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Abstract

This thesis presents three security systems for controlling the behavior of application
programs and protecting data relevant to those programs by using a virtual machine
monitor (VMM), or more precisely, through control from outside virtual machines (VMs).
The goal of this work is to design and implement security systems that simultaneously
meet the following two requirements: (i) providing fine-grained control and protection
mechanisms, and (ii) making subversion and evasion of these mechanisms difficult.

Security systems running on the OS or application level (e.g., sandboxing systems
and anti-virus tools) can control the behavior of untrusted programs and prevent attack-
ers from leaking and tampering with security-sensitive data. However, these security
systems are potentially vulnerable because they run in the same execution space as un-
trusted programs. If an attacker can hijack OS kernels and privileged programs, it is
not hard for the attacker to compromise security systems residing in the same execution
space.

A VMM virtualizes execution of separate computing environments for each VM and
allows users to run any programs, including OS kernels, inside their VMs. In terms
of security, a VMM has two advantages. First, it can isolate the control and protection
mechanisms of security systems from untrusted VMs. Second, it can control accesses to
physical resources (e.g., physical memory and disks) at a higher privilege level than that
of the OS kernels and application programs running inside untrusted VMs. However,
there are two key challenges in improving application program security from outside
VMs. The first challenge is to identify and manipulate in-VM states in OS-level semantics
from the hardware-level states that a VMM can observe. The second challenge is to enable
security systems to intercept events that a VMM cannot capture.

This thesis proposes three types of VMM-based security systems with different se-
curity concerns. The proposed systems have control and protection functionalities at
the application program (target program) granularity while maintaining the above two
VMM security properties.

The first proposed system, ShadowVox, controls the system call execution of target pro-
grams. The security concern is to control the behavior of target programs in user mode.
ShadowVox can control untrusted VMs at process and system-call granularity from out-
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side those VMs. To overcome the first challenge noted above, all three of the proposed
security systems provide a technique for obtaining OS-level states by using information
on the process management and system calls of OS kernels. To overcome the second
challenge, the three systems incorporate a technique for allowing a VMM to intercept an
arbitrary processor instruction. Experimental evaluation demonstrated that ShadowVox
could control several types of application programs on different processor architectures.
In addition, the system’s effectiveness against an attack from a compromised program
was demonstrated, and the overhead introduced by the system was measured.

The second proposed system, Shadowall, protects memory and virtual disk data in-
volved with target programs. The security concern is to protect target program data
in the user memory space and on virtual disks. Shadowall prevents compromised OS
kernels and privileged programs from divulging or corrupting such data related to tar-
get programs running in the same execution space. Experimental results demonstrated
Shadowall’s effectiveness against malicious operations in existing application programs,
and the performance penalties incurred by the system were measured.

Finally, the third proposed system, ShadowXeck, controls the behavior of OS kernels
running on VMs. The security concern is to control the behavior of target programs in
kernel mode. ShadowXeck addresses three problems with existing anti-malware sys-
tems: restriction on the use of kernel extensions, bypassing of system functionalities, and
significant performance degradation. ShadowXeck does not conservatively impose any
restriction on kernel extensions, and it reduces the performance impact on untargeted
programs. Experimental evaluation demonstrated ShadowXeck’s effectiveness against
attacks by actual kernel-level malware, and the runtime overhead imposed by the sys-
tem was measured.
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Chapter 1

Introduction

1.1 Background

With the growing use of personal computers and the Internet, users have been increas-
ingly interested in the security of their computing environments. The increasing interest
in computer security has driven the development and growth in use of various security
systems running on the operating system (OS) or the application layer. Security sys-
tems control the behavior of untrusted application programs (untrusted programs) and protect
application-specific or system-wide data from malicious programs. To control the behavior of
untrusted programs, security systems interrupt specific events that they focus on, such as
system call execution and Web page access, and prevent and detect unintended behavior
of untrusted programs. On the other hand, to protect application-specific or system-wide
data, security systems prevent data leakage and tampering.

