
The Interface Definition Language
for Fail-Safe C

Kohei Suenaga† Yutaka Oiwa† Eijiro Sumii‡ Akinori Yonezawa†

{kohei, oiwa, sumii, yonezawa}@yl.is.s.u-tokyo.ac.jp
†Department of Computer Science, University of Tokyo

‡Department of Computer Science, University of Pennsylvania

Abstract. Fail-Safe C is a safe implementation of full ANSI-C being de-
veloped by Oiwa and Sekiguchi. It uses its own internal data representa-
tions such as 2-word pointers and memory blocks with headers describing
their contents. Because of this, calls to external functions compiled by
conventional compilers require conversion of data representations. More-
over, for safety, many of those functions need additional checks on their
arguments and return values. This paper presents a method of semi-
automatically generating a wrapper doing such work. Our approach is
to develop an Interface Definition Language (IDL) to describe what the
wrappers have to do before and after function calls. Our language is
based on CamlIDL, which was developed for a similar purpose between
Objective Caml and C. Our IDL processor generates code by using the
types and attributes of functions. The attributes are additional informa-
tion describing properties which cannot be expressed only by ordinary
types, such as whether a pointer can be NULL, what range of memory can
be safely accessed via a pointer, etc. We examined Linux system calls as
test cases and designed a set of attributes necessary for generating their
wrapper.

1 Introduction

The C language [9] is a programming language which was originally designed
to develop UNIX. This language provides very flexible methods of memory ac-
cess such as getting pointers to memory blocks, accessing memory via pointers,
casting pointers into other types, and so on. Although these features enable pro-
grammers to write low-level operations efficiently and flexibly, they often cause
critical security problems such as buffer overrun.

Fail-Safe C [13] is a full ANSI-C compatible compiler which makes programs
written in C safe, preventing illegal memory accesses. Compared with previous
studies which also make C programs safe [1, 3, 7, 12], Fail-Safe C can accept a
larger set of programs. For example, Fail-Safe C can safely deal with casts from
pointers to integers.

The previous safe C compilers can guarantee safety when the source files of a
program are available and can be compiled with these compilers. However, they
cannot make the program safe when some functions it calls (e.g., system calls)

are given as binaries compiled with usual C compilers such as GCC. Although
some of the safe C compilers [3] provide helper functions to write wrappers
for external functions, it is still tedious to write wrappers for all the external
functions.

In this paper, we present a method of semi-automatically generating wrap-
pers for external functions for Fail-Safe C. We designed an interface definition
language (IDL) and implemented an IDL processor which generates wrappers
from interface definitions of external functions. As long as the generated wrap-
pers are used in calling external functions (and the functions behave correctly in
accordance with the interface definitions), programs are guaranteed to run safely
even when these functions are executed. There are many IDLs which interface
safe languages with C [5, 6, 10]. However, they are designed primarily to convert
data representation of one language to another, and do not take the safety of
execution as important aspect. Our purpose is not only to interface Fail-Safe C
with C, but to guarantee the safety of external function calls.

The wrappers’ work is roughly categorized into two groups: checking precon-
ditions and converting data representations. Because Fail-Safe C uses its original
data representation, we have to convert representations of arguments and return
values before and after calling external functions compiled by usual C compil-
ers. Additionally, there are many functions which require some preconditions
for safety before being called. Our IDL processor generates wrappers from given
interface definitions which specify what preconditions have to hold, what kind
of conversions are required, and so on. In execution time, the wrappers utilize
the metadata that is added to arguments by the Fail-Safe C compiler to confirm
preconditions like whether the passed memory block has sufficient size to call
the function safely.

The rest of this paper is organized as follows: In Section 2, we briefly present
how Fail-Safe C works. In Section 3, we examine by case study what wrappers
have to do. After showing the syntax and semantics of our IDL in Section 4, we
present the result of experiments in Section 5. Finally, we review previous work
in Section 6 and discuss future work in Section 7.

2 Fail-Safe C

2.1 Data Representations

In this section, we briefly introduce the internal data representations used in
Fail-Safe C. Further details are described in [13].

