manually care the order of message delivery by herself/himself. ¤

void ph timed send (ph vp t dest, const void *body, size t len, int tag, long long
timeout)
The ph timed send function is same as the ph send function except that a mes-
sage sent by ph timed send automatically disappears if the message is not re-
ceived by any process during timeout micro-seconds.

ph msg t ph recv (int tag)
ph recv(tag) receives a message destined for a caller process and returns it. First,
this function looks up the caller’s local message queue containing messages that
have already arrived at the caller. Then, it dequeues some message that satisfies the
both of the following conditions:

• The destination virtual node of the message is assumed by the caller.

• The tag of the message matches with tag.

As the second condition indicates, tag is used for message matching. A receive
operation specifying a tag will complete successfully only when a message sent
with a matching tag arrives. A receive operation with PH MSG ANY TAG can receive
a message sent with any tag. This function returns PH MSG INVALID if an error
occurred.

Note: ph recv() is a blocking operation; control is not returned to a programmer
until a message to be received arrives. ¤
Note: The message returned by the function is automatically allocated in heap
space by the runtime system. Make sure that it is eventually freed by the ph msg destroy
function. ¤

void ph msg destroy (ph msg t msg)
ph msg destroy(msg) frees the data structure which msg points to.

ph msg t ph try recv (int tag)
The ph try recv function is same as the ph recv function except that ph try recv
is a non-blocking operation. If there exists no messages destined for a caller process,
ph try recv returns NULL immediately without waiting the arrival of new mes-
sages.
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ph msg t ph timed recv (int tag, long long timeout)
The ph timed recv function is same as the ph recv function except that ph timed recv
returns NULL if no message can be received during timeout micro-seconds.

A typical example of message receive routine is:

ph_msg_t msg;

/* Receive a message with any tag */
msg = ph_recv(PH_MSG_ANY_TAG);

/* Do something with the message by
accessing msg->body, msg->len,
msg->dest, and msg->tag) */

/* Free the allocated space for the message */
ph_msg_destroy(msg);

A.5 Virtual Nodes Manipulation Functions

This section describes functions for dealing with virtual nodes and virtual node sets.
These functions includes (i) creation and destruction of virtual node sets, (ii) judgment,
and (iii) iterator. The creation (destruction) functions allocate (free) an opaque data struc-
ture that represents a set of virtual nodes to (from) head space. The judgment functions
are used for comparing two sets or checking properties of a set. The iterator functions are
used for accessing a set of virtual nodes iteratively.

The basic data types used by these functions are ph vp t, ph vps t, and ph vps iter t.
ph vp t, which denotes a single virtual node, is a 64-bit integer type. ph vps t, which
denotes a set of virtual nodes, is a pointer type that refers a opaque data structure allo-
cated in heap space. ph vps iter t is used as the type of the iterator.

A.5.1 Creation and Destruction

The Phoenix library provides several functions for creating data structures that denote
virtual node sets. You can create singleton sets, interval sets, a union of two sets, and so
on.

Note that the newly created data structures are allocated in a heap space; you need to
invoke the ph vps destroy function to free data structures.
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ph vps t ph vps create empty (void)
ph vps create empty() creates an empty set and returns it.

ph vps t ph vps create singleton (ph vp t vp)
ph vps create singleton(vp) creates a set of virtual nodes that contains only
vp and returns it.

ph vps t ph vps create range (ph vp t l, ph vp t u)
ph vps create range(l, u) creates an interval of virtual nodes [l, u) and re-
turns it.

ph vps t ph vps create inter (const ph vps t x, const ph vps t y)
ph vps create inter(x, y) creates an intersection set of x and y (i.e., {x ∩ y})
and returns it.

ph vps t ph vps create union (const ph vps t x, const ph vps t y)
ph vps create union(x, y) creates a union set of x and y (i.e., {x ∪ y}) and
returns it.

ph vps t ph vps create diff (const ph vps t x, const ph vps t y)
ph vps create diff(x, y) creates a set difference of x from y (i.e., x \ y) and
returns it.

ph vps t ph vps dup (const ph vps t vps)
ph vps dup(vps) creates a copy of vps and returns it.

void ph vps destroy (ph vps t vps)
ph vps destroy(vps) frees a memory region where vps is allocated.

A.5.2 Judgment

int ph vps is empty (const ph vps t vps)
ph vps is empty(vps) returns 1 if vps is an empty set; otherwise returns 0.

int ph vps is sub (const ph vps t x, const ph vps t y)
ph vps is sub(x, y) returns 1 if x is a subset of y; otherwise returns 0.

int ph vps is equal (const ph vps t x, const ph vps t y)
ph vps is equal(x, y) returns 1 if x denotes an equal set to y; otherwise re-
turns 0.

int ph vps is exclusive (const ph vps t x, const ph vps t y)
ph vps is exclusive(x, y) returns 1 if x and y are exclusive; otherwise re-
turns 0.
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int ph vps is member (const ph vps t vps, ph vp t vp)
ph vps is member(vps, vp) returns 1 if vp is a member of vps; otherwise re-
turns 0.

A.5.3 Iterator

The following functions are for accessing virtual node sets iteratively.

ph vps iter t ph vps iter create (ph vps t vps)
ph vps iter create(vps) initializes a iterator over the virtual node set vps.

void ph vps iter destroy (ph vps iter t x)
ph vps iter destroy(x) frees x.

int ph vps iter has next (ph vps iter t x)
ph vps iter has next(x) returns 1 if there are some element that has not yet
been chosen by the previous calls of ph vps iter next(x, ...); otherwise re-
turns 0.

void ph vps iter next (ph vps iter t x, ph vp t * lower, ph vp t * upper, ph vp t
* stride)
ph vps iter next(x, &l, &u, &s) gets the next slice in the iterator x, and
stores the lower, upper and stride of the slice to l, u, and s respectively. The func-
tion stores PH INVALID VP to l, u, and s if all the elements have already been
chosen by the previous calls of ph vps iter next(x, ...).

