
Phoenix : a Parallel Programming Model for
Accommodating Dynamically Joining/Leaving Resources

Kenjiro Taura
University of Tokyo

7-3-1 Hongo Bunkyo-ku
Tokyo, 113-0033, Japan

tau@logos.t.u-tokyo.ac.jp

Kenji Kaneda
University of Tokyo

7-3-1 Hongo Bunkyo-ku
Tokyo, 113-0033 Japan

kaneda@is.s.u-tokyo.ac.jp

Toshio Endo
PRESTO, JST

4-1-8 Honcho, Kawaguchi
Saitama, 332-0012 Japan

endo@logos.t.u-tokyo.ac.jp

Akinori Yonezawa
University of Tokyo

7-3-1 Hongo Bunkyo-ku
Tokyo, 113-0033 Japan

yonezawa@is.s.u-tokyo.ac.jp

ABSTRACT
This paper proposes Phoenix, a programming model for
writing parallel and distributed applications that accom-
modate dynamically joining/leaving compute resources. In
the proposed model, nodes involved in an application see a
large and fixed virtual node name space. They communi-
cate via messages, whose destinations are specified by vir-
tual node names, rather than names bound to a physical
resource. We describe Phoenix API and show how it al-
lows a transparent migration of application states, as well
as dynamically joining/leaving nodes as its by-product. We
also demonstrate through several application studies that
Phoenix model is close enough to regular message pass-
ing, thus it is a general programming model that facilitates
porting many parallel applications/algorithms to more dy-
namic environments. Experimental results indicate applica-
tions that have a small task migration cost can quickly take
advantage of dynamically joining resources using Phoenix.
Divide-and-conquer algorithms written in Phoenix achieved
a good speedup with a large number of nodes across multi-
ple LANs (120 times speedup using 169 CPUs across three
LANs). We believe Phoenix provides a useful programming
abstraction and platform for emerging parallel applications
that must be deployed across multiple LANs and/or shared
clusters having dynamically varying resource conditions.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—concurrent pro-
gramming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

General Terms
Performance

Keywords
Parallel programming, distributed programming, message
passing, migration, resource reconfiguration

1. INTRODUCTION
Distributed computing and parallel computing are con-

verging. Parallel computing, traditionally focusing on solv-
ing a single problem with a fixed number of homogeneous
and reliable processors, is now involving resources distributed
over the world [11]. Issues of primary importance for dis-
tributed applications, such as some degree of fault-tolerance
and continuous 24x7 operations are now issues parallel ap-
plications must face as a fact of the world. Distributed
computing, traditionally focusing on sharing and exchang-
ing “information” between computers, is now extending its
purpose to providing more compute-intensive services with
clusters and even to harnessing compute power distributed
over the world [6, 25, 38]. Issues traditionally studied in the
context of parallel computing, such as scalability of appli-
cations and ease of writing applications that involve many
nodes, will become a major issue in developing and deploy-
ing such applications. In summary, many applications are
becoming both “parallel” and “distributed” in the tradi-
tional sense. They are parallel in the sense that they need
coordinate a large number of resources with a simple pro-
gramming interface. They are distributed in the sense that
they must be able to serve continuously for a long time in the
face of dynamically joining/leaving resources and occasional
failures. Such applications include data-intensive computing
that operates on a stream of data produced every day [35],
information retrieval systems (e.g., web crawlers and index-
ers) that cooperatively gather and index web pages without
duplications [14], many Internet-scale computing projects
to support scientific discoveries by harnessing a large num-
ber of compute-resources on the Internet [9, 13, 31], and
task scheduling systems that distribute a large number of
batch jobs to available resources [21, 26]. These applica-

tions are currently implemented directly on top of a very
primitive programming model (socket in most cases). With
these applications becoming more complex and the num-
ber of available resources becoming larger, however, they
demand a simpler programming model, with much of the
complexity coming from the size and dynamism of the un-
derlying resources (nodes and network) being masked by the
middleware.

This paper proposes a programming model Phoenix for
such emerging applications. We describe its API, program-
ming methodology, our current implementation, and perfor-
mance study. It specifically has the following features.

• It is similar to and subsumes regular message passing
models with fixed resources, so it facilitates porting
existing parallel code to environments where resources
are dynamic. Thanks to its similarity to message pass-
ing, Phoenix can also take advantage of a large body
of work on algorithms, libraries and higher-level ab-
stractions built on top of message passing models such
as distributed shared memory [18, 43] and distributed
garbage collections [20, 36, 39].

• It allows nodes to join and leave an application while
it is running without relying on non-scalable notifi-
cations. More specifically, it defines a simple mes-
sage delivery semantics with which the programmer
can safely migrate application states from one node to
another without stopping the application. Supporting
joining/leaving nodes is a by-product of the transpar-
ent migration.

• It allows applications to be deployed across multiple
LANs without demanding network configurations to
change for them. With a few pieces of network con-
figuration information, Phoenix runtime automatically
connects participating resources together, and it does
not assume a connection between every pair of nodes
is allowed. Our current implementation also supports
tunneling through SSH [40] without requiring individ-
ual application users to manually establish them out-
side the application.

• It allows scalable implementation that does not have
an obvious bottleneck. While scalability depends on
particular implementation, of course, the model itself
does not imply much serialization.

In Section 2, we state requirements for supporting “par-
allel and distributed” applications in depth, and review ex-
isting programming models. Section 3 describes Phoenix
model and its API. Section 4 demonstrates how to write par-
allel programs in Phoenix model, focusing on ramifications
necessary to port existing message passing code to Phoenix.
Section 5 briefs our current implementation. Section 6 re-
ports preliminary performance evaluation of our implemen-
tation. Section 7 mentions related work and Section 8 states
conclusions.

2. REVIEW OF EXISTING MODELS

2.1 Requirements
In this section, we argue that popular models for parallel

and distributed programming are inadequate for supporting

the types of applications motivated in the previous section.
A programming model and its implementation for such ap-
plications should have the following features.

1. Simplify programming with a large number of nodes.
It should specifically support a simple node name space
with which the application can easily exchange mes-
sages, partition application state, and distribute tasks
among nodes.

2. Support dynamic join/leave of nodes. It should al-
low an application to start without knowing in advance
all nodes that may be involved in the application, and
continue its operation when some nodes leave compu-
tation.

3. Work under today’s typical network configurations.
It should allow an application to be deployed under
typical network configurations of today, which include
firewalls, DHCP, and NAT. It should provide the ap-
plication with a flat communication space despite that
the underlying communication layer does not necessar-
ily allow any-to-any direct communication.

4. Allow scalable implementation. All these features must
be implementable in a scalable fashion. Semantics
should not imply too much serialization.

Table 1 summarizes several programming models with re-
spect to the above requirements.

2.2 Message Passing Models
Message passing models simplify writing applications in-

volving a large number of nodes by providing a simple flat
name space with which nodes can communicate with each
other. When an application runs with N nodes, they are
given names 0, · · · , N−1. A node can send a message simply
by specifying its destination node number; it does not have
to manage connections, remember topologies of them, nor
keep track of participating nodes (simply because they are
fixed). It also suits for scalable implementation because its
fundamental operation, point-to-point message passing, can
be mapped to a similar operation of the underlying hardware
in a relatively straightforward manner, and it is scalable.

On the other hand, this model is weak in supporting join-
ing/leaving nodes, because of the very nature that made
parallel programming simple—the simple name space. Let
us assume we try to involve a new node into computation.
We would immediately face problems such as how to assign
it a node number uniquely and scalably and how to notify
participating nodes of the new node. A more complex prob-
lem arises when a node leaves because it would leave a gap
in the node name space. Both PVM [1] and MPI version
2 [23] allow nodes to join, and PVM also allows nodes to
leave. Above problems are, however, largely unsolved, and
complications that arise are simply exposed to the program-
mer.