Memory Blocks. In the Fail-Safe C world, every memory block has a header. The
header is a structure which contains size information of the memory block and
a pointer to a structure called TypeInfo. Fail-Safe C performs boundary checks
for every memory access by using the size information in the header. TypeInfo
contains the name of the type of the memory block and a table of pointers to
functions called handler methods.

Handler Methods. In the C language, one can arbitrarily cast a pointer into
another type. This causes inconsistency between the static type of a pointer and
the actual type of a memory block it points to. Thus, in general, we cannot trust
a pointer’s static type. Rather, we have to access a memory block according to
its actual type.

For this purpose, Fail-Safe C augments each memory block with functions for
accessing it, called handler methods. To be more specific, the TypeInfo structure
of a memory block contains a table of pointers to its handler methods. Fail-
Safe C replaces every memory access with calls to these handler methods. In
accessing memory, handler methods perform safety checks such as alignment
checks according to the memory block’s layout. By using handler methods in
each memory block, we can safely access a memory block even if a pointer’s
static type is different from the actual type of the memory block.

Fat Pointers. In Fail-Safe C, every pointer is represented in two words. The
upper word represents the base address of the memory block it points to, while
the lower word represents an offset from the base address. By separating the
offset from the base address, Fail-Safe C can perform boundary checks fast. In
addition, headers of memory blocks can be accessed fast and safely, because all
headers are placed just before the base address. Moreover, Fail-Safe C can detect
invalid arithmetics between pointers in different memory blocks by comparing
their base addresses.

The least significant bit of a base address is used as a cast flag. This flag is
on if the pointer was cast from a pointer of another type. In this case, handler
methods must be used because the pointer’s static type may be different from
the memory block’s actual type. On the other hand, if the flag is off, we can
safely access the memory block in usual ways without using handler methods.
By tracing whether a pointer is cast and using handler methods as necessary,
Fail-Safe C achieves both accepting programs which are difficult to ensure safety
because of cast pointers and accessing memory as fast as usual C can in many
cases. Fig. 1 illustrates the relation among a fat pointer, a memory block and
TypeInfo.

Fat Integer. In usual C, one can cast a pointer to an integer whose size is not
smaller than the pointer’s size. To allow this, Fail-Safe C represents integers in
two words. A usual integer is represented in two words with the upper word set
to zero. (Thus, programs which use an arbitrary integer as a pointer does not
work in Fail-Safe C.) When a pointer is cast to an integer, Fail-Safe C writes the
pointer’s base address in the integer’s upper word and the pointer’s offset in the
integer’s lower word. When an integer is cast to a pointer, Fail-Safe C inspects
the header pointed to by the upper word of the integer, and checks the type of the
memory block. If the type is different from the pointer’s type we are casting to,
the cast flag of the pointer is set. With these procedures, we can maintain safety
even when we cast a pointer to an integer and cast the integer back to another
pointer. Note that only integers whose size is big enough to retain pointers are

TypeInfo

Size of block

Data

(format depends on
 type info,
 indexed with
 virtual offset)

Memory Block

Size of element

Name of the type

Type information structure

Handler Method Table:
void *(*read_word)(base, vofs);
byte (*read_byte)(base, vofs);
void (*write_word)(base, vofs, void*);
void (*write_byte)(base, vofs, byte);
void (*copyto)(vofs from, base, vofs);

Base

flag

Fat Pointer

Handler method

read/
write

Offset

Fig. 1. Relation among a fat pointer, a memory block and a TypeInfo

represented in two words. Small integers like char are represented in the usual
way.

2.2 What kind of safety does Fail-Safe C guarantee?

Most of unsafe behavior of C is caused by illegal memory accesses. Thus, the
main focus of Fail-Safe C is on memory safety. However, not all of the unsafe
behavior is caused by memory problems. For example, though integer overflow
is not a memory problem, it is an unsafe behavior because it can lead to buffer
overrun [2]. As discussed in [14, pp. 7–8], a programming language can be con-
sidered safe when programs written in the language can never go wrong – that
is, at every point during execution, their next behavior is predictable from the
semantics of the language. However, there are many “undefined” behavior in
ANSI-C specification [9], including the cases of buffer overrun and even division
by zero.