More specifically, given lower l, upper u, and stride s, slice S(l, u, s) is defined as
follows:

S(l, u, s) = { x | x = si + l, i ∈ [0, (u − l)/s) }

This function gets any slice that is disjoint from all the slices chosen by the previous
calls of ph vps iter next(x, ...). In the current version of the library, the
function chooses a next slice as follows. Let T be a set of virtual nodes that have
not yet been chosen. Let e1 be the smallest element in T , and e2 the second smallest
element in T if exists.

If |T | = 1, the function returns S(e1, e1, 0).

If |T | > 1, the function returns the largest slice U that satisfies the following con-
dition:

∃e ∈ T, U = S(e1, e, e2 − e1) ∧ U ⊆ T
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void ph vps iter range next (ph vps iter t x, ph vp t * lower, ph vp t * upper)
The ph vps iter range next function is same as the ph vps iter next func-
tion except that ph vps iter range next returns a slice of which stride is 1.

Here is an example of iterator usage. This code prints all the elements in a virtual
node set vps.

ph_vps_iter_t iter = ph_vps_iter_create(vps);
while (ph_vps_iter_has_next(iter)) {

ph_vp_t lower, upper, stride, v;
ph_vps_iter_next(iter, &lower, &upper, &stride);
for (v = lower; v < upper; v += stride) {

printf("%lld\n", v);
}

}
ph_vps_iter_destroy(iter);

A.5.4 Miscellaneous

ph vp t ph vps get min elem (const ph vps t vps)
ph vps get min elem(vps) returns the smallest element in the virtual node set
vps. The function returns PH INVALID VP if vps is empty.

ph vp t ph vps get max elem (const ph vps t vps)
ph vps get max elem(vps) returns the largest element in vps. The function re-
turns PH INVALID VP if vps is empty.

ph vp t ph vps get any elem (const ph vps t vps)
ph vps get any elem(vps) randomly chooses one element from vps and re-
turns it. The function returns PH INVALID VP if vps is empty.

ph vp t ph vps get lower bound (const ph vps t vps)
ph vps get lower bound(vps) returns the smallest element in vps. The func-
tion returns PH INVALID VP if vps is empty.

Note: ph vps get lower bound(vps) = ph vps get min elem(vps) holds. ¤.

ph vp t ph vps get upper bound (const ph vps t vps)
ph vps get upper bound(vps) returns the upper bound of vps. The function
returns PH INVALID VP if vps is empty.

Note: ph vps get upper bound(vps) = ph vps get max elem(vps)+1 holds. ¤.
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A.6 Low-Level Interface for Initialization and Finalization

The Phoenix library provides low-level interfaces for the flexible initialization and final-
ization of the library.

A.6.1 Initialization

A basic initialization process consists of the following steps:

• Call ph init runtime to initialize the runtime.

• Call ph add port tcp, ph add port ssh, and ph add port ssl to set up con-
tact points where the runtime tries to initiate connections.

• Call ph load msgs to restore messages that were saved by previous processes (if
necessary).

void ph init runtime (ph vp t lower, ph vp t upper)
ph init runtime initializes the Phoenix runtime. This function must be invoked
before any other Phoenix APIs. lower and upper specify the range that will used
by the program.

void ph add port tcp (const char *hostname, int port)

void ph add port ssh (const char *hostname, int port, const char *user)

void ph add port ssl (const char *hostname, int port)
These functions inform the runtime of contact points at which the node can ac-
cess remote nodes. The runtime tries to establish connections to the informed ad-
dresses. ph add port tcp, ph add port ssh and ph add port ssl specify a
contact point for direct TCP communication, SSH tunneling, and SSL communica-
tion, respectively.

The arguments of this function specify a contact point. hostname can be a DNS
hostname or an IP address. IP addresses must be represented as an IPv4 stan-
dard text presentation (e.g., "192.168.0.1"); port specifies a port number to
which a node initiates a connection. user (the argument that appears only in
ph add port ssh) specifies an account name on the specified contact point.

void ph load msgs (const char *filename)
ph load msgs(filename) loads messages from file filename and enqueues
them to the local message queue.
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void ph set listen port (int lower, int upper)
ph set listen port(lower, upper) make a caller process listen to any un-
used port of which number is bigger than or equal to lower and is less than upper.

void ph set session id (const char * session)
ph set session id(session) restricts communication among processes. More
specifically, session specifies a session name, a null-terminated string determined
by a user. The runtime aborts if it receives a message from a remote process which
has a different session name.

void ph read config (char * buf, size t len, const char * config tag)
ph read config(buf, len, config tag) sets up of contact points by inter-
preting machine/network configuration information. The address and the length
in bytes of the configuration information are specifed by body and len respec-
tively. config tag allows the caller process to explicitly control the information
that the process retrieves from buf.

We show a typical example of initialization code.

int main() {
const int PORT = 30000;
const char * USER = "phnx"; /* username on host2 */

/* initialize the runtime */
ph_init_runtime(0LL, 1000LL);
ph_set_listen_port(PORT, PORT+1);

/* setup contact points */
ph_add_port_tcp("192.168.0.1", PORT);
ph_add_port_tcp("host1", PORT);
ph_add_port_ssh("host2", PORT, USER);

/* ... */

In the above code, the runtime binds and listens to port 30000. The contacts points
where the runtime initiates connections are:

• 192.168.0.1 and host1 (to port PORT via TCP)

• host2 (to port PORT via SSH with user "phnx")

116



A.6.2 Finalization

A basic finalization process consists of the following steps:

1. Call ph invalidate routing to prevent message transmission from remote nodes.

2. Call ph mqueue is empty to check whether the local message queue is empty or
not (if necessary).

3. Call ph store msgs to messages that still remain in the message queue (if neces-
sary).

4. Call ph finalize runtime to shut down the runtime.

void ph finalize runtime ()
ph finalize runtime() closes all the existing connections and shuts down the
runtime. This function must be called at the end of the program.

void ph invalidate routing (void)
ph invalidate routing() invalidates the routing tables of the local node’s neigh-
bors 1. This function ensures that any message is not transmitted to the local node
after the neighbors’ routing tables has been invalidated.

This function is basically invoked before ph finalize. Note that invalidating
neighbor’s routing table requires a certain amount of time. Thus, ph finalize
should be called after a certain amount of time has passed.

int ph mqueue is empty (void)
ph mqueue is empty() returns 1 if the local message queue is empty; otherwise
returns 0.

void ph store msgs (const char *filename)
ph store msgs(filename) saves all message in the local message queue at file
filename. This function allows a node to leave computation even if the node’s
message queue is not empty. The stored messages needs to be eventually loaded
and delivered by ph load msgs. filename.