Typical operating environments of parallel programming
models have been MPPs, clusters, and LANs. Therefore,
except for a few recent implementations targeting wide area
operations, they typically assume that connections between
any pair of nodes are allowed. That is, nodes simply estab-
lish all connections when an application starts and assume
they are never broken. When one is ever broken, an unre-
coverable error is signaled.

ease of programming
with many processors

flexibility to various net-
work configurations

provision for dynami-
cally changing resources

scalability

Message Passing strong weak∗ weak strong
Sockets weak fair fair strong
RPC/RMI weak fair fair strong
Shared Memory strong weak∗ weak weak

Table 1: Comparison of popular existing programming models regarding various aspects for supporting
parallel applications with dynamic resources. Strong/fair/weak respectively mean the model (not a particular
implementation) is strong/fair/weak in the specific aspect. Weak ∗ means the model is not inherently weak,
but typical implementations are because the main target environment has not been wide-area.

In summary, message passing models and their typical
implementations are strong in the items #1 and #4 of the
requirements mentioned in Section 2.1 but not in others.

2.3 Distributed Programming Models
The most widely used programming models for distributed

computation will be socket, RPC, and more recently, dis-
tributed objects such as CORBA and Java RMI (remote
method invocations). Built on top of them, common pro-
gramming idioms such as client-server and its multi-tier vari-
ants have been successful. These models are designed on the
assumption that (1) nodes start independently and “meet”
at runtime, and (2) neither nodes nor network are com-
pletely reliable.

The simplest of them is the client-server model, where
only the server is initially running. Clients (nodes) join
computation by connecting to servers. An obvious, but in-
teresting aspect of this model is that clients do not have
to know each other’s name. They only have to know the
server’s name. In other words, clients “do not care” each
other so they can join and leave computation merely by
notifying the server (e.g., closing the connection). Coordi-
nation and communication among clients may be indirectly
achieved through the server.

Although this model is not usually seen as a parallel pro-
gramming model, we can see its simple adaptation to parallel
applications in many “task-scheduling” systems. In cluster
environments, they include PBS [26] and LSF [21]. In wide
area, they include Nimrod/G [4] and many Internet-scale
computing projects [9, 13, 31]. They have a basic architec-
ture in common; there is a single or a few task servers that
pool tasks. Compute resources occasionally get tasks from
the server. Tasks do not (and cannot) directly talk to each
other. A very primitive form of coordination is implicitly
achieved through the server that dispatches tasks without
duplication and detects the completion of all tasks.

While this programming model naturally supports dy-
namic resources, it has an obvious scalability limitation for
more communication intensive programs. A scalable cooper-
ation among a large number of compute nodes requires each
node know each other’s name (communication end point)
and communicate without going through a central server.
Building such facilities on top of low-level APIs such as
socket is very complex, however. To achieve the same level
of simplicity as message passing models, the programmer
must implement such low level functions as managing partic-
ipating node names, maintaining connections, and routing
messages.

In short, client-server models widely used in distributed
computation satisfy items #2 and #3 reasonably well. Many

tools are available that have stronger supports in some but
not all aspects of them [32, 41]. They are generally weak in
#1 and do not provide solutions to achieving both #1 and
#4 at the same time.

2.4 Shared Memory
A large body of work studied software shared memory or

shared object abstraction implemented on distributed mem-
ory machines [18, 43]. Although shared memory models are
not commonly used in wide area settings, it has many in-
teresting aspects that naturally solve some of the problems
associated with message passing and client-server models.
First, it naturally allows new processes (or threads) to join
and leave computation without notifications between each
other. It does so because threads do not normally commu-
nicate with each other through their names. They instead
indirectly communicate using shared memory as “commu-
nication media.” The address space, the set of available
“names” used for communication, stays the same regardless
of the number of threads. Moreover, communication occurs
without an obvious bottleneck in the programming model
level. This is in contrast with the client-server computing
where natural dynamic join/leave of clients are achieved by
mediating all communication/coordination through a single
communication medium (i.e., the server name). The fun-
damental difference between the two is that the number of
server names is one or a few, whereas the number of loca-
tions in an address space can be very large, so we can in
principle distribute communication traffic among nodes in
a scalable manner, provided that locations are evenly dis-
tributed across participating nodes.

The Phoenix model can be viewed as message passing,
combined with this idea of having a name space much larger
than the number of compute resources.

3. Phoenix MODEL

3.1 Basic Concepts
Like traditional message passing models, Phoenix pro-

vides the application with a flat and per application node
name space, which is a range of integers, say [0, · · · , L). A
node name specifies a message destination. Unlike regu-
lar message passing, however, L can be much larger than
the number of participating nodes and must be constant
regardless of it. We shortly comment on how L can be
chosen and assume for now a value of L has been chosen.
We call the space [0, · · · , L) the virtual node name space or
the virtual processor name space of the application. Since
the number of participating nodes does not match L, each

physical node assumes, or is responsible for, a set of vir-
tual node names. We hereafter always use a term “virtual
node” to mean a virtual node and use a term “node” only
to mean a physical node. Given a message destined for a
virtual node, the runtime system routes the message to the
physical node that currently assumes the specified virtual
node (ph send/ph recv). Phoenix allows the mapping be-
tween physical nodes and virtual nodes to change at runtime
(ph assume/ph release). The entire virtual node space nev-
ertheless stays constant. This is the fundamental mecha-
nism with which Phoenix supports parallel applications that
change the number of participating nodes at runtime, while
providing the programmer with the simpler view of a fixed
node name space.

Remark: The name virtual “node/processor” might sug-
gest a model similar to SIMD where there are as many
threads of control as the number of virtual nodes and the
program specifies the action of each virtual node. This is not
the case in Phoenix, where each physical node only has as
many threads of control as explicitly created (usually one).
Virtual node names are just names given to physical re-
sources as a means to specify message destinations (commu-
nication end points).

L can be chosen for the application’s convenience, as long
as all participating nodes can agree on the same value. As
we explain in Section 4, the primary purpose of virtual node
names is to associate each piece of application data with a
virtual node name, so that virtual ↔ physical node map-
ping will derive data distribution. So a reasonable choice is
often determined by the size of the application data to be
distributed over nodes. For example, if the only distributed
data structure used by the application is a hash table with
N (constant) keys, we may have L = N and associate hash
items of key x with virtual node x. If there are many dis-
tributed data structures of different sizes or even unknown
sizes, one can simply choose an integer much larger than any
conceivable number of data items, say 262.

Underneath, Phoenix runtime system routes messages through
the underlying communication layer. The application speci-
fies connections it would like to establish (ph add port), and
the runtime system automatically builds a graph of nodes
to route messages.

As will be clear from the above description, physical nodes
participating in a Phoenix application should cooperatively
cover the entire virtual node space. More specifically, Phoenix
applications should maintain the following conditions.

• No two nodes assume the same virtual node at any
instant.

• There may be an instant at which no node assumes a
virtual node, but in such cases, one must eventually
appear that assumes it.

We hereafter call the above conditions the disjoint-cover
property. The intent is to always maintain the invariant
that the entire virtual node name space is disjointly covered
by participating nodes. We however slightly relax this con-
dition (the second bullet), allowing finite periods of time in
which no physical node assumes a virtual node. Messages
to such a virtual node are queued until one appears that as-
sumes it, rather than lost, bounced, or redirected to a node
in a way the programmer cannot predict. This is important
for supporting applications that migrate application-level

states from one node to another, and/or applications that
allow nodes to permanently leave. We detail in Section 3.5
how to write such applications in Phoenix framework, and
why this semantics is important.

3.2 A Note on Reliability Assumptions
The present paper does not address the issue of mak-

ing applications tolerant to node crashes, and does assume
nodes are reliable. For network failures, our routing infras-
tructure transparently masks disconnections. The runtime
system tries to re-establish broken connections. Our current
implementation however assumes disconnections do not lead
to message loss. That is, connections do not break when
messages are in transit.

Technically, the disjoint-cover property introduced above
cannot be maintained if crashes occur, so in practice, crash-
robust stateful applications must rely on some sort of application-
level rollback recovery (checkpointing and/or message log-
ging). Details of such mechanisms are subject of our future
research and beyond the scope of the present paper.