From these considerations, we state the safety of Fail-Safe C as follows:

Assume that a semantics of C is defined. Fail-Safe C always aborts a
program when its next behavior is undefined in the semantics.

Although we have to formally define the semantics of C in order to make this
statement exact, we do not argue about such formalism here and use the above
statement to informally understand the safety Fail-Safe C guarantees.

3 Wrappers

3.1 Control flow

Before explaining the details of wrappers, we briefly describe how wrappers
generated from interface definitions work. Fig. 2 shows the flow of function calls.
In this figure, a global variable g and three functions, main, wrapper f and f are

main(...)
{
 ...
 ...
 f(...);
 ...
 ...

}

wrapper_f(...)
{
 ...
 ...
 f(...);
 ...
 ...

 return ret;
}

f(...)
{
 ...
 ...
 ...

 return 1;
}

The world of Fail-Safe C The world of usual C

gfsc_g

(1) (2)

(3)
(5)

(4)

Fig. 2. Control flow of applications which use our IDL.

involved in an external function call. main is a function which is compiled by the
Fail-Safe C compiler. f is an external function compiled by a usual C compiler.
wrapper f is a wrapper generated from the interface definition (written in our
IDL) of f.

First, main calls the external function f. Fail-Safe C replaces this call by a
call of wrapper f [(1) in Fig. 2]. After wrapper f confirming the preconditions
specified by the interface definition of f, the representations of the original ar-
guments of f are converted and passed to wrapper f. Then, wrapper f calls the
external function f [(2)]. After f returns [(3)], wrapper f converts the represen-
tation of the return value of f and pointer-type arguments passed to wrapper f
from the usual C’s one to the Fail-Safe C’s one. Besides, if the interface defi-
nition of f says that f updates global variables, say g, wrapper f has to make

this update visible from main. To achieve this, our IDL processor prepares two
regions for global variables. One is to retain a value of the global variable for
Fail-Safe C’s representation (fsc g in Fig. 2), and the other is for the usual C’s
representation (g in Fig. 2). After f returns, wrapper f copies the values of g to
fsc g with converting its representation [(4)].

3.2 What kind of safety does our IDL guarantee ?

As what safety Fail-Safe C guarantees was explained in 2.2, we will now explain
the safety our IDL guarantees. The safety of our IDL is restricted in three ways.
Firstly, our IDL guarantees only the safety Fail-Safe C guarantees. Thus, un-
safe behavior that is not prevented by Fail-Safe C (e.g., fork bomb) is neither
prevented by our IDL.

Secondly, our IDL assumes that Fail-Safe C itself does not have bugs. Thus,
Fail-Safe C’s safety always holds in Fail-Safe C’s world especially just before
calling external functions.

Lastly, we assume that each interface definition given to our IDL processor
always agrees with the actual implementation of an external function. Thus, if
an interface definition is wrong, safety is not guaranteed.

Then, in short, we can state the safety of our IDL as follows.

A wrapper generated by our IDL safely calls an external function (in
Fail-Safe C’s sense) if the following conditions hold:

– The safety of Fail-Safe C holds before calling external functions.
– An interface definition agrees with the implementation of an external

function.

3.3 Case Study: Linux System Calls

In this section, we describe the structure of wrappers. First, we explain by ex-
amples how wrappers should work. We use two linux system calls, read and
accept, as examples.

read System Call. The Linux system call read is declared as follows:

int read(int fd, char *buf, int n);

fd is a file descriptor and n is the size of a memory block pointed to by buf.
Data are written to the memory block buf points to if the return value is not
-1. In this case, the return value indicates the size of written data. The return
value -1 means that data are not written due to some error. In this case, the
global variable errno describes what the error is.

Preconditions. Firstly, we consider preconditions to call read safely. There are
three preconditions that have to hold. First, because n is the size of a buffer,
n ≥ 0 has to hold. Second, buf cannot be NULL. This can be confirmed by
checking that the upper word (base address) of buf is not zero. Last, the size of
the buffer has to be actually more than n. This can be confirmed from the size
information in the header of the memory block. read does not perform write
accesses to buf beyond the region specified by n. Therefore, as far as read is
correctly implemented, buffer overrun does not occur when this function is called
because the preconditions above are checked.