The permanent leave is typically written as follows:

1The local node tells the neighbors that no virtual nodes are reachable via the local node.
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const int SLEEP_TIME = 1;

ph_invalidate_routing();
sleep(SLEEP_TIME);

/* wait until the local message queue becomes empty */
while (!ph_mqueue_is_empty()) {

sleep(A_CERTAIN_AMOUNT_OF_TIME);
}
ph_finalize_runtime();

First, by calling ph invalidate routing, the process tries not to receive further mes-
sages from its neighbors. The process sleeps a certain period of time to wait until neigh-
bors’ routing tables are completely invalidated. Then, the process waits until messages
destined for other processes are delivered from the local message queue to remote hosts
and the message queue eventually becomes empty. This condition can hold if the process
assumes no virtual nodes and the entire space of the virtual nodes are assumed by other
processes. Finally, the process shuts down the runtime by calling ph finalize runtime.

The following code is a typical example of temporal leave:

ph_invalidate_routing();
sleep(A_CERTAIN_AMOUNT_OF_TIME);

ph_store_msgs(filename);
ph_finalize_runtime();

The node leaves the computation after storing messages that remains in the local queue
at filename.

A.7 Machine/Network Configurations

A machine/network configuration is to set up contact points to which processes listen
and connect. The machine/network configuration is essential for the Phoenix library, and
a user usually needs to give the configuration to processes. For example, suppose that
you would like to run processes in a cluster. In this case, to let the processes communicate
with one another with TCP/IP, you need to inform them of nodes where they run and
ports to which they listen. Suppose that some processes would like to communicate over
SSH or SSL channels. In this case, you need to explicitly specify machines to which the
processes establish SSH/SSL connections.
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A basic method for setting up contact points is to declare them in a configuration file
and to give this information to processes. Interpreting a configuration file specified by the
third argument of ph init, the processes set up their contact points. In addition to such
simple interpretation, contact points declared in one configuration file can be selectively
given to each process, depending on the value of config tag, the fourth argument of
ph init.

In a configuration file, keyword listen port, dest, and match are used for the
above-mentioned contact point declaration. More specifically, a line that starts with
listen port declares a local end point to which a caller process listens. A line that
starts with dest declares an end point to which a caller process connects and protocol
that the process uses. match is used for pattern-matching. The pattern-matching allows
a caller process to selectively validate contact points declared in one configuration file.

The rest of this section is organized as follows. First, we intuitively explain how
listen port, dest and match are used for contact point declaration through several
examples. Next, we show typical examples of machine/network configuration files.

A.7.1 Syntax and Semantics

Keyword listen port

A line that starts with listen port followed by a port number is a declaration of a local
end point to which a process listens. For example, the following declaration lets a process
listen to port 30000.

listen_port 30000

You can declare more than one listen ports and let a process listen to any un-used
port among the declared ports. This feature allows more than one processes to run on
the same machine. A basic way for declaring multiple listen ports is to specify its range
as follows:

listen_port [lower-upper]

A process that the above declaration is given listens to any un-used port of which
number is bigger than or equal to lower, and is less than upper. Here is an example of
declaration that lets a process listen to any un-used port in [30000, 30010).

listen_port [30000-30010]
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The notation [lower-upper] can appear any times in any position of one local end
point declaration. For example, the following line declares listen ports 30000, 30001,
40000, and 40001.

listen_port [3-5]00[0-2]

Keyword dest

A line that starts with dest followed by an address and a port number is a declaration
of an end point to which a process connects. For example, the following declaration lets
a process connect to port 30000 on host.domain.com.

dest host.domain.com:30000

Of course, a target machine can be specified by an IP address (represented as an IPv4
standard text) instead of a DNS hostname.

dest 192.168.0.1:30000

To declare contact points to which a process connects over SSH/SSL channels, you
need to add keyword ssh/ssl to the end of the declaration. For example, the following
declaration lets a process establish SSH connection to port 30000 on.

dest host.domain.com:30000 ssh

If an account name of a target machine differs from that of a local machine, the target
machine’s account name must be specified as follows:

dest host.domain.com:30000 ssh user

There are basically two methods for declaring multiple contact points. One method is
to simply list contact points. For example, the following four lines declare 192.168.0.1:30000,
192.168.0.1:30001, 192.168.0.2:30000, and 192.168.0.1:30001.

dest 192.168.0.1:30000
dest 192.168.0.1:30001
dest 192.168.0.2:30000
dest 192.168.0.1:30001
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The other method is to specify a range of machine addresses and port numbers. For
example, the above four contact points can be declared in one line as follows:

dest 192.168.0.[1-3]:[30000-30002]

It must be noted that the number of digits can be fixed as follows:

dest node[00-64]:30000

This declares node00:30000, node01:30000, ... and node63:30000.

Keyword match

A basic syntax of pattern-matching code is as follows:

• The top line of pattern-matching code is match begin.

• The bottom line of the code is end.

• In a region surrounded by match begin and end, patterns and declarations are
listed.

The patter-matching code allows a process to use some of contact points declared in
one configuration file. More specifically, declarations listed in the pattern-matching code
are validated and are given to a process only if a corresponding pattern matches with
config tag, the fourth (second) argument of ph init.

We would like to explain the details of the pattern-matching through several exam-
ples. Suppose that there are three processes X , Y , and Z which require the following
machine/network configuration:

• X listens to port 30000 and connects to port 30001 on host.domain.com over a
SSH channel.

• Y listens to port 30001 and connects to port 30002 on its local host.

• Z listens to port 30002 and connects to port 30001 on its local host.

Let config tag of X , Y , and Z be x, y, and z respectively. The pattern-matching
code for the above configuration is written as follows:
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match begin
x -> listen_port 30000

dest host.domain.com:30001 ssh
| y -> listen_port 30001

dest localhost:30002
| z -> listen_port 30002

dest localhost:30001
end

x, y, and z located at the left side of the arrows are patterns. If one of these patterns
matches with config tag, corresponding declarations located at the right side of the ar-
row are validated. For example, for process X of which config tag is x, listen port
30000 and dest host.domain.com:30001 ssh are valid contact point declarations.