3.3 Phoenix API and its Semantics
A slightly simplified description of Phoenix API is as fol-

lows. The actual implementation is slightly more verbose.
We also assume the size of virtual node name space, L, have
been chosen and agreed by all nodes that participate.

Message send/receive functions for sending and receiv-
ing messages.

1. ph send(ph vp t v, ph msg t m);

2. ph msg t m = ph recv();

Node name mapping functions for dynamically chang-
ing the mapping between physical nodes and virtual
nodes.

1. ph assume(ph vps t s);

2. ph release(ph vps t s);

Initialize and finalize functions for opening/closing the
underlying communication layer on top of which Phoenix
provides the simpler name space and message delivery
semantics.

1. ph initialize(ph port t p, ph path t f);

2. ph add port(ph port t p);

3. int e = ph finalize(ph path t f);

4. ph vp t r = ph resource name();

In the above, ph vp t is a type for a single virtual node
name, ph vps t for a set of virtual node names, ph msg t

for a single message, ph port t for an end point of the un-
derlying communication layer such as TCP, and ph path t

a path name.
ph send and ph recv have the obvious semantics. ph send(v,

m) sends message m to a virtual node v, that is, a physical
node that is currently assuming virtual node v. ph recv()
waits for a message to arrive at the caller node and returns
the received message. Note that it receives a message des-
tined for any of the virtual nodes the caller node assumes at
the point of the call. In other words, each node has only a
single queue for incoming messages.

Like other message passing systems, Phoenix also sup-
ports non-blocking receive and tags with which the receiver
can selectively receive messages of particular types, but they
are omitted in this paper for the sake of simplicity.

Mapping between virtual and physical nodes are deter-
mined through ph assume and ph release. When a physi-
cal node P calls ph assume(s), the Phoenix runtime system
starts delivering messages destined for virtual nodes in s to
P . In other words, this is the caller’s declaration that it is
ready for receiving messages destined for virtual nodes in s.
ph release(s) has the reverse effect. The system no longer
delivers messages destined for s to the caller node.
ph resource name() returns an opaque virtual node name

outside the virtual node name space. The resulting name
is worldwide unique with high probability.1 It is generated
when a node brings up (i.e., calls ph initialize) and re-
turns the same value until it disconnects from the applica-
tion (i.e., calls ph finalize below), either temporarily or
permanently. Besides regular messages whose destinations
are in the virtual node name space, Phoenix also routes
messages destined for such node names. In short, the node
name returned by ph resource name() serves as the name
bound to the physical node. Thus, we hereby call this name
resource name of the node.

Applications should not use resource names for the application-
level logic. They are only used for supporting migration. To
see why resource names are necessary, consider how a fresh
anonymous node could join an application. Such a node can
first send a message to a random virtual node to ask any
processor to share some of its virtual nodes. It clearly needs
to receive a reply, for which its resource name is necessary
because it obviously does not assume any virtual node yet.
A similar situation occurs when a node permanently leaves
an application, because such a node has no virtual node
names either just before leaving.
ph initialize(p, f) initializes the Phoenix runtime. Among

other things, it opens a local end point of the underlying
communication layer bound to name p. The underlying
communication layer we currently support is socket imple-
menting TCP, optionally tunneled through SSH. Parameter
p therefore is a socket address (IP address + TCP port num-
ber). Parameter f is a file name from which logged messages
are read (may be null, meaning there are no such messages).
Details are described below with ph finalize.
ph add port(p), where p is an end point name in the un-

derlying communication layer, specifies “a neighborhood” in
the underlying communication layer. The effect is to let the
local runtime system try to maintain a connection from the
local node to p. The runtime system may use the connection
to route messages between any pair of nodes, not just be-
tween its end points. Thus, the programmer does not have
to be aware of the topology of the underlying connections in
most part of the application code. All the application pro-
grammer must guarantee is that all the participating nodes
can form a single connected component with the specified
connections. ph add port can be called as many times as
necessary and at anytime, though typically used when an ap-
plication brings up. Phoenix specifically tolerates end points
that are actually disallowed to connect to. Such connections
are simply unused.

A more convenient interface can be built on top that ob-

1We assume it is in fact unique.

tains necessary information from a configuration file (as in
machines file in MPI implementations) or a configuration
server. It is beyond the scope of this paper how such infor-
mation is automatically obtained and/or kept up-to-date.
Security (authentication in particular) is another interest-
ing aspect beyond the scope of this paper.
ph finalize(f) shuts down the runtime system and al-

lows the node to leave computation, either temporarily or
permanently. The node may be responsible for a set of vir-
tual nodes, in which case this node or another with the same
state and virtual nodes should join the computation later.
Messages to such virtual nodes are queued until one shows
up. It does not have to join the computation with the same
underlying connections. It may specify another set of con-
nections and may even have a different IP address.

The parameter f is a file name to which undelivered mes-
sages may be logged. Both messages destined for the caller
node and those that should be routed to another may po-
tentially be written. ph finalize tries not to finish hav-
ing messages of the latter type written to f , because doing
so will block messages destined for virtual nodes that have
nothing to do with the leaving node. This cannot be guaran-
teed with 100% certainty, however. For an extreme example,
if the node (or a cluster of nodes including it) is completely
disconnected from the rest of the nodes just before calling
ph finalize, it should leave rather than waiting for connec-
tions to become available again.

3.4 Temporal Disconnect and Re-connect
A node does not have to do anything particular when it

leaves computation only temporarily. It simply calls ph finalize.
By temporarily leaving, we mean the node may disconnect
from the network and/or possibly turn off, but it is going
to join the computation again in future, having same state
and assuming the same virtual nodes it was assuming at
the point of the leave. While the node is absent, messages
destined for it are queued.

When a temporarily leaving node joins again, it may con-
nect to the network with a different address of the underlying
communication layer (e.g., IP address). It may also specify
different neighborhoods (via calling ph add port). Phoenix
runtime system automatically routes queued messages to the
node’s new location.

From the application programmer’s perspective, temporar-
ily leaving nodes do not affect the semantics of message pass-
ing. Messages destined for a temporarily leaving node are
perceived as experiencing a very long latency. The applica-
tion logic does not have to change as long as it (or the user)
tolerates such latencies.

3.5 Remapping and Migration Protocol
The disjoint-cover property introduced in Section 3.1 can

be maintained in several ways. Most trivially, we can stati-
cally partition the space among participating nodes, assum-
ing nodes are fixed throughout the entire computation. In
this way, Phoenix trivially subsumes message passing mod-
els.

Building applications in which each node can autonomously
decide to join and leave computation requires a dynamic pro-
tocol to maintain the property, of course. Specifically, we
need a protocol in which one node can migrate all or a part
of its assuming virtual nodes to another. Such a protocol
must fulfill the following requirements.

1. Upon migrating virtual nodes, nodes should be able
to migrate application-level states in such a way that
the migration becomes transparent from the nodes not
involved in it.

2. Each node should be able to autonomously trigger mi-
gration. This is necessary to allow each resource to
join and leave computation for its own convenience.

3. Each node should be able to trigger migration in both
directions—from another node to it and vice versa.
The former is necessary when a new node (which by
definition does not have any virtual nodes assigned to
it) joins a computation and the latter when a node
permanently leaves a computation.

To motivate the first requirement, consider an application
that partitions a large hash table (or any “container” data
structure such as an array) among participating nodes. Such
an application typically uses a simple mapping between hash
keys to virtual nodes. Most simply, hash key k is mapped
to virtual node k and lookup/update of an item with hash
key k is destined for whichever node assumes virtual node k
at that moment. This is essentially how all recent peer-to-
peer information sharing systems are designed [19, 33, 30,
29, 42].

For such a mechanism to support transparent migration,
we must guarantee that a node assuming virtual node k al-
ways has all valid items of hash key k. This requires nodes
to migrate hash table items from one node to another upon
migrating virtual nodes. The same situation arises in every
application that partitions application-level states among
nodes.