For example, researchers have proposed sandboxing systems [11, 31, 42, 45, 86] and
intrusion detection/prevention systems [21, 37, 38, 98, 107] to control the behavior of
untrusted programs running at the user level, or to detect anomalies in their behavior.
Commercial anti-virus tools with real-time checking functionality [9, 70, 102] block un-
trustworthy program execution. For program code and data, to analyze, detect, and
prevent leakage and tampering, there are security systems that check tainted data on
memory [95, 118] or check file-system integrity [60, 80]. There are also systems for de-
tecting stealthy, malicious software and preventing it from residing at the user or kernel
level [110]. Furthermore, security-enhanced operating systems [4, 13, 46, 76] provide
access control mechanisms at the kernel level.

Unfortunately, attackers also take existing security systems into consideration, and
they attempt to take over programs, create leaks, and tamper with system-critical and
personal data. If attackers hijack programs running with administrator privileges or
OS kernels, they can subvert and evade security systems residing in the same execu-
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tion space without difficulty. For example, an attacker can send a signal to a security
system running on a compromised system to terminate or abort the security system,
and thus eliminate it from the compromised system. Attackers can also corrupt data, on
memory, related to security systems controlling the behavior of untrusted programs, so
that the security systems cannot interrupt events generated by the untrusted programs.
Furthermore, attackers can tamper with files used by security systems, such as policy
and database files. Attack methodologies for hijacking computing environments have
become more diverse and complicated over the past several years [25, 79, 108]. Even
worse, attackers can abuse OS kernel extensions for enhancing security in the execution
space [19, 59]. For all these reasons, the threat of attacks on computer systems remains a
serious problem.

As an approach to addressing the problem of attacks that are aware of security sys-
tems, we focus on leveraging virtual machine monitors (VMMs), also called hypervi-
sors [20, 35, 67, 71, 77, 78, 101, 105, 116]. A VMM multiplexes and virtualizes the under-
lying physical resources, such as physical memory and disks, and allows multiple OSs
to run on one physical machine. With a VMM, each OS runs on a virtual machine (VM).
Such an OS is called a guest OS. In recent years, various VMMs have been developed, and
their performance and functionalities have been significantly improved. The technology
also has received much attention as an infrastructure for cloud computing [47, 106]. From
the security perspective, VMMs have two main advantages. First, they provide stronger
isolation between VMs than isolation between processes. This is called VM isolation. Even
if an attacker hijacks an OS kernel or programs with the administrator privilege inside a
VM, it does not get easier for the attacker to take over the VMM or other VMs. Second,
VMMs can control access to physical resources, such as physical memory and network
devices, at a higher privilege level than that of VMs. This is called highest privilege con-
trol. Consequently, security systems based on a VMM pose more formidable barriers to
attackers. For these reasons, it is effective and efficient to leverage VMMs to address
problems associated with attacks on security systems.

1.2 Goal and Approach

The goal of this thesis is to design and implement systems that enhance the security of
application programs, meeting the following two requirements.

Difficulty in disabling and abusing security systems: The systems should provide con-
trol and protection mechanisms that are hard to corrupt and circumvent. Moreover,
the systems’ control and protection mechanisms should not be exploitable by at-
tackers. For example, the systems should not protect malicious programs.

Fine-grained control and protection for a wide variety of application programs: As con-
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ventional security systems running on the OS or application layer, the security
systems should control the behavior of application programs and protect related
data in terms of OS-level semantics, i.e., with process and file granularity. In ad-
dition, the systems should provide security for a wide variety of existing appli-
cation programs including legacy code. In other words, the systems should not
require modifying the source code of application programs, compilers and assem-
blers [22, 30, 72, 75, 109, 120].

Toward this goal, we present three VMM-based systems that enhance the security
of application programs: ShadowVox, Shadowall, and ShadowXeck. More specifically, the
three security systems control the behavior of application programs and protect data rel-
evant to them from outside VMs in which the application programs reside. We refer to
the VMs in which the application programs reside as target VMs. The major concern for
ShadowVox is to identify and control application programs in terms of OS-level seman-
tics from outside target VMs. The major concern for Shadowall and ShadowXeck is to
protect application programs from untrusted OS kernels running inside target VMs.