A pattern can represent a range as follows:

match begin
n[00-16] -> listen_port 30000

end

In the above example, the pattern matches with either n00, ... or n16.
Note that the pattern-matching is first match. It proceeds from the top line to the

bottom line; and once a pattern matches with config tag, the rest of the lines below are
ignored.

An underline sign ( ) matches with any config tag. For the following example,
dest localhost:30000 becomes valid regardless of config tag (as long as no other
patterns located above match with config tag).

match begin
...

| _ -> dest localhost:30000
end

The pattern-matching allows a single pattern that represents some range to change
corresponding declarations, depending on config tag. For example, the following
code lets processes of which config tag is n00, ... and n15 to listen to port 30000,
... and 300015 respectively.
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match begin
n[00-16/x] -> listen_port 300%x

end

Intuitively, pattern n[00-16/x] means that:

• The pattern matches with n00, ... and n15

• If the pattern matches with config tag s, v is bound to variable x such that v ∈
{00, ...15} and nv = s.

In corresponding declarations, v is substituted to %x. For example, if config tag is n05,
05 is bound to x, and 300%x is evaluated to 30005.

Note: Any line that begins with a hash sign (#) is a comment: the rest of the line is
ignored. ¤

Note: Keywords can be capitalized. For example, both listen port and LISTEN PORT
are OK. ¤

The complete syntax of machine/network configuration files is shown in Figure A.1.

A.7.2 Examples of Configurations

Example I Here is an example of machine/network configurations in which two pro-
cesses listen to port 30000 and 30001 on the same local machine, and they establish TCP
connections to each other.

listen_port [30000-30002]
dest localhost:[30000-30002]

Example II Here is an example of machine/network configurations for a cluster. 128
processes running on node000.domain.com, ... and node127.domain.com commu-
nicate with one another at port 30000.

listen_port 30000
dest node[000-128].domain.com:30000
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a ::= a | . . . | Z
d ::= 0 | . . . | 9
c ::= d | a | . | − |

nat ::= d1 . . . dn

str ::= c1 . . . cn

config ::= config sub1

. . .

config subn

config sub ::= decl
| match begin

pattern1− >decl11
. . .

decl1m(1 )

. . .

| patternn− >decln1

. . .

declnm(n)

end

decl ::= listen port nat set | dest str set :nat set { prot }
nat set ::= n1 . . . nm

n ::= d | [nat1−nat2 ] | %a

str set ::= s1 . . . sn

s ::= c | [nat1−nat2 ] | %a

prot ::= ssh { str } | ssl str1 str2
pattern ::= p1 . . . pn |

p ::= c | [nat1−nat2 ] | [nat1−nat2/a]

Figure A.1: Syntax of configuration files
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Example III Here is an example of machine/network configurations for a cluster, each
of which node is a multi-processor machine. 256 processes running on node000.domain.com,
... and node127.domain.com communicate with one another at port 30000 and 30001
(two processes per one node).

listen_port[30000-30002]
dest node[000-128].domain.com:[30000-30002]

Example IV Suppose that you would like to run processes on two different clusters.
One cluster consists of node x000, ... and x127. The other cluster consists of node y00,
... and y63. The inter-cluster communication is not allowed except a SSH channel from
x000 to y00.

Let config tag of each process be equal to a hostname where the process runs. In
this case, a machine/network configuration can be written as follows:

listen_port 30000
match begin
x000 -> dest y00:30000 ssh user

dest x[000-128]:30000
| x[001-128] -> dest x[000-128]:30000
| y[00-64] -> dest y[00-64]:30000
end

Note: In contrast to common MPI implementation, the Phoenix library supports
resource discovery mechanism for facilitating ease of configuration. This mechanism
allows a user not to declare all possible contact points and to specify only essential infor-
mation for communication between processes. See Chapter 3 for the details. ¤
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Appendix B

Sample Programs Written in Phoenix

This chapter presents two sample programs written in Phoenix. Section B.1 describe a
short program in which one process sends a message to another, and explains how the
Phoenix APIs work. Section B.2 mention how programs that support join and leave of
nodes are written in Phoenix.

B.1 A Short Example

Here is a example program hello.c in which a child process transmits string "HELLO"
to a parent process.

1: #include <stdio.h>
2: #include <unistd.h>
3: #include "phnx/phnx.h"
4:
5: int main(void) {
6: pid_t pid;
7: ph_vps_t vps;
8: ph_msg_t msg;
9:
10: pid = fork();
11:
12: /*** Initialization ***/
13: ph_init(0LL, 32LL, "machines", NULL, NULL, NULL);
14:
15: if (pid == 0) {
16: /*** S E N D E R ***/
17:
18: /*** Node name mapping ***/
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19: vps = ph_vps_create_range(0LL, 16LL);
20: ph_assume_vps(vps);
21: ph_vps_destroy(vps);
22:
23: /*** Message transmission ***/
24: ph_send(24LL, "HELLO", 6, PH_MSG_ANY_TAG);
25: } else {
26: /*** R E C E I V E R ***/
27:
28: /*** Node name mapping ***/
29: vps = ph_vps_create_range(16LL, 32LL);
30: ph_assume_vps(vps);
31: ph_vps_destroy(vps);
32:
33: /*** Message receipt ***/
34: msg = ph_recv(PH_MSG_ANY_TAG);
35: printf("%s\n", (char *)msg->body);
36: ph_msg_destroy(msg);
37: }
38:
39: /*** Finalization ***/
40: ph_finalize(NULL, -1);
41:
42: return 0;
43: }

As mentioned earlier, in Phoenix, message destinations are specified by virtual nodes,
which are dynamically mapped to processes. Thus, to send a message to the parent
process, the child process needs to know virtual nodes mapped to the parent process and
specify the message destination with the virtual nodes. In this program,

• the child process assumes virtual node names [0, 16);

• the parent process assumes virtual node names [16, 32); and

• the child process transmits "HELLO" to virtual node 24, which is assumed by the
parent process.