Maintaining such a property in the presence of leaving/joining
nodes is not a trivial problem and whether previous systems
address this issue is not clear from the literature. Phoenix
API ph assume and ph release, equipped with the protocol
outlined below, achieve the property.

The protocol actually guarantees a property stricter than
the disjoint-cover. That is, it maintains that each node al-
ways assumes a single interval (a contiguous range of inte-
gers) of virtual nodes, rather than a general set. We believe
it is typical for an application to assume a single or a few
intervals for the sake of simplicity and worst case storage
requirements.

In essence, the protocol is a mutual exclusion protocol in
which a node locks two resources (itself and another node
from/to which virtual nodes migrate) before a transaction.
We avoid deadlocks by the usual technique that introduces
a total order among resources and requires each node to lock
resources following the total order (the smaller first). We use
the node’s resource name (returned by ph resource name) to
define the total order, though it can be any unique number
that persists throughout a single invocation (i.e., persists
from a point a node joins a computation and to a point it
temporarily or permanently disconnects).

After a node, say p, grabs the lock of itself and another
node, say q, it migrates virtual nodes along with some ap-
plication level states in either direction (from p to q or from
q to p). In the former case, p first releases the migrating vir-
tual nodes, say S, by calling ph release(S). It then sends
application level states as necessary to q. After all applica-
tion states arrive at q, q assumes S by calling ph assume(S).
Meantime, messages to S are queued and Phoenix delivers

1: p : resource name of this node;
2: s : lock state of this node (FREE or LOCKED);
3: h : resource name of the node that currently holds

this node’s lock, if any
4: I (= [a, b)) : the interval of virtual nodes this node

currently assumes
5: l : true if a lock attempt by this node is in progress;
6: V : constant representing the entire virtual node space

Figure 1: Variables used in the migration protocol.

7: /* executed whenever the node feels like migration
(typically when it just joined or wants to leave) */

8: BEGIN TRANSACTION() {
9: s = FREE and ¬l and I = ∅ ⇒
10: v = any virtual node; ph send(v, query(p));
11: l = true;
12: s = FREE and ¬l and a− 1 ∈ V ⇒
13: v = a− 1; ph send(v, query(p));
14: l = true;
15: s = FREE and ¬l and b ∈ V ⇒
16: v = b; ph send(v, query(p));
17: l = true;
18: }

Figure 2: Code that triggers a migration. Called
whenever a node feels like doing so.

messages for S neither to p nor q. In the latter case, p first
sends a request to q to send virtual nodes and application
states. The rest of the transaction is similar to the former
case. In essence, we make the migration appear to be atomic
from the application’s point of view.

Figure 1, 2, and 3 outline the mutual exclusion protocol,
from a point where a node decides to migrate some virtual
nodes, up to points where two locks are successfully granted
(lines 44 and 56) or the attempt fails because of conflicts
(lines 22, 31, 39, 47, and 58). Each node tries to lock itself
and a node that is adjacent to it in terms of their assuming
virtual node ranges. That is, when a node p assumes range
[a, b), it tries to lock a node that assumes a− 1 or b. As an
exception, when p currently assumes no nodes, it can lock
an arbitrary node (Figure2).

The algorithm is written as a list of guarded commands
of the form:

G ⇒ A

where G is a condition and A an action executed when G
holds. A message is written in a form m(a, b, · · ·) where
m is a tag and a, b, · · · arguments. A special predicate
“received(m(a, b, · · ·))” becomes true if the node receives a
message of the form m(a, b, · · ·).

The protocol is essentially a message passing implemen-
tation of the dining philosopher problem with deadlocks
avoided by the total order among resources. The protocol is
complicated by several facts, however.

• Each node does not know in advance the name of the
resource it should lock, so it does not know which
one (itself or the other resource) it should lock first.
Therefore an additional message exchange to compare

19: /* message handlers for the locking protocol */
20: received(query(q)) ⇒
21: if (p = q) {
22: l = false;
23: } else if (q < p) {
24: /* the sender q must lock itself before p */
25: ph send(q, lock_you_first(p, I));
26: } else if (p < q and s = FREE) {
27: /* grant p’s lock to q */
28: s = LOCKED; h = q; ph send(q, ok1(p, I));
29: } else if (p < q and s = LOCKED) {
30: /* say p is already locked */
31: ph send(q, fail1(p));
32: }

33: received(lock_you_first(q, S)) ⇒
34: if (s = FREE and (S and I are adjacent as intended)) {
35: /* lock itself; go ahead to grab the second lock */
36: s = LOCKED; h = p; ph send(q, lock2(p, S));
37: } else {
38: /* the lock attempt failed */
39: l = false;
40: }

41: received(lock2(q, S)) ⇒
42: if (s = FREE and I = S) {
43: /* grant the lock to q */
44: s = LOCKED; h = q; ph send(q, ok2(p));
45: } else {
46: /* say p is already locked */
47: ph send(q, fail2(p));
48: }

49: received(fail1(q)) ⇒ l = false;

50: received(fail2(q)) ⇒
51: /* failed to get the remote lock. cleanup local state */
52: l = false; s = FREE; h = NULL;

53: received(ok1(q, S)) ⇒
54: if (s = FREE and (S and I are adjacent as intended)) {
55: /* got the first lock remotely and now the second */
56: s = LOCKED; h = p; l = false;
57: } else {
58: ph send(q, cleanup(p));
59: }

60: received(ok2(q)) ⇒
61: /* got the second remote lock */
62: l = false;

63: received(cleanup(q)) ⇒
64: l = false; s = FREE;
65: ph send(q, cleanup_ack(p));

66: received(cleanup_ack(q)) ⇒ l = false;

Figure 3: Message handlers implementing migration
protocol. Assume it is called whenever a message
arrives. Multiple messages are handler in sequence
and mutually excluded with code in Figure 2

resource names may be necessary before trying to ac-
quire locks (query() message in Figure 2 and Figure 3).
A node should not hold any lock during this exchange
to avoid deadlocks.

• Intervals assumed by nodes may change during the
above exchange, so a node, which was adjacent to node
p when p first decides to lock it, may no longer be so
when p knows its resource name. When this occurs, p
must abort the transaction (lines 34, 42 and 54).

This protocol was modeled by a protocol description lan-
guage Promela and verified via a model checker SPIN [16,
15]. Although complete verification was not achievable with
a 10 nodes experiment (due to out of memory), more than
300M states were examined and no errors were found.2 We
also wrote a simple Phoenix program in which nodes ran-
domly migrate their virtual nodes and occasionally leave
and join, while the application forwards a message to a ran-
dom virtual node forever. We confirmed that no application
messages are lost.

3.6 Fresh Join and Permanent Leave
Given the protocol explained in the previous section, join-

ing and (permanently) leaving a computation is simple. When
a node attempts to leave a computation permanently, it
should first evacuate its virtual nodes (and perhaps appli-
cation states) by running the migration protocol explained
in the previous section. When a fresh node joins a compu-
tation, it should first obtain some virtual nodes, again by
running the migration protocol.

4. WRITING PARALLEL PROGRAMS IN
Phoenix

4.1 Basic Concepts
Given the similarity between Phoenix and regular message

passing models, it is not surprising that many parallel algo-
rithms can be naturally expressed in Phoenix. There are
ramifications, however, mainly coming from the fact that
the size of the virtual node name space is much larger than
the actual number of physical processors. This prohibits
a naive use of Θ(P) operations where P is the number of
physical processors. For example, sending a message to all
processors, a commonly used idiom in message passing, has
no obvious counterpart in Phoenix.

Yet, there is a method that can, often straightforwardly,
obtain a Phoenix program from a regular message passing
algorithm. The basic ideas are as follows.