The three security systems address different security concerns. ShadowVox’s secu-
rity concern is controlling the behavior of application programs running in user mode.
ShadowVox controls system calls executed by application programs. For these programs,
it provides the same security guarantee as that of traditional sandboxing systems based
on system call interposition [45, 86]. Unlike such sandboxing systems, ShadowVox also
provides a security guarantee for the security system itself, i.e., ShadowVox, by using the
VMM properties described above: VM isolation and highest privilege control.

Shadowall’s security concern is protecting data manipulated by application programs
running in user mode. It prevents leakage and tampering with respect to memory and
virtual disk data related to application programs. For these programs, even if an at-
tacker hijacks OS kernels running inside target VMs, Shadowall prevents the attacker
from inducing leakage and tampering with program-related data. As with ShadowVox,
Shadowall can also enhance its own security by using VM isolation and highest privilege
control.

ShadowXeck’s security concern is controlling the behavior of application programs
running in kernel mode. More specifically, it controls OS kernel behavior related to ap-
plication programs. For these programs, even if an attacker takes over OS kernels run-
ning inside target VMs, ShadowXeck can the control OS kernel behavior of only user-
specified application programs. As with ShadowVox and Shadowall, ShadowXeck can
also enhance its own security.

This “out-of VM” scheme not only makes subverting and evading the protection
mechanisms harder but can also prevent attackers from abusing the protection mecha-
nisms to protect malicious programs. On the proposed security systems, the user spec-
ifies which application programs should be protected from outside target VMs. More
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concretely, the systems execution control commands and manage security policies in a
separate, trusted VM. We refer to such user-specified application programs as target pro-
grams. The security systems do not require the source code of target programs.

The security ensured by the proposed systems is assumed to depend on a VMM
as part of the systems’ trusted computing base (TCB); that is, the systems must have
a trusted, and reliable VMM. Virtual-machine-based-rootkits (VMBRs) [33, 51, 61] are
malicious software running at the VMM layer. SubVirt [61] modifies the system boot se-
quence. King et al. also proposed running security mechanisms at a layer below VMBRs
as a countermeasure against them. The security mechanisms this lower layer include
a secure boot mechanism [16] and secure hardware mechanisms based on Trusted Plat-
form Module, such as Intel TXT [28] and AMD Platform for Trustworthy Computing [15].
Blue Pill [51] and Vitriol [33] are VMBRs that migrate a running OS kernel into a VM and
run a malicious VMM underneath the OS kernel on the fly by using hardware-assisted
virtualization, through means such as the AMD-V [14] and/or Intel VT [29] architecture
extensions. The usage scenarios of the systems proposed here are different from those of
Blue Pill and Vitriol. The proposed systems apply to OS kernels running permanently on
virtual execution environments, whereas the OS kernels hijacked by Blue Pill and Vitriol
run directly on hardware, and Blue Pill and Vitriol dynamically insert their malicious
VMMs underneath the OS kernels. Carbone et al. proposed GuardHype, a concept for
preventing the operation of VMBRs, including Blue Pill and Vitriol [23]. GuardHype’s
VMM runs underneath other VMMs and controls the operations that they execute.

1.3 System Overviews

This section gives overviews of each security system.

1.3.1 Controlling System Calls

Simply isolating execution environments with a VMM does not provide sufficient se-
curity. A VMM cannot prevent exploited program parts from being used for malicious
purposes. For example, if a Web server hosted on a VM is taken over, sensitive infor-
mation kept in the server is revealed to the attacker. Moreover, the attacker can modify
or delete the information stored in the OS kernel by abusing the server’s privileges. An
effective countermeasure to these problems is to combine the VM isolation scheme with
security systems such as sandboxing systems. Specifically, a security system running out-
side a target VM controls the behavior of target programs inside the target VM, while VM
isolation makes attacks on the security system harder.

Unfortunately, to control the behavior of target programs from outside target VMs, we
cannot simply take advantage of existing security systems, with little or no modification
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of their code. There are two challenges in enabling the functionalities of security systems
from outside target VMs. The first challenge is to identify the inner states of target VMs
at application program granularity from outside. A VMM obtains the execution states
and events inside target VMs in terms of hardware-level semantics, e.g., register values,
memory data, and interrupts. Security systems, however, need to interpret execution
states and events of target programs in terms of OS-level semantics, e.g., processes and
system calls. Therefore, we need to bridge the gap between the OS-level and hardware-
level semantic views. This gap is known as the semantic gap [24].