To execute this program, you need to create a configuration file that specifies available
machines/networks, and give it to the program. The Phoenix runtime basically binds and
listens to a port specified in the configuration file. For example, if you would like to run
a program at port 30000 and 30001 on the local host, a configuration file can be written as
follows:

listen_port [30000-30002]
dest localhost:[30000-30002]
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We name this configuration file machines and assume that the file is located on the
same directory where hello.c is located.

After writing the configuration file, you can compile hello.c and execute generated
executable code. When you execute it, the child process sends "HELLO" to the parent
process, and then the parent prints a received string (i.e., "HELLO") on a terminal.

% gcc -lphnx -lpthread -I/usr/local/include -L/usr/local/lib \
-o hello hello.c

% ./hello
HELLO

In the rest of this section, we take a closer look at program hello.c and configuration
file machines.

B.1.1 A Closer Look at hello.c

We explain some of the Phoenix APIs that appear in hello.c.

Header File The following line of code includes the common header file for Phoenix
APIs.

3: #include "phnx/phnx.h"

A programmer must include phnx/phnx.h into her/his program to make the API
functions available.

Variable Definitions The following lines define variables that are used in the function
main.

7: ph_vps_t vps;
8: ph_msg_t msg;

ph vps t is a type for a set of virtual node names. vps is used as an argument of
virtual node name mapping function (ph assume vps).

ph msg t is a type for a message. msg is used for storing a return value of message
receive function ph receive.

Initialization The following line of code initializes the Phoenix runtime.

13: ph_init(0LL, 32LL, "machines", NULL, NULL, NULL);

The function ph init is an initialization function for opening the underlying com-
munication layer on top of which Phoenix provides the simpler name space and message
delivery semantics. This function must be invoked before any other library functions.
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The first (second) argument 0LL (32LL) specifies the lower (upper) bound of a virtual
node name space that is used by this program. The program can only use a virtual node
name in this specified range [0, 32). To use any virtual node names outside the range is
prohibited by the Phoenix runtime.

machines denotes the name of a configuration file. The runtime uses the information
obtained by the configuration file to (i) determines a local end point to which the runtime
listens and (ii) remote end points to which the runtime tries to connect. The runtime
use the established connections to route messages between any pair of nodes, not just
between its end points.

Node Name Mapping The following lines map virtual node names to physical nodes.

19: vps = ph_vps_create_range(0LL, 16LL);
20: ph_assume_vps(vps);
21: ph_vps_destroy(vps);

29: vps = ph_vps_create_range(16LL, 32LL);
30: ph_assume_vps(vps);
31: ph_vps_destroy(vps);

The ph vps create range function returns an interval of virtual nodes. In this sam-
ple program, ph vps create range(0LL, 16LL) ph vps create range(16LL, 32LL)
return virtual nodes [0, 16) and [16, 32) respectively. A data structure returned by this
function is allocated on heap space. The ph vps destroy function is invoked to free the
allocated memory region.

The ph assume vps function maps virtual nodes to a caller process. When process
P calls ph assume vps(vps), the Phoenix runtime system starts delivering messages
destined for virtual nodes in vps to P . In other words, this is the caller’s declaration that
it is ready for receiving messages destined for virtual nodes in vps.

In hello.c, the child process assumes [0, 16) (at line 18). The parent process assumes
[16, 32) (at line 28).

Note: The ph release vps function has the reverse effect. The system no longer
delivers messages destined for vps to the caller node. ¤

Message Transmission/Receipt The following line of code transmits "HELLO" to vir-
tual node 24.

24: ph_send(24LL, "HELLO", 6, PH_MSG_ANY_TAG);

The first argument 24LL specifies the destination address of the message. The run-
time tries to deliver the message to a process that currently assumes 24. If no processes
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assume 24, the message is enqueued to the process’s local queue. The message remains
in the queue until the destination virtual node is assumed by some process.

The second argument "HELLO" and the third argument 6 specify the address and the
length in bytes of the message respectively.

The fourth argument is a tag used for message matching. PH MSG ANY TAG indicates
a wild card; messages sent with PH MSG ANY TAG will be received with any tag.

The following line of code receives any message destined for the local virtual nodes.

34: msg = ph_recv(PH_MSG_ANY_TAG);

The argument of this function is used for message matching. A receive operation with
PH MSG ANY TAG can receive a message sent with any tag.

The ph recv function returns a pointer to a structure that has the following fields:

• body: pointer to the body of the message

• len: length in bytes of the body

• dest: message destination

• tag: message tag

In this case, when the parent receives the message msg, msg->body, msg->len,
msg->dest, and msg->tag are "HELLO", 6, 24, and PH MSG ANY TAG respectively.

Note: The returned data structure is allocated on a heap space by the runtime. ¤
The following line of code frees msg to the message allocated on the receipt of the

message.

36: ph_msg_destroy(msg);

Finalization The following line of code shuts down the runtime system and allows the
node to leave computation.

40: ph_finalize(NULL, -1);

This function must be called at the end of the program.

B.1.2 A Closer Look at machines

Here, again, is configuration file machines.

listen_port [30000-30002]
dest localhost:[30000-30002]
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As mentioned earlier, the configuration informs the Phoenix runtime of available ma-
chines/networks. The first line specifies a local end point of the underlying communica-
tion layer. The second line specifies hostnames/IP addresses to which the runtime tries
to maintain connections.

In this example, the child and parent process binds and listens to port 30000 and 30001
respectively or vice verse. And they try to establish a TCP connection to port 30000 and
30001 on the local host (i.e., to each other).

B.2 Writing Programs Supporting Join and Leave of Processes

In this section, we describe how programs that support join and leave of processes are
written in Phoenix. Section B.2.1 describes rules of virtual node assignment. Section B.2.2
presents a basic strategy for exchanging virtual nodes among processes. Section B.2.3
shows a sample C program in which processes join and leave dynamically with exchange
messages.

B.2.1 Rules of Virtual Node Assignment

As mentioned in Section 2.2.1, programs written in Phoenix must follow the following
disjoint-cover property:

• No two processes assume the same virtual node at any instant.

• There may be an instant at which no process assumes a virtual node, but in such
cases, one must eventually appear that assumes it.

This property can hold easily if no processes join/leave dynamically. As shown in hello.c,
a programmer can maintain the property by statically partitioning the space among par-
ticipating processes. and by assuming nodes are fixed throughout the entire computa-
tion.