Converting data representations (before the call). After checking preconditions,
a wrapper converts the data representations of arguments from Fail-Safe C’s to
usual C’s. The wrapper converts fd and n, which have two-word representation,
into the usual representation. As for buf, because the memory block buf points
to has different layout, only converting the representation of the value of buf is
insufficient. Thus, buf is converted to a pointer which points to a n-byte memory
block newly allocated as in the usual C.1

Converting data representations (after the call). The wrapper converts the data
representation of the return value, arguments and global variables from usual
C’s back to Fail-Safe C’s. First, if the return value is not -1, the memory block
buf points to has to be updated. To do this, the wrapper writes data from the
memory block allocated before the function call (see above) back to the memory
block pointed to by buf. Then the former memory block is deallocated.

If the return value is -1, a global variable errno is updated, indicating what
error has occurred. In this case, the wrapper copies the value of the usual C’s
region to the Fail-Safe C’s region converting its representation.

accept system call. Let us look into another example, the accept system call.
It is declared as follows:

int accept(int socket,
struct sockaddr *address,
unsigned int *address_len);

where sockaddr is declared as follows:

struct sockaddr {
unsigned short sa_family;
char sa_data[14];

};

socket, address and address len are, respectively, a socket descriptor, a pointer
to sockaddr and a pointer to an integer which indicates the size of the structure
address points to. Address may be NULL, in which case address len is ignored.
1 Actually, in this particular case, the conversion is not required since the representa-

tion of char is the same between Fail-Safe C and usual C.

A caller of accept passes address a pointer to sockaddr, which is cast from
a pointer to a protocol specific struct. For example, if the caller uses the IP
protocol, address is cast from a pointer to sockaddr in defined as follows:

struct sockaddr_in {
unsigned short sin_family;
unsigned int sin_port;
struct in_addr sin_addr; /* an IP address */
unsigned char sin_zero[8];

};

It is guaranteed that such protocol specific structs contain an unsigned short
member at the beginning. On the other hand, the static type of sa data, an
array of char, is usually different from its actual type.

If the return value of accept is not -1, the value is a descriptor of a newly
created socket. In this case, the structure pointed to by address is updated,
indicating the address with which the socket is connected. address len is also
updated, indicating the size of address. If the return value is -1, errno is
updated to indicate what error has occurred.

Preconditions. We first see what preconditions are required to call this system
call safely. The following four preconditions are to hold if address is not NULL:

– address->sa data is not NULL.
– address len is not NULL.
– *address len ≥ 0.
– The size of the memory block address points to is more than *address len

bytes.

Among the above conditions, the first and second can be confirmed by checking
that the upper word of address->sa data and address len is not zero. The
fourth condition is confirmed from the header of the memory block address
points to.

Converting data representations (before the call). After confirming precondi-
tions, we convert data representations of arguments as we did in the case of
read. Firstly, the wrapper converts socket’s representation from two-word to
one-word.

Secondly, if address != NULL, the wrapper has to allocate *address len
bytes of memory block and copy the contents of the memory block pointed to by
address. During the copy, the representation of each member of the structure
has to be converted. Sa family, whose type is short and its representation is
the same in Fail-Safe C and usual C, can be copied directly. Although sa data’s
actual type may be different from its static type as we mentioned before, we can
copy data safely using handler methods.

Finally, if address len is not NULL, the wrapper newly allocates an integer
in the usual C’s representation, copies *address len to the integer converting
its representation, and makes a pointer to the integer.

Converting data representations (after the call). After the function returns, the
wrapper again has to convert back the representation of the return value and
reflects side effects as in the case of read.

The return value and the global variable errno are converted completely in
the same way as in read.

If the return value is not -1, the memory blocks pointed to by address and
address len may have been overwritten. Conversion of these values is done as
follows. For address len, the wrapper copies the value of the integer newly
allocated before the call (see above) back to the memory block address len
points to. For address, the wrapper copies each member’s value converting their
representation. During the copy, the wrapper uses handler methods for sa data
as we did before calling.

3.4 Information required by IDL

From the case study above, we now see that our IDL needs at least the following
information to generate wrappers.