Map Data ↔ Virtual Nodes: Associate each piece of ap-
plication data with a virtual node name. This is anal-
ogous to what is usually referred to as “data parti-
tioning” in regular message passing programs. Since
the size of data is usually much larger than the num-
ber of processors, data is literally “partitioned” among
processors. In Phoenix,virtual node name space can
be arbitrarily large, so one may choose a mapping
that is most natural for the application. For example,
when we have an array of N elements distributed over

2We verified that, among other things, whenever an interval
I migrates and arrives at q, I is in fact adjacent to the
interval assumed by q.

nodes, we may fix the size of virtual node name space
to N and associate array element i to virtual node i.
The mapping between data and virtual nodes does not
usually change unless the application logic specifically
needs it. When the mapping between virtual nodes
and physical nodes changes, application data must mi-
grate too, to maintain the data ↔ virtual node map-
ping.

Derive Communication: Interpret each message send in
the message passing code as a message “to a piece
of data,” even though the program text specifies the
message is to a physical node. Given this interpre-
tation, Phoenix program can simply send a message
to the virtual node that is associated with the piece
of data. Suppose, for example, the original message
passing code sends a message to a processor p, which
upon a receipt of this message increments its local ar-
ray element a[x]. Porting this to Phoenix involves a
reasoning that this message, literally sent to processor
p, is logically sent to an array element a[x], or more
specifically, to whichever processor owns the array ele-
ment a[x]. With this reasoning, Phoenix program can
simply send a message to a virtual node associated
with a[x].

Reduce Message Number: Programs straightforwardly ob-
tained in this way may lead to too many fine grain
messages. Suppose, for example, a “FORALL”-type
data parallel operations on a distributed array. In reg-
ular message passing, starting such operations typi-
cally needs only a single command message per node.
Upon receipt of a message, the receiver operates on all
local elements. Applying the previous bullet to such
data parallel operations would send a message to each
array element, which is obviously too many. Regular
message passing code effectively “combines” messages
to many array elements into a single message, taking
advantage of the knowledge that they are on a single
physical node. Phoenix,starting from the assumption
that the number of physical nodes is unknown, cannot
use the idea as is. Section 4.3 explains a convention
and a method to achieve a similar effect.

The rest of this section shows several case studies of applying
the above basic ideas.

4.2 Parallel Divide-and-Conquer
Divide-and-conquer is a framework that solves a large

problem by recursively dividing problems into smaller sub-
problems and then combining these sub-results. In sequen-
tial programs, it is most naturally expressed by recursions.
In parallel programs, each recursive call is replaced by a
task creation so that sub-problem calls can be executed in
parallel.

Lazy Task Creation (LTC) is a general and efficient method
for executing parallel divide-and-conquer algorithms [2, 22].
It has been shown to achieve good performance both on
shared memory and distributed memory machines [8, 12,
37]. It primarily needs two kinds of coordination/communication
between nodes (processors), namely, load balancing and syn-
chronization.

For load balancing, each node maintains its own local task
deque (doubly-ended queue). When a processor creates a

new task, it pushes the task to the head of its local deque
and starts executing the new task immediately. As long as
there is a task in its local deque, each processor executes
the task at the head of it. When a processor’s local deque
becomes empty, it sends a task-steal request to a randomly
chosen processor. The receiver will transfer the task at the
tail of its deque to the requester (if there is one). This strat-
egy effectively splits the entire task tree near its root and
lets each processor traverse a sub-tree in depth-first fash-
ion. In this way, LTC achieves a good load balance with a
small amount of load-balancing traffic. Note that each pro-
cessor maintains its local task deque even on shared mem-
ory machines, rather than sharing a single global queue, to
achieve a good scalability. It is therefore difficult to im-
plement this method with a client-server model. Also note
that this makes dynamic join/leave of processors non-trivial
because, in effect, each processor’s name is exposed to all
participating processors for task-stealing. More specifically,
there is a race condition between a leaving processor and
another processor that is trying to send a request to it.

For synchronization, a task needs to wait for comple-
tion of its child tasks and obtain sub-results at some point.
On shared memory machines, this is naturally achieved by
maintaining a synchronization data structure that matches
a value from the child and the waiting task (i.e., parent).
On distributed memory machines, they should be given a
globally unique name, which usually consists of a processor
number and a local identifier valid in the processor. Putting
a value or waiting on the synchronization data structure in-
volves sending a message to the processor known from its
global identifier.

Porting to Phoenix is relatively natural and straightfor-
ward. For load-balancing, when a node finds its task deque
empty, it sends a task-steal request to a randomly chosen
virtual node. In Phoenix,the message is guaranteed to be
received by a physical node that assumes the virtual node.
In essence, we resolved the race condition between a task-
steal message and the leaving processor by the migration
protocol described in Section 3.5. Once such a protocol is
implemented correctly, the other part of the application can
assume such a request will always reach a working (not leav-
ing) processor.

For synchronization data structure, we merely represent a
global identifier as a virtual node number + local identifier.
The size of the virtual node name space can be chosen so
that a global identifier fits into a single machine word or two.
For example, if we would like to make global identifier 32 bits
long, we may fix the virtual node name space to, say, [0, 212)
and let the length of the local part 20 (= 32−12) bits. When
a node allocates a new identifier, it should allocate one that
has a virtual node number part assigned to it.

Overall, there is almost no fundamental difference be-
tween regular message passing code and Phoenix code ex-
cept the logic for joining/leaving processors. We have writ-
ten a simple parallel binary tree creation as a template of
divide-and-conquer and a parallel ray-tracing as a more re-
alistic application.

4.3 Array-based Applications
In the previous section, we have seen that random the

load balancing logic of LTC can be naturally written in
Phoenix,with additional benefits of safely supporting dy-
namically joining/leaving processors. This was so simple

largely because LTC, either in message passing or in shared
memory, does not use the value of processor identifiers in
any significant ways; it only assumes that each identifier
corresponds to a processor.

It is trickier to write parallel algorithms that would use
the number of processors and processor identifiers in more
significant purposes, such as data partitioning and/or load
balancing. Such techniques are common in regular scientific
programs that use arrays and/or static load balancing. For
example, it is common in many scientific computations to
block- or cyclic-partition an array. Given an array of N -
elements, a block-partitioning assigns section [iN

P
, (i+1)N

P
)

to processor i. Every node knows this assignment and may
take advantage of it to optimize communication. It is also
common in parallel computation to send messages to all pro-
cessors. It is not trivial to write such operations in Phoenix
where the application does not see the notion of physical
processors but only see a large virtual node space. Sending
a message to each virtual node is clearly not a solution, so
we must devise some way to achieve the same effect. Note
that this problem is not an artifact of the Phoenix model,
but arises whenever we would like to support processors that
dynamically join and leave. As a matter of fact, the defini-
tion of “broadcast,” for example, is not clear when partic-
ipating processors dynamically change. In this setting, we
must try to send a message not to all physical processors,
but to whoever needs the message to accomplish the task of
the algorithm. Phoenix virtual node name space mediates
them.

In this section, we study two array-based applications,
integer sort (IS) in NAS Parallel Benchmark [24] and an LU
factorization algorithm. Throughout the section, we assume
each processor assumes a single range of virtual nodes, and
the size of the range is maintained roughly the same. Given
this assumption, we focus on how to achieve load balancing
and small communication overhead close to those of message
passing with fixed processors.

4.3.1 Integer Sort
Integer Sort in NAS Parallel Benchmark suite uses bucket

sort algorithm. Given an array A of N elements, each el-
ement of which is in a range [0, M), it divides the range
into L sub-ranges R0 = [0, M/L), R1 = [M/L, 2M/L), · · · ,
RL−1 = [(L − 1)M/L, M). The array is block-partitioned,
and each processor first counts the number of elements in
its local sub-array that fall into each sub-range. The set
of elements in a sub-range Rj is called a bucket j and de-
noted as Bj . After counting the number of local elements
in each bucket, each processor broadcasts the counts to all
other processors and receives counts from them. Now all
processors know how many elements of the entire array are
in each bucket and determine which buckets each processor
should sort. In regular message passing code with P proces-
sors, processor 0 will sort the buckets that roughly cover the
smallest N/P elements, processor 1 the buckets for the next
N/P elements, and so on. Based on the assignment deter-
mined this way, each processor sends each of its local buck-
ets to the appropriate processor. It uses MPI_Alltoall() to
distribute bucket counts and MPI_Alltoallv() to distribute
bucket elements.