On the other hand, building applications in which each process can autonomously
decide to join/leave computation requires a dynamic protocol to maintain the property.
First, the application must be able to transport virtual nodes (i.e., change the mapping
between virtual node and processes with satisfying the disjoint-cover property). Second,
processes should support migration of application-level states in such a way that the
migration becomes transparent from the processes not involved in it.

To see the importance of the second requirement, let us consider an application that
partitions a large hash table (or any “container” data structure such as an array) among
participating processes. Such an application typically uses a simple mapping between
hash keys to virtual nodes. Most simply, hash key k is mapped to virtual node k and
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lookup/update of an item with hash key k is destined for whichever process assumes
virtual node k at that moment.

For such a mechanism to support transparent migration, we must guarantee that a
process assuming virtual node k always has all valid items of hash key k. This requires
processes to migrate hash table items from one node to another upon migrating virtual
nodes. The same situation arises in every application that partitions application-level
states among processes.

B.2.2 A Basic Strategy for Exchanging Virtual Nodes

A basic strategy for exchanging virtual nodes are briefly sketched as follows:

• When process P wants to join computation, it asks some process Q to delegate some
of its virtual nodes. Specifically, P sends a message to a randomly selected virtual
node (that is assumed by some process Q), receives a reply from Q, and assumes
virtual nodes that Q gives to P (See Figure B.1).

• When process P wants to leave computation, it asks some processor Q to take over
P ’s virtual nodes.

In both cases, while transporting virtual nodes, P and Q exchange messages to trans-
port application data associated with the virtual nodes if necessary.

Note that a joining/leaving process comes to assume no virtual node names: a joining
process first assumes no virtual nodes, and a leaving process also has no virtual nodes
after releasing all its virtual nodes. Nevertheless, they clearly need to somehow receive a
message. For example, a joining process needs to receive a message to take over virtual
nodes. Phoenix needs to allows a process that assumes no virtual nodes to receive a
message.

For this purpose, Phoenix provides the ph get resource name function. This func-
tion returns an opaque virtual node name outside the virtual node name space that an
application uses. The resulting name is worldwide unique with high probability1. It is
generated when a process brings up (i.e., calls ph init) and returns the same value until
it disconnects from the application (i.e., calls ph finalize). Besides regular messages
whose destinations are in the virtual node name space, Phoenix also routes messages des-
tined for such node names. In short, the node name returned by ph get resource name
serves as the name bound to the process. Thus, we hereby call this name resource name of
the process.

Caution: Applications should not use resource names for the application-level logic.
They are only used for supporting migration. ¤

1We assume it is in fact unique.
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Figure B.1: A basic strategy for a new process to join computation
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B.2.3 A Sample Program

We show a example program in which processes continue to forward "HELLO" mes-
sages among them while some of them join and leave computation dynamically. In the
program, the first forked process called an initiator assumes the entire virtual node. Two
processes that follow the initiator are called slaves. The slaves ask a process that has al-
ready joined computation for some of its virtual nodes. Each process leaves computation
after it receives "HELLO" messages several times. When leaving, it delegates the virtual
nodes that it assumes to another process.

More specifically, join and leave are handled as follows:

Join: Suppose that process P wants to join computation.

1. P sends a JOIN REQUEST message to a randomly chosen virtual node v to ask
for virtual nodes. P attaches its resource name r. This resource name is used
for the address of the reply of this JOIN REQUEST message.

2. Process Q that assumes v receives the JOIN REQUEST message. Q divides its
virtual nodes into two parts, and releases either of the parts and gives it to P .
Then, Q sends a JOIN RESPONSE (attached with the given virtual nodes) to
P ’s resource name r.

3. P receives the JOIN RESPONSE message and assumes the virtual nodes at-
tached with the message.

Leave: Suppose process P wants to leave computation.

1. P releases all its virtual nodes and devolves them to another process in such a
way that each node always assumes a single interval (i.e., a contiguous range
of integers) of virtual nodes, rather than any kinds of sets2.
For this purpose, P sends a LEAVE REQUEST (attached with P ’s virtual nodes)
to a virtual node adjacent to P ’s virtual nodes. For example, if P ’s virtual
nodes are [16, 24), it gives its virtual nodes to virtual node 15 or 24.

2. Q receives the LEAVE REQUEST message and takes over the virtual nodes at-
tached with the message. Then Q sends a LEAVE RESPONSE message as ac-
knowledgment of the request.

3. P receives the LEAVE RESPONSE message and exits.

We show an actual C program in which individual process acts as mentioned above.
For readability, we divide the program into six fragments. Here is the first fragment of
the program.

2We believe it is typical for an application to assume a single or a few intervals for the sake of simplicity
and the worst case storage requirements
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1: #include <stdio.h>
2: #include <assert.h>
3: #include <unistd.h>
4: #include "phnx/phnx.h"
5:
6: /* kind of message */
7: enum kind {
8: HELLO, JOIN_REQUEST, JOIN_RESPONSE, LEAVE_REQUEST, LEAVE_RESPONSE
9: };

10:
11: /* message data structure */
12: struct msg {
13: enum kind kind;
14: ph_vp_t sender; /* for JOIN_REQUEST and LEAVE_REQUEST */
15: ph_vp_t lower, upper; /* for JOIN_RESPONSE and LEAVE_REQUEST */
16: };
17: typedef struct msg * msg_t;

The above defines struct msg which denotes a message exchanged between pro-
cesses. struct msg has the following fields:

• kind: a kind of message.

• sender: a resource name of a process that sends this message. It is used for spec-
ifying an address to which a response of the message is transmitted. This field is
valid only if kind is either JOIN REQUEST or LEAVE REQUEST.

• lower, upper: virtual nodes that migrates due to join/leave of nodes. This field is
valid only if kind is either JOIN RESPONSE or LEAVE RESPONSE.

Here is the second fragment of the program.