– Whether a pointer can be NULL.
– What region of a memory block can be accessed safely via a pointer.
– What kind of side effects, such as updates of memory blocks and global

variables, occur during a function call.
– Conditions which have to hold before a function call (for example, n ≥ 0 in

read).

3.5 Structure of wrappers

On the basis of the case study in the previous sections, we split wrappers in the
following five phases:

– Precondition Checking
– Decoding and Allocation
– Call
– Deallocation and Encoding
– Return

In the rest of this section, we explain what wrappers do in each phase.

Precondition Checking. In this phase, wrappers confirm that preconditions
specified in interface definitions actually hold. For example, preconditions like
whether a pointer is NULL and whether a specified region is safely accessible are
confirmed, along with user-specified preconditions such as n ≥ 0.

Decoding and Allocation. In this phase, wrappers convert the representations
of arguments from Fail-Safe C’s to usual C’s. Integers, which are represented in
two words—base and offset—are converted to one-word representation by adding
the offset to the base. As for pointers, wrappers allocate memory blocks with
the size which is specified by the pointer’s attribute. Then, wrappers copy the
contents of original memory blocks to the allocated memory blocks, converting
the data representation. The result of the conversion is a pointer to the newly
allocated memory block.

Call. After the two phases above, a wrapper calls an external function. If the
previous two phases have finished normally, and if the implementation of the
external function matches the interface definition, the call should be safe. (Even
if there are postconditions that have to hold, wrappers do not check those. As
mentioned in section 3.2, our IDL assumes that an interface definition matches
the implementation of the external function. Under this assumption, if the pre-
conditions hold, the postconditions should also hold.)

Deallocation and encoding. In this fourth phase, a wrapper (1) converts
the representation of the return value and (2) reflects side effects caused by an
external function call. The former work is exactly the reverse of the decoding
and allocation phase. The latter work is as follows. Our IDL processor prepares
memory that keeps Fail-Safe C’s representation of each global variable. If an
external function may have updated some global variables, the wrapper copies
their values to the memory, converting their representation.2

Return. If there is a return value, the wrapper returns a value converted in the
previous phase.

4 Our IDL

4.1 Syntax

In this section, we present the syntax of our IDL. Interface definitions written
in our IDL almost look like C’s header files which consist of declarations of
functions, global variables and so on. One difference between our IDL and C’s
declaration is that types are annotated with attributes in our IDL. Attributes
are additional information which cannot be expressed only with C’s types, such
as what region is accessible via a pointer.

Table 1 shows (part of) the syntax of our IDL.

2 Conversely, in the decoding and allocation phase, we could copy the value of global
variables from Fail-Safe C’s memory into usual C’s. However, this is not implemented
so far, because we have never come across an external function which requires that.

attributes ::= ε | [{ attribute, }]

attribute ::= ident
| ident ({ pure-expr, })

| * attribute
global-decl ::= attributes type declarator
struct-decl ::= struct {

{ attributes type declarator }
}

declarator ::= { *[const] } direct-declarator
direct-declarator ::= ident

| (declarator)

| direct-declarator [[pure-expr]]
| direct-declarator (param-list)

param-list ::= { attributes type declarator, }
function-decl ::= attributes1 type { * [const] } ident (param-list) attributes2

Table 1. Syntax of our IDL (excerpt): { T } means a sequence of zero or more
Ts. { T, } means a comma-separated sequence of zero or more Ts.

The metavariable “type” is a type of C. “Ident” is a string which can be used
as an identifier in C. “Pure-expr” is a C’s expression which does not contain side
effects. An identifier ret is reserved to refer to a return value in “pure-expr”.

“Attributes” is information added to types which is needed to generate a
wrapper. An attribute with * is given to a value of pointer type. For example,
if an attribute A* is given to a value of type T*, it means that the attribute A is
given to the type T.

“Global-decl” is a declaration of a global variable which may be updated
by external functions. It is a global variable declaration of C accompanied with
attributes. “Struct-decl” is a declaration of a structure which is used by in-
terface definitions. It consists of a structure declaration of C and attributes of
each member. “Function-decl” is a interface definition of an external function.
“attributes1” is attributes of the return value and “attributes2” is attributes of
the function.