Below we focus on how to derive a Phoenix program that
counts the number of elements in each bucket and exchanges
array data. Primary data structures used in this program is

an N -elements array A to be sorted and an L-elements array
B that counts elements in each bucket. They are mapped
to virtual nodes as follows.

vA(i) =
|V |

N
i,

and

vB(j) =
|V |

L
j,

where V refers the virtual node space of an arbitrary size,
vA(i) the virtual node associated with A[i], and vB(j) the
virtual node associated with B[i]. Whichever processor as-
sumes vA(i) is responsible for determining the bucket for A[i]
and whichever processor assumes vB(j) for summing up the
number of elements in bucket j. Thus, the elementary task
during the counting phase is that a node assuming vA(i)
reads A[i], determines its bucket j, and send an increment
message to vB(j).

Literally implementing the above task leads to too many
fine-grain messages. Thus we need devise a way to effectively
“combine” these messages. The first trivial optimization is
to let each processor scan all local elements, accumulate the
counts in a local array, and then sending the local count for
bucket j to virtual node j. This still requires L messages
to be sent from each processor, which is much larger than
the optimal P . Here we introduce a powerful combining
technique that frequently occurs in Phoenix programming.
The problem can be formulated as follows.

Given a range I = [p, q) and a function f : I →
V , send at least one message to all processors
that assume virtual node f(j) for any j ∈ I.
We would like to do this without sending q − p
separate messages.

In our current problem, I = [0, L) and f(j) = vB(j). That
is, each node likes to send its local counts to all processors
responsible for summing up a bucket count.

We can accomplish this as follows.

• The sender attaches the range I = [p, q) with the mes-
sage content and sends it to virtual node f(p).

• Upon receiving a message with range I = [p, q) at-
tached, it removes from I all elements t such that it
assumes f(t). The remaining elements are formed into
several (more than one) ranges and each range is for-
warded to an appropriate virtual node, in the above
manner.

The number of messages is reduced if the receiving node
happens to assume many virtual nodes ∈ f(I). This will be
the case if f is a “slowly increasing” function in the sense
that f(i) and f(i + 1) are likely to be in a range covered
by a single physical processor. It is particularly the case in
our current problem. We call this technique the multicasting
idiom.

For exchanging array elements, the basic task is to send
all elements in Bj to virtual node vB(j). Each processor
can either send a separate message for each bucket (i.e.,
send local elements in Bj to virtual node vB(j)), or merge
some number of consecutive buckets and multicast them to
the corresponding processors. For example, if a processor
merges buckets B3, B4, · · · , B10 into a single message, this

1: for (k = 0; k < N ; k++) {
2: for (j = k; j < N ; j++)
3: Akj = Akj/Akk;
4: for (i = k + 1; i < N ; i++) {
5: for (j = k + 1; j < N ; j++) {
6: Aij− = AikAkj ; }}}

Figure 4: LU Factorization

will be multicast to processors corresponding to these buck-
ets, using the multicasting idiom just introduced (i.e., let
I = [3, 10) and f = vB).

If an individual message is sent for each bucket, there is no
risk of consuming bandwidth with uselessly large messages,
but the number of messages becomes large (LP instead of
the optimal P 2 in case we know the number of physical
processors and virtual node assignments). At the other ex-
treme, if we merge all buckets from a processor into a single
message, the number of messages becomes small, while a
single bucket will be, on average, forwarded O(log P) times
along the multicasting tree. Optimal or near-optimal merg-
ing strategy is inevitably based on an estimate of the typical
number of physical processors.

4.3.2 LU Factorization
Figure 4 shows the pseudo code for sequential LU factor-

ization of N × N matrix A. Consider the kth iteration of
the outermost loop. It updates (n − k − 1) × (n − k − 1)
sub-matrix (Aij)k+1≤i,j<N . An element Aij is updated us-
ing the value of Aik and Akj (line 6). Hence under a given
partitioning of matrix A, the value of Aik need be sent to all
other processors that have some elements in the same row,
and the value of Akj to all other processors that have some
elements in the same column.

Block partitioning gives a poor load balancing especially
in later iterations, so a block-cyclic partitioning (with a con-
stant block size) is commonly used in message passing mod-
els. We used blocks of 64 × 64 elements, but we assume in
the sequel 1 × 1 blocks purely for the sake of exposition.
This pure cyclic partitioning simply represents the matrix
as a distributed one-dimensional array a of N2 elements,
and maps a[i] to processor (i mod P) where P is the num-
ber of physical processors. We would like to find a Phoenix
analogue of this partitioning.

Let us assume that the size of virtual node space, |V |, is
N2. This is in fact a reasonable choice in this algorithm
because there are no other data structures that must be
partitioned among processors. Simply associating a[i] with
virtual node (i mod |V |) clearly does not work. This does
not serve the very purpose of cyclic partitioning—load bal-
ance. A simple alternative we propose is to associate a[i]
with virtual node:

v(i) = Ki mod |V |,

where a K is a large integer relatively prime to |V |. K
should be a large estimate of the number of physical pro-
cessors we like to support. The intent is to let the sequence
v(0), v(1), v(2), · · · , v(N2−1) cycle through space V approx-
imately K times. Thus each one Kth portion of the above
sequence is evenly distributed over V . This will effectively
assign roughly the same number of elements from each one

Kth of the entire array to each physical processor. With
K chosen reasonably large, we achieve the effect of cyclic
partitioning.

For communication, the multicasting idiom used in the
Integer Sort applies. Recall that in the kth iteration of
the LU factorization, the value Aik (and Akj , for that mat-
ter) needs to be sent to the node that performs the update
Aij− = AikAkj , which is the processor responsible for Aij.
Assuming the row major representation of matrices where a
matrix element Aij is stored as an array element a[Ni + j],
we can state the necessary communication in terms of our
multicasting idiom as follows.

• For Aik, let I = [k +1,N) and f(s) = v(Ni+ s) (That
is, send Aik to all processors responsible for any index
of the form Ni + s).

• For Akj , let I = [k +1, N) and f(t) = v(Nt+ j) (That
is, send Akj to all processors responsible for any index
of the form Nt + j).

5. OVERVIEW OF IMPLEMENTATION
The heart of the Phoenix runtime system is its routing

infrastructure. Like other peer-to-peer information sharing
systems, it builds an overlay network among participating
nodes and routes messages via the overlay. We currently use
either regular TCP connection where allowed and SSH con-
nection over TCP where only SSH access is allowed. Unlike
many other similar systems, we do not assume the underly-
ing network allows any-to-any connection. We believe this is
an important property for deploying applications across mul-
tiple clusters, where there are many reasons why a connec-
tion may be impossible or cumbersome to establish. They
include firewalls, DHCP (which makes connections to them
cumbersome), and NAT (which makes connections to them
from outside the LAN impossible). Resources subject to
one of the above restrictions constitute a large portion of
the available resources in today’s typical environment, thus
we need a protocol that builds and maintains a routing table
over an arbitrary set of possible connections.

Elsewhere, we have proposed one such protocol in a sim-
ilar context [17]. It builds a spanning tree among partici-
pating nodes. While it is simple, it unfortunately does not
use available bandwidth effectively. We need a protocol in
which nodes establish allowed connections more aggressively
and select a short route to the destination. It is technically
close to routing table construction problems studied in the
context of IP routing [5] and mobile ad-hoc network routing
[27].

Among many proposed routing table construction proto-
cols, we currently employ the destination-sequenced distance-
vector routing (DSDV) [27] originally proposed in the con-
text of mobile ad-hoc networks. It was chosen because it
consumes a relatively small amount of memory compared
to other schemes based on distance-vector and is relatively
simple to implement.