18: /* ph_assume_vps() with pretty print */
19: void assume_vps(ph_vps_t vps) {
20: ph_vps_t old, new;
21:
22: old = ph_get_assumed_vps();
23: ph_assume_vps(vps);
24: new = ph_get_assumed_vps();
25:
26: printf("\t[%lld, %lld) ---> [%lld, %lld)\n",
27: ph_vps_get_lower_bound(old), ph_vps_get_upper_bound(old),
28: ph_vps_get_lower_bound(new), ph_vps_get_upper_bound(new));
29:
30: ph_vps_destroy(old);
31: ph_vps_destroy(new);
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32: }
33:
34: /* ph_release_vps() with pretty print */
35: void release_vps(ph_vps_t vps) {
36: ph_vps_t old, new;
37:
38: old = ph_get_assumed_vps();
39: ph_release_vps(vps);
40: new = ph_get_assumed_vps();
41:
42: printf("\t[%lld, %lld) ---> [%lld, %lld)\n",
43: ph_vps_get_lower_bound(old), ph_vps_get_upper_bound(old),
44: ph_vps_get_lower_bound(new), ph_vps_get_upper_bound(new));
45:
46: ph_vps_destroy(old);
47: ph_vps_destroy(new);
48: }

assume vps(vps) assumes virtual nodes vps. release vps(vps) releases virtual
nodes vps. When assuming/releasing virtual nodes, these functions print previous and
current virtual nodes.

Here is the third fragment of the program.

49: void send_join_request(void) {
50: ph_vp_t dest;
51: struct msg m;
52:
53: dest = ph_get_random_vp();
54: m.kind = JOIN_REQUEST;
55: m.sender = ph_get_resource_name();
56: printf("(%d)\tsends JOIN_REQUEST to %lld.\n", getpid(), dest);
57: ph_send(dest, (void *)&m, sizeof(struct msg), PH_MSG_ANY_TAG);
58: }
59:
60: void receive_join_response(void) {
61: ph_vps_t vps;
62: ph_msg_t x;
63: msg_t m;
64:
65: x = ph_recv(PH_MSG_ANY_TAG);
67: m = (msg_t)x->body;
68: assert(m->kind == JOIN_RESPONSE);
69:
70: printf("(%d)\treceives JOIN_RESPONSE.\n", getpid());
71: printf("(%d)\ttakes over [%lld, %lld).\n", getpid(),

136



72: m->lower, m->upper);
73: vps = ph_vps_create_range(m->lower, m->upper);
74: assume_vps(vps);
75: ph_vps_destroy(vps);
76: ph_msg_destroy(x);
77: }
78:
78: void join(void) {
80: send_join_request();
81: receive_join_response();
82: }

The join function is invoked to the caller to ask any process for virtual nodes.
Here is the fourth fragment of the program.

83: ph_vp_t get_adjacent_vp(ph_vps_t vps) {
84: ph_vp_t l = ph_vps_get_lower_bound(vps);
85: ph_vp_t u = ph_vps_get_upper_bound(vps);
86: return (l == PH_VP_LOWER_BOUND) ? u : (l - 1LL);
87: }
88:
89: void send_leave_request(ph_vp_t dest, ph_vps_t vps) {
90: struct msg m;
91:
92: m.kind = LEAVE_REQUEST;
93: m.sender = ph_get_resource_name();
94: m.lower = ph_vps_get_lower_bound(vps);
95: m.upper = ph_vps_get_upper_bound(vps);
96: printf("(%d)\tsends LEAVE_REQUEST to %lld.\n", getpid(), dest);
97: ph_send(dest, (void *)&m, sizeof(struct msg), PH_MSG_ANY_TAG);
98: }
99:
100: void receive_leave_response(void) {
101: ph_msg_t x;
102: msg_t m;
103:
104: x = ph_recv(PH_MSG_ANY_TAG);
105: m = (msg_t)x->body;
106: assert(m->kind == LEAVE_RESPONSE);
107: printf("(%d)\treceives LEAVE_RESPONSE\n", getpid());
108: ph_msg_destroy(x);
109: }
110:
111: void leave(void) {
112: ph_vps_t vps = ph_get_assumed_vps();
113: ph_vp_t dest = get_adjacent_vp(vps);
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114: printf("(%d)\tgives [%lld, %lld) to %lld.\n", getpid(),
115: ph_vps_get_lower_bound(vps), ph_vps_get_upper_bound(vps), dest);
116: release_vps(vps);
117: send_leave_request(dest, vps);
118: ph_vps_destroy(vps);
119: receive_leave_response();
120: }

The leave function is invoked to devolve the caller’s virtual nodes to another pro-
cess.

Here is the fifth fragment of the program.

121: void send_hello(void) {
122: ph_vp_t dest = ph_get_random_vp();
123: struct msg m;
124:
125: m.kind = HELLO;
126: printf("(%d)\tsends HELLO to %lld.\n", getpid(), dest);
127: ph_send(dest, (void *)&m, sizeof(struct msg), PH_MSG_ANY_TAG);
128: }
129:
120: ph_vps_t get_half_of_assumed_vps(void) {
121: ph_vps_t my_vps = ph_get_assumed_vps();
122: ph_vp_t l = ph_vps_get_lower_bound(my_vps);
123: ph_vp_t u = ph_vps_get_upper_bound(my_vps);
124: ph_vps_t vps = ph_vps_create_range(l, l + (u - l) / 2);
125: ph_vps_destroy(my_vps);
126: return vps;
127: }
128:
129: void send_join_response(ph_vp_t sender, ph_vps_t vps) {
130: struct msg m;
131:
132: m.kind = JOIN_RESPONSE;
133: m.lower = ph_vps_get_lower_bound(vps);
134: m.upper = ph_vps_get_upper_bound(vps);
135: ph_send(sender, (void *)&m, sizeof(struct msg), PH_MSG_ANY_TAG);
136: }
137:
138: void send_leave_response(ph_vp_t sender) {
139: struct msg m;
140: m.kind = LEAVE_RESPONSE;
141: ph_send(sender, (void *)&m, sizeof(struct msg), PH_MSG_ANY_TAG);
142: }
143:
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144: void main_loop(int nhellos) {
145: int n = 0;
146: while ((nhellos == -1) || (n < nhellos)) {
147: ph_msg_t x = ph_recv(PH_MSG_ANY_TAG);
148: msg_t m = (msg_t)x->body;
149: switch (m->kind) {
150: case HELLO:
151: printf("(%d)\treceives HELLO.\n", getpid());
152: sleep(1);
153: send_hello();
154: n++;
155: break;
156: case JOIN_REQUEST: {
157: ph_vps_t vps = get_half_of_assumed_vps();
158:
159: printf("(%d)\treceives JOIN_REQUEST.\n", getpid());
160: printf("(%d)\tgives [%lld, %lld) to %lld.\n", getpid(),
161: ph_vps_get_lower_bound(vps),
162: ph_vps_get_upper_bound(vps), m->sender);
163: release_vps(vps);
164: send_join_response(m->sender, vps);
165: ph_vps_destroy(vps);
166: break; }
167: case LEAVE_REQUEST: {
168: ph_vps_t vps;
169:
170: printf("(%d)\treceives LEAVE_REQUEST.\n", getpid());
171: printf("(%d)\ttakes over [%lld, %lld) from %lld.\n",
172: getpid(), m->lower, m->upper, m->sender);
173: vps = ph_vps_create_range(m->lower, m->upper);
174: assume_vps(vps);
175: ph_vps_destroy(vps);
176:
177: send_leave_response(m->sender);
178: break; }
179: }
180: ph_msg_destroy(x);
181: }
182: }