4.2 Attributes and their semantics

In this section, we present the attributes in our IDL, designed based on the case
study described in Section 3.3.

always null, maybe null, never null. These attributes are given to a pointer
type variable, meaning the pointer has to be always NULL, can be NULL and must
not be NULL, respectively. For example, for the read system call in Section 3.3,
never null is given to buf.

If these attributes are given, the generated wrapper confirms if these condi-
tions actually hold in Precondition Checking phase.

can access in elem(e1, e2). This attribute is given to a variable of pointer
type. It means that, if this attribute is given to a pointer argument p, the region
from p + e1 to p + e2 must be readable and writable via p, where e1 and e2 are
pure-exprs. In the case of read in Section 3.3, can access in elem(0, n - 1)
is given to buf.

If this attribute is given, the wrapper confirms that an indicated region is ac-
tually accessible from the header of the memory block in Precondition Checking
phase. In Decoding and Allocation phase, the wrapper copies the contents of the
given memory block to newly allocated one. In copying, the wrapper converts
the representations of the contents of the memory block from the Fail-Safe C’s
one to the usual C’s one.

can access in byte(e). This attribute is given to a pointer type variable,
meaning that e bytes from the pointer is accessible via the pointer. In the
case of accept in Section 3.3, can access in byte(*address len) is given to
address3.

If this attribute is given, the wrapper confirms the indicated region is actually
accessible from the header of the memory block pointed to by the pointer. The
wrapper also copies the contents of the memory block to a newly allocated
memory block in Decoding and Allocation phase.

string. This attribute is given to a pointer to char, meaning that the variable
is a pointer to a null-terminated string. If this attribute is given, the wrapper
confirms that the pointer is actually null-terminated in Precondition Checking
phase and copies the string to a newly allocated memory block in Decoding and
Allocation phase.

write global(e1, ident). This attribute is given to function declarations (spec-
ified at attributes2 of Table 1.). Ident is a name of a global variable. This at-
tribute means that if e1 6= 0 holds after the external function returns, ident is
updated by the function. For example, write global(ret == -1, errno) is
given to read. If this attribute is given, the wrapper copies the value of specified
variable of the usual C’s world to Fail-Safe C’s one converting representation.

write(e, ident, e1, e2). This attribute is given to a function declaration.
Ident is a pointer-type argument of the function which is not qualified by const.
It means that, if e 6= 0 holds after the function returns, the region from ident
+e1 to ident +e2 may be updated by the function. For example, write(ret !=
-1, buf, 0, ret - 1) is given to read. If this attribute is given, the wrapper
writes back the contents of the specified region in Deallocation and Encoding
phase. e1 and e2 can be omitted. In this case the wrapper writes back all of the
accessible regions specified by other attributes.
3 Because address len is dereferenced at this point, the precondtions of address len

have to be confirmed before those of address are confirmed. There may be dependen-
cies among arguments as in this case. For now, our IDL ignores these dependencies
and users have to resolve them manually.

precond(e). This attribute is given to a function declaration. It means that
e 6= 0 has to hold before the external function call. For example, precond(n >=
0) is given to read. The specified condition is checked in Precondition Checking
phase.

4.3 An example of interface definition

Fig 3 shows an example of interface definition. We gave the interface definition
of open, read, write and accept.

int errno;

struct sockaddr {

unsigned short sa_family;

[never_null] char *sa_data;

};

int open([never_null, string] const char *path, int flags)

[write_global(_ret == -1, errno)];

int read(int fildes,

[never_null,

can_access_in_elem(0, nbytes - 1),

write(_ret != -1, 0, _ret - 1)] char *buf,

int nbytes)

[precond(nbytes >= 0), write_global(_ret == -1, errno)];

int write(int fildes,

[never_null, can_access_in_elem(0, nbytes - 1)]

const char *buf,

int nbytes)

[precond(nbytes >= 0), write_global(_ret == -1, errno)];

int accept(int socket,

[can_access_in_byte(*address_len),

write(_ret != -1)] struct sockaddr *address,

[write(_ret != -1)] int *address_len)

[precond(address == NULL || address_len != NULL),

write_global(_ret == -1, errno)];

Fig. 3. An example of interface definition

Note that each attribute can refer to every argument of the interface defini-
tion the attribute belongs to even if the attribute occurs before the argument
it refers to. For example, although buf occurs before nbytes in read’s interface
definition, nbytes can be referred to by can access in elem which is given to
buf.