In summary, each node tries to connect to ports specified
by ph add port. Connections that cannot be established
are retried in a fixed interval. Along with maintaining con-
nections, nodes cooperatively construct a routing table by
exchanging routing information. Each node announces vir-
tual nodes it assumes and announcements are propagated
to other nodes. We will publish implementation details in a
separate paper.

Nodes CPU Number of CPUs Interconnect
Cluster A SunBlade 1000 Cluster UltraSPARC 750MHz 2CPU × 16 nodes 100Mbps switched Ethernet
SMP B SunFire15K SMP UltraSPARC 900MHz 72CPU shared memory
Cluster C SunBlade 1000 Cluster UltraSPARC 750MHz 2CPU × 128 nodes 100Mbps switched Ethernet

∗ Throughput between these three systems are 30-60Mbps over SSH.

Table 2: Environments

Bintree speedup with fixed resources

0

20

40

60

80

100

120

140

0 50 100 150 200 250

number of CPUs

sp
ee

du
p

1 LAN 3 LANs

POV-Ray speedup with fixed resources

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

number of CPUs

sp
ee

du
p

1 LAN 3 LANs

LU speedup with fixed resources

0

5

10

15

20

25

30

0 20 40 60 80 100 120

number of CPUs

sp
ee

du
p

(b
as

e:
 M

PI
C

H
 1

 C
PU

)

MPICH 1 LAN 3 LANs

Figure 5: Speedup with Fixed Processors

6. PERFORMANCE EVALUATION

6.1 Programs and Platforms
We studied performance of three applications, Bintree,

POV-Ray, and LU. Bintree is a binary task creation which
serves as a template of many divide-and-conquer algorithms.
It uses the algorithm described in Section 4.2. POV-Ray
is a parallelization of a popular ray tracing program [28].
It also uses a divide-and-conquer algorithm. LU is an LU
factorization algorithm written by us. We also implemented
IS described Section4.3.1 both in Phoenix and MPI, but its
scalability was poor in both platforms. This is because IS is
very communication intensive (the amount of data exchange
per processor is O(N/P) whereas the time for local sort is
O(N/P log(N/P))). So we do not show its performance any
further.

We used two cluster systems and a large SMP, each lo-
cated in a separate local area network, summarized in Ta-
ble 2. Nodes within a cluster are connected via 100Mbps
switches. Only SSH connections are allowed across LANs.
The raw TCP bandwidth (measured by the bandwidth of
a large http GET request) between two LANs is approx-
imately 100Mbps, but the actual throughput over SSH is
30-60Mbps. This is clearly a bottleneck for many parallel
programs that would scale well within a LAN.

6.2 Results
Figure 5 shows speedup with fixed resources. We mea-

sured speedup both in a single cluster (Cluster C) and across
the three SMP/clusters in Table 2. We used only one CPU
for each node of the two clusters because they are shared by
many users and many nodes were in fact occupied by one
CPU-bound process. For the multi-LANs experiments, we
mix CPUs from the three systems in a constant ratio (1:2:5
for LU and 1:4:8 for Bintree and POV-Ray).

Bintree makes a binary tree of depth 27 (227 leaf nodes),
taking approximately one hour on a single CPU. POV-Ray
draws a picture of 8000 by 250 pixels, taking approximately
two hours on a single CPU. Matrix size for LU is 8192

by 8192, taking approximately thirty minutes on a single
CPU. For LU, we also wrote the same algorithm with MPI
(MPICH) and show speedup relative to MPI performance on
one CPU. Both POV-Ray and Bintree exhibit good speedups
and LU was comparable to MPICH performance. We also
confirmed that the basic messaging performance of our cur-
rent Phoenix implementation was comparable or slightly
better than MPICH.

Bintree and POV-Ray scale well across LANs, showing
LTC is in fact a very communication-efficient load balanc-
ing scheme. On the other hand, LU performs poorly when
deployed across LANs. This is of no surprise because LU
is more communication-intensive and latency-sensitive than
the other two.

Figure 6 demonstrates Phoenix’s capability of dynami-
cally adding/removing nodes. We begin with a small num-
ber of nodes, add one node at a time in a regular inter-
val, up to 64 nodes. After running with the 64 nodes for a
while, then we remove one node at a time. For each applica-
tion, we defined a unit progress and measured the number
of unit progresses made in each second. LU defined the unit
progress as a completed floating point operation and POV-
Ray as a line of the picture whose image has been calcu-
lated. Bintree defined it as any of the following event: task
creation, synchronization, or a task completion. The graphs
show “speedup” of each second, which is the number of unit
progresses made in the second, divided by the number of
progresses per second in a single node run. Also shown as
“fixed” is the speedup obtained in the fixed-resource, single
LAN experiment for the number of processors participating
at that moment.

For all applications, a newly added node sends a join re-
quest to a randomly chosen virtual node name. Whichever
physical node received the request splits its range of as-
suming virtual nodes into two equal ranges and gives the
latter half to the requester. The graphs show Bintree and
POV-Ray take advantage of dynamically added nodes very
quickly. This is not surprising because they use dynamic
load balancing and have relatively small application-level

Bintree performance with dynamic resources

0

10

20

30

40

50

60

70

0 50 100 150 200

time (sec)

re
la

tiv
e

pe
rf

or
m

an
ce

 (
ba

se
 :

1
C

PU
 th

ro
ug

hp
ut

)

dynamic fixed

POV-Ray performance with dynamic resources

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

time (sec)

re
la

tiv
e

pe
rf

or
m

an
ce

 (
ba

se
: 1

C
PU

 th
ro

ug
hp

ut
)

dynamic fixed

LU performance with dynamic resources

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350

time (sec)

re
la

tiv
e

pe
rf

or
m

an
ce

 (
ba

se
 :

1
C

PU
 th

ro
ug

hp
ut

)

dynamic fixed

Figure 6: Dynamic Performance Improvement as Processors Join/Leave

states that need migrate or be copied to new nodes. For
Bintree and POV-Ray, newly added nodes simply begin with
an empty task deque, so tasks need not migrate at all when
a node joins. There may be synchronization data structures
that need migrate, but in this experiment it did not hap-
pen. On the other hand, LU exhibits a less encouraging
behavior. First, it is not able to reach a peak performance
comparable to the fixed-resources case after all nodes joined.
Although we did not conduct detailed analyses, it is very
conceivable that the above random partitioning of virtual
node name space, and hence of the array, will lead to a load
imbalance, where highly loaded nodes assume twice or more
elements than others. Second, it exhibits significant perfor-
mance drops many times on the way. This is because LU
needs to move a large volume of array data when nodes join,
especially when the number of processors are small. For ex-
ample, when we have eight nodes, each node on average
holds one eighth of the entire array, which is 64MB in our
experiment. When a half of it should move to a new node,
it takes at least 2.5 seconds on 100Mbps link. The data
are sent in a single large message and the receiver does not
make any progress during receiving the message. Moreover
it blocks barrier synchronization performed at each itera-
tion.

7. RELATED WORK

7.1 Wide-Area Parallel Computing Tools
Attempts to support parallel computations that run in

wide area and/or for a long time are roughly classified into
two groups.

• Attempts to take an existing programming model and
make its implementation more suitable for wide-area/long-
running computation.

• Attempts to define a simple, and rather restricted,
computation model (task farming) to support dynam-
ically joining/leaving resources and fault tolerance.

The first category includes MPI implementation support-
ing communication across LANs [10], accommodating node
failures [7], and supporting checkpoints [3, 34]. Our main
contribution, in contrast to these efforts, is that we proposed
a new programming model , necessary for applications that
acquire and release resources during computation. As we
argued in Section 2, existing message passing models, not
their particular implementation, have inherent difficulties in
supporting applications using dynamic resources. We also

sketched an implementation of Phoenix that supports com-
munication across LANs over many restrictions (firewall,
DHCP, NAT, etc.). MPI implementations should be able
to take advantage of it.