The second challenge is to efficiently and effectively intercept events that security
systems need to mediate for controlling target programs. There are events that a VMM
cannot intercept but security systems need to mediate. For example, a VMM cannot
intercept the instruction of an optimized system call invocation and the instructions of
system call exits.

Therefore, we propose ShadowVox, a system for controlling the behavior of application
programs by introducing two basic techniques to overcome the above two challenges.
The first technique restores inner states in OS-level semantics by using prior knowledge
on a guest OS kernel. The second technique intercepts system calls at processor instruc-
tion granularity. These two basic techniques are commonly used by all three of the pro-
posed systems.

1.3.2 Protecting Memory and Virtual Disk Data

Existing security systems implemented in the OS or application layer assume that pro-
grams residing in the same execution space as the security systems, such as the OS ker-
nel and privileged programs, have not been compromised. If an attacker compromises a
privileged program that is vulnerable, regardless of whether other program are vulnera-
ble, the attacker can take over any other programs, and induce leakage, and tamper with
any data. In addition, to hide malicious software, such as rootkits, the attacker can also
tamper with system-critical data on memory or disk.

To protect programs running at the user level, without the previous assumption that
security systems run in the OS or application layer, there are security systems based on
a VMM [41, 103] and a microkernel [100]. Either a VMM or a microkernel can strongly
isolate a VM for a trusted program [41] or parts of a trusted program [100, 103] from
a VM for untrusted programs. However, These approaches based on isolating the VM
have disadvantages in three respects: resource consumption, VM context switches, and
binary compatibility. In terms of resource consumption, the user needs to provide one
VM solely for the purpose of protecting one trusted program [41, 100, 103]. In terms of
VM context switches, extra inter-VM context switches occur to switch execution contexts
between a trusted program and untrusted programs [41, 100, 103]. In terms of binary
compatibility, the user is required to modify the source code of a trusted program in or-
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der to separate parts containing security-sensitive manipulations, such as authentication
procedures, from other parts of the program [100, 103].

Given the above considerations, we propose Shadowall, a system for protecting data
related to an application program running inside a target VM from outside the target VM.
Shadowall’s basic approach is to conceal target program data from the other programs
including OS kernels. Specifically, Shadowall protects memory data by using highest
privilege control and protecting virtual disk data by using VM isolation.

To protect memory data related to an application program, the VMM provides a
VM with different views, depending on differences in execution mode (kernel and user
modes). No compromised programs residing in a VM can disable the memory protection
mechanism at the VMM layer. The VMM implements this memory protection without
making any guest OS kernel aware of Shadowall’s memory translation.

To protect disk data related to an application program, Shadowall manages files re-
lated to the program (target files), such as an executable, in a separate VM. When the
program manipulates the target file’s content, the VMM intercepts the system call in-
volved in the file operation, and the VMM and the separate VM emulate the intercepted
system call. No compromised program residing in a VM can subvert this file protection
mechanism based on file management in a separate VM and emulation of the file oper-
ation without routing through system call procedures in a guest OS kernel. In addition
to protecting a target file from being leaked and its content from being tampered with,
the file protection mechanism can also prevent exploits that manipulate vulnerability to
symbolic links and relative paths.

1.3.3 Controlling OS Kernel Behavior

Malicious software running at the kernel level, called kernel-level malware, poses a more
serious security threat, because its attacks damage entire systems, through activities such
as tampering with OS kernel code and data, installing backdoors, and escalating the mal-
ware privileges. Various systems to overcome the threats of kernel-level malware have
been proposed and developed [59, 62, 63, 68, 74, 88].

However, all of these systems have drawbacks in terms of the use of legitimate ker-
nel extensions, the performance impact introduced by applying their protection mech-
anisms, and the timing of analyzing, detecting, and preventing malware. Users cannot
flexibly extend untrusted OS kernels, because these conventional systems [62, 88, 99] only
permit the use of kernel extensions that have passed static or dynamic checks. For perfor-
mance impact, coarse-grained control based on a VMM [82, 99], i.e., control at page-level
granularity, requires excessive runtime resources because write-protected pages also in-
clude data that is not to be protected. Control based on a CPU emulator adds substantial