5 Experiments

5.1 Method and results

We implemented our IDL processor described above in Objective Caml. Using
this implementation, we measured the overhead caused by wrappers, comparing
the time spent by programs which calls external functions in the following two
cases:

– Programs compiled by Fail-Safe C and linked with Fail-Safe C run-time
libraries. Of course it uses generated wrappers to call external functions.

– Programs compiled by gcc -O3 which calls external functions directly.

We conducted experiments on machines with Sun UltraSPARC-II 400 MHz CPU
with 13.0GB main memory.

Overhead of converting integers. First, we wrote a function succ as an external
function. It receives one integer, adds 1 to it and returns. We also wrote a
program which calls succ 107 times sequentially and compared the duration
spent in the two cases mentioned before. The result of this experiment shows
the overhead of converting integers. We show the result in Table 2. The overhead

succ arraysucc cp

with wrapper (msec) 234 597 144

without wrapper (msec) 220 200 91

overhead (%) 6 199 58

Table 2. Overhead of each program

of the wrapper is only 6%.

Overhead of converting pointer-type arguments. Next, we wrote a function arraysucc
and compiled it with gcc. It receives an array of 107 char and adds 1 to each
element. We also wrote a program which calls arraysucc as an external func-
tion. The result of this experiment shows the overhead of converting pointer-type
arguments. The result in Table 2 shows that the overhead of allocating mem-
ory and copying contents is very large, 199%, comparing with the overhead of
converting integers.

In this experiment, we also measured how much time is spent in each phase.
We show the result in Table 3.

Overhead of a more practical program. Last, we wrote a program which copies
files of 106 bytes using open, read, write as external functions, and measured
overhead. The result is shown in Table 2. The overhead is 58% with wrappers.

P D C E Total

Execution time (msec) 0 326 110 160 596

Ratio (%) 0 54.7 18.5 26.8 -

Table 3. Overhead of converting pointer-type arguments. P: Precondition Checking,
D: Decoding and Allocation, C: Call, E: Deallocation and Encoding

P D C E Total

Execution time of read’s wrapper (msec) 1 16 46 14 77

Execution time of write’s wrapper (msec) 1 16 73 4 94

Table 4. Time spent in each phase of read’s and write’s wrapper. P: Precondition
Checking, D: Decoding and Allocation C: Call, E: Deallocation and Encoding

Also in this experiment, we measured the time spent in each phase. We
present the result of read’s and write’s wrapper in Table 4. In this program,
The time spent for Call phase is dominant because file access is performed in
this phase. However, focusing on the execution time of the wrapper itself, the
overhead of Decoding and Allocation phase is large as in the case of arraysucc.

5.2 Discussion

From the experiments above, we see that most of overhead is caused by Decoding
and Allocation phase. Thus, to reduce overhead of a whole wrapper, we need to
reduce the overhead of this phase.

There are two possible solutions. First one is to omit copying in Decoding
and Allocation phase. For example, in the case of read, the contents of the
memory block pointed to by buf is never read and always overwritten. In such
case, wrappers do not have to copy contents of memory block in Decoding and
Allocation phase.

Second one is to omit allocation of memory block in Decoding and Allocation
phase if representations of memory blocks are the same in usual C and Fail-Safe
C. For example, again in the case of read, if buf points to a memory block
whose actual type is char, all the wrapper has to do is to convert a two-word
representation to one-word one, without allocating a new memory block.

6 Related Work

Many functional languages have its own IDLs. For example, H/Direct [5, 6] and
CamlIDL [10] are IDLs to call external functions from functional languages.
The former is an IDL for Haskell [8] and the latter is for Objective Caml [11].
Although Chez Scheme [4] has no independent IDL, it can call external functions
using foreign-procedure function. This function receives an interface definition
of an external function and returns closure that calls the external function. These

IDLs focus on conversion of data representation and pay less attention to safety
checks than our IDL does. For example, although CamlIDL prepares size is
attribute which is a counterpart of our can access in elem, wrappers generated
by CamlIDL does not check buffer size even if the attribute specified. Because
of this, if a buffer of insufficient size is passed to a generated wrapper, safety of
an external function call is lost.