The second category includes Nimrod/G [4] and many
other task scheduling tools [21, 26]. There is a single or
a few servers that pool tasks and whichever resources are
live at that moment get a task from the servers, computes
the result, and returns it to the server. No communica-
tion between resources is supported (they only communicate
with the servers). This model naturally supports dynami-
cally joining/leaving resources and tolerates crash of clients
(not a server). So these tools have been very successful for
many CPU-crunching experiments [9, 13, 31]. Our Phoenix
model is an attempt to supporting dynamic resources in a
more general computation model where involved resources
directly and frequently communicate with each other. We
believe this is becoming more and more important in near
future environments where (1) wide-area bandwidth will in-
crease to a point where complex coordination in wide-area
becomes feasible in terms of bandwidth, and (2) many more
applications will emerge and take advantage of the wide-
area bandwidth to achieve a shorter turn around time for
humans involved in an experiment. Phoenix will help such
applications parallelize a single large task using more com-
plex coordination between resources.

7.2 Peer-to-Peer Information Sharing Systems
Both models and implementation of Phoenix share many

things in common with recent efforts on scalable peer-to-
peer information sharing systems, such as Pastry [30], Tapestry
[42], Chord [33], and CAN [29]. They are all based on a
large and fixed name space abstraction mediating commu-
nication. They all build a routing infrastructure so that
involved nodes can send messages to any name (“key” in
terminology of peer-to-peer information sharing systems and
“virtual node” in ours). The main differences are as follows.

• We discussed in depth how to support transparent mi-
gration in this setting. As we argued in Section 3.5, it
is far from trivial, yet stateful applications (including
most interesting parallel applications) need it. To the
author’s best knowledge, previous systems have not
addressed this issue.

• Our routing infrastructure does not assume any-to-any
connection is allowed. Previous systems enforce a pre-
defined connection topology over involved resources,
and seem to assume such connections are always al-

lowed (i.e., they are never blocked by firewall, the tar-
get is never behind a NAT router, etc.). Our routing
infrastructure overcomes them using dynamic routing
table construction, as outlined in Section 5.

8. CONCLUSION AND FUTURE WORK
We described Phoenix parallel programming model for

supporting parallel computation using dynamically joining/leaving
resources. Every node sees a large virtual node space. A
message is destined for a virtual node in the space and
whichever node assumes the virtual node at that moment
receives it. A protocol to transparently migrate responsi-
bility of virtual nodes and application states in sync has
been clarified. This is the key step forward to supporting
dynamically joining/leaving resources without making the
programming model perceived by the programmer too com-
plex or too restrictive. Several application studies have been
described, demonstrating that this model is a general model
that will facilitate porting many of existing parallel appli-
cations and algorithms to more dynamic environments. An
implementation has been sketched, demonstrating a scalable
implementation is indeed possible. Experiments have shown
it achieves good speedups for divide-and-conquer applica-
tions having good locality, and takes advantage of dynam-
ically joining resources for applications having small task
migration overheads.

The next logical steps include a detailed study of the rout-
ing infrastructure, rollback mechanisms for fault tolerant
applications, and higher-level programming models built on
top of Phoenix.

Acknowledgments
We are grateful to anonymous reviewers for their construc-
tive criticisms. We also wish to thank Takashi Chikayama,
Andrew Chien, and members of Ninf project for their dis-
cussions and comments before publication. This work is fi-
nancially supported by “Precursory Research for Embryonic
Science and Technology” of Japan Science and Technology
Corporation and “Grand-in-Aid for Scientific Research” of
Japan Society for the Promotion of Science.

9. REFERENCES
[1] A. Beguelin and J. Dongarra. PVM: Parallel Virtual

Machine: A Users’ Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994.

[2] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. In
IEEE FOCS, pages 356–368, 1994.

[3] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali,
G. Fedak, C. Germain, T. Herault, P. Lemarinier,
O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov. MPICH-V: Toward a scalable fault
tolerant MPI for volatile nodes. In SC 2002, 2002.

[4] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G:
An architecture of a resource management and
scheduling system in a global computational Grid. In
HPC Asia 2000, pages 283–289, 2000.

[5] C. Cheng, R. Riley, and S. Kumar. A loop-free
extended bellman-ford routing protocol without
bouncing effect. In ACM SIGCOMM, pages 224–236,
1989.

[6] Entropia. http://www.entropia.com/.

[7] G. E. Fagg and J. Dongarra. FT-MPI: Fault tolerant
MPI, supporting dynamic applications in a dynamic
world. In PVM/MPI 2000, volume 1908 of LNCS,
pages 346–353. Springer, 2000.

[8] M. Feeley. A message passing implementation of lazy
task creation. In Parallel Symbolic Computing:
Languages, Systems, and Applications, volume 748 of
LNCS, pages 94–107. Springer-Verlag, 1993.

[9] fightAIDS@home. http://www.fightaidsathome.org/.

[10] I. Foster and N. Karonis. A Grid-enabled MPI:
Message passing in heterogeneous distributed
computing systems. In SC 1998, 1998.

[11] I. Foster and C. Kesselman, editors. The
GRID—Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, 1999.

[12] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In ACM PLDI, 1998.

[13] GIMPS. http://www.mersenne.org/prime.htm.

[14] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. World Wide Web,
2(4):219–229, December 1999.

[15] G. J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall, 1991.

[16] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–295,
1997.

[17] K. Kaneda, K. Taura, and A. Yonezawa. Virtual
Private Grid : A command shell for utilizing hundreds
of machines efficiently. In CCGrid 2002, 2002.

[18] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
release consistency for software distributed shared
memory. In ACM ISCA, 1992.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale persistent
storage. In ASPLOS, 2000.

[20] B. Lang, C. Queinnec, and J. Piquer. Garbage
collecting the world. In ACM POPL, pages 39–58,
1992.

[21] LSF - load sharing facility.
http://wwwinfo.cern.ch/pdp/lsf/.

[22] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy
Task Creation: A techinque for increasing the
granularity of parallel programs. IEEE Transactions
on Parallel and Distributed Systems, 2(3):264–280,
July 1991.

[23] MPICH-a portable implementation of MPI.
http://www-unix.mcs.anl.gov/mpi/mpich/.

[24] NAS parallel benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[25] Parabon computation inc. http://www.parabon.com/.

[26] Portable Batch System. http://www.openpbs.org/.

[27] C. Perkins. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers.
In ACM SIGCOMM’ 94 Conference on
Communications Architectures Protocols and
Applications, 1994.

[28] POV-Ray. http://www.povray.org/.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
ACM SIGCOMM, 2001.

[30] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), pages 329–350, 2001.

[31] SETI@home project.
http://setiathome.ssl.berkeley.edu/.

[32] SOCKS. http://www.socks.permeo.com/.

[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In ACM
SIGCOMM, 2001.

[34] Y. Takamiya and S. Matsuoka. Towards MPI with
user-transparent fault tolerance. In JSPP2002, pages
217–224, 2002. (in Japanese).

[35] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and
S. Sekiguchi. Grid datafarm architecture for petascale
data intensive computing. In IEEE CCGrid, pages
102–110, 2002.

[36] K. Taura and A. Yonezawa. An effective garbage
collection strategy for parallel programming languages
on large scale distributed-memory machines. In ACM
PPoPP, pages 264–275, 1997.

[37] K. Taura and A. Yonezawa. StackThreads/MP:
Integrating futures into calling standards. In ACM
PPoPP, 1999.

[38] United devices. http://www.ud.com/home.htm.

[39] H. Yamamoto, K. Taura, and A. Yonezawa.
Comparing reference counting and global
mark-and-sweep on parallel computers. In LCR98,
volume 1511 of LNCS, pages 205–218, 1998.

[40] T. Ylönen. SSH – secure login connections over the
internet. In the Sixth USENIX Security Symposium,
1996.

[41] V. C. Zandy and B. P. Miller. Reliable network
connections. In ACM MobiCom 2002, 2002.

[42] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
Technical Report UCB//CSD-01-1141, University of
California Berkeley, April 2000.

[43] Y. Zhou, L. Iftode, and K. Li. Performance evaluation
of two home-based lazy release consistency protocols
for shared virtual memory systems. In ACM OSDI,
1996.