The main loop function is called after the process has joined computation. main loop(nhellos)
repeats receiving messages and handling them until it receives "HELLO"message nhellos
times. If nhellos is −1, this function repeats receiving messages forever.

Here is the last fragment of the program.

183: void spawn_initiator(int nhellos) {
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184: ph_vps_t vps;
185:
186: if (fork() != 0) { return; }
187:
188: ph_init(0LL, 32LL, "machines", NULL, NULL, NULL);
189: printf("(%d)\tstarts.\n"
190: "\tresource vp = %lld\n", getpid(), ph_get_resource_name());
191:
192: /* assume all the virtual node names */
193: vps = ph_vps_create_range(PH_VP_LOWER_BOUND, PH_VP_UPPER_BOUND);
194: assume_vps(vps);
195: ph_vps_destroy(vps);
196:
197: send_hello();
198: main_loop(nhellos);
199: leave();
200: ph_finalize(NULL, -1);
201: printf("(%d)\texits.\n", getpid());
202: exit(0);
203: }
204:
205: void spawn_slave(int nhellos) {
206: if (fork() != 0) { return; }
207:
208: ph_init(0LL, 32LL, "machines", NULL, NULL, NULL);
209: printf("(%d)\tstarts.\n\tresource vp = %lld\n", getpid(),
210 ph_get_resource_name());
211:
212: join();
213: main_loop(nhellos);
214: leave();
215: ph_finalize(NULL, -1);
216: printf("(%d)\texits.\n", getpid());
217: exit(0);
218: }
219:
220: int main(void) {
221: spawn_initiator(3);
222: sleep(1);
223:
224: spawn_slave(3);
225: sleep(1);
226:
227: spawn_slave(-1);
228: sleep(1);
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229:
230: while (1) { sleep(10); }
231: return 0;
232: }

The function main forks three processes by calling spawn initiator and spawn slave.

• A first forked process (initiator) assumes the entire virtual node, receives messages
three times, and leave computation by calling leave.

• A second forked process joins computation by calling join, receives messages
three times, and leave computation by calling leave.

• A third forked process joins computation by calling join, and repeat receiving
messages forever.

Here is an example output of the program.

(24577) starts. // (24577) joins in computation.
resource vp = 9104594110672513012
[-1, -1) ---> [0, 64)

(24577) sends HELLO to 16.
(24577) receives HELLO.
(24584) starts. // (24584) begins to join in computation.

resource vp = 6332194092195308135
(24584) sends JOIN_REQUEST to 55.
(24577) sends HELLO to 18.
(24577) receives HELLO.
(24591) starts. // (24591) begins to join in computation.

resource vp = 7645442783267026781
(24591) sends JOIN_REQUEST to 26.
(24577) sends HELLO to 51.
(24577) receives JOIN_REQUEST.
(24577) gives [0, 32) to 6332194092195308135.

[0, 64) ---> [32, 64)
(24577) receives HELLO.
(24584) receives JOIN_RESPONSE.
(24584) takes over [0, 32).

[-1, -1) ---> [0, 32) // (24584) finishes to join in computation.
(24584) receives JOIN_REQUEST.
(24584) gives [0, 16) to 7645442783267026781.

[0, 32) ---> [16, 32)
(24591) receives JOIN_RESPONSE.
(24591) takes over [0, 16).

[-1, -1) ---> [0, 16) // (24591) finishes to join in computation.
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(24577) sends HELLO to 15.
(24577) gives [32, 64) to 31. // (24577) begins to leave computation.

[32, 64) ---> [-1, -1)
(24577) sends LEAVE_REQUEST to 31.
(24584) receives LEAVE_REQUEST.
(24584) takes over [32, 64) from 9104594110672513012.

[16, 32) ---> [16, 64)
(24577) receives LEAVE_RESPONSE
(24591) receives HELLO.
(24591) sends HELLO to 27.
(24584) receives HELLO.
(24577) exits. // (24577) finishes to leaves computation.
(24584) sends HELLO to 52.
(24584) receives HELLO.
(24584) sends HELLO to 54.
(24584) receives HELLO.
(24584) sends HELLO to 30.
(24584) gives [16, 64) to 15.

[16, 64) ---> [-1, -1)
(24584) sends LEAVE_REQUEST to 15.
(24591) receives LEAVE_REQUEST.
(24591) takes over [16, 64) from 6332194092195308135.

[0, 16) ---> [0, 64)
(24584) receives LEAVE_RESPONSE
(24591) receives HELLO.
(24591) sends HELLO to 10.
(24591) receives HELLO.
(24584) exits. // (24584) finishes to leaves computation.
(24591) sends HELLO to 1.
(24591) receives HELLO.
(24591) sends HELLO to 45.
...

The process of which process ID (PID) is 24577 first joins computation, and the process
with PID 24584 and the one with PID 24591 successively join computation. Then, after
receiving several messages the process with PID 24577 and the one with PID 24584 leave
computation. As this output indicated, while some of the processes are joining or leaving,
the other processes continue to forward "HELLO" messages.
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