CCured [3, 12] is another safe implementation of C. This implementation
analyses pointer usage statically and reduces needless dynamic checks. Because
CCured also uses its own data representation, it also requires the data conver-
sions before calling external functions. There are two methods to call external
functions from programs compiled with CCured. The first one is to manually
write wrappers for external functions. These wrappers check preconditions and
converts data representation as ones which our IDL generates. The second one
is to add the annotations that identify external function calls. With these an-
notations, CCured infers which data is used by the external functions. CCured
separates the metadata of such data from the actual data. (The metadata is usu-
ally held in one memory block together with the actual data.) Because the layout
of the actual data is the same as the usual C’s, CCured can pass these data to
external functions without converting representation. The second method, how-
ever, has a problem; it cannot be applied to external functions that have side
effects. Although CCured may have to update the metadata after calling such
functions, there is no way for programmers to express what updates have to be
reflected. With our IDL, one can cope with external functions with side effects.

7 Conclusion and Future Work

In this paper, we proposed a method to semi-automatically generate wrappers
to call external functions from Fail-Safe C. Using our implementation, we also
measured overhead of generated wrappers.

For future work, we are planning to apply our approach to larger and more
practical programs. Because the implementation of Fail-Safe C has not been
completed yet, the amount of overhead for practical programs are yet to be
seen. We are planning to examine all system calls and library functions, extract
common features and identify a reasonable set of attributes. We will also examine
the effectiveness of the optimizations mentioned in Section 5.2 by applying it to
many functions.

Acknowledgment

We are grateful to the members of Yonezawa group, especially to Yoshihiro
Oyama, for their comments on our work. Many ideas in this work stemmed from
discussion with them.

References

1. Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of
all pointer and array access errors. In Proceedings of the ACM SIGPLAN ’94
Conference on Programming Language Design and Implementation, pp. 290–301,
1994.

2. CERT/CC. CERT Advisory CA-2003-10 Integer overflow in Sun RPC XDR library
routines, April 2003. http://www.cert.org/advisories/CA-2003-10.html.

3. Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley
Weimer. CCured in the real world. In Proceedings of the ACM SIGPLAN ’03
Conference on Programming Language Design and Implementation, June 2003.

4. R. Kent Dybvig. Chez Scheme User’s Guide, 1998.
http://www.scheme.com/csug/index.html.

5. Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon L. Peyton Jones. H/Direct:
A binary foreign language interface for Haskell. In Proceedings of the third ACM
SIGPLAN international conference on Functional programming, pp. 153–162, 1998.

6. Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon L. Peyton Jones. Calling hell
from heaven and heaven from hell. In Proceedings of the fourth ACM SIGPLAN
international conference on Functional programming, pp. 114–125, 1999.

7. T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone:
A safe dialect of C. In Proceedings of USENIX Annual Technical Conference, June
2002.

8. Simon Peyton Jones. Haskell 98 language and libraries: the Revised Report, De-
cember 2002. http://www.haskell.org/definition/haskell98-report.pdf.

9. Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language (Sec-
ond Edition). Prentice Hall, 1988.

10. Xavier Leroy. CamlIDL Users Manual. INRIA Recquencourt, July 2001.
http://camlidl.inria.fr/camlidl.

11. Xavier Leroy, Dmien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml system release 3.06 Documentation and user’s manual. Institut
National de Recherche en Informatique et en Automatique, August 2002.

12. George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM SIGPLAN–SIGACT
symposium on Principles of Programming Languages, pp. 128–139, 2002.

13. Yutaka Oiwa, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori Yonezawa. Fail-Safe
ANSI-C Compiler: An approach to making C programs secure (progress report).
In Proceedings of International Symposium on Software Security, Tokyo, Japan,
November 8–10, 2002, Vol. 2609 of Lecture Notes in Computer Science. Springer-
Verlag, February 2003.

14. Benjamin C. Pierce. Types and Programming Languages. MIT press, 2002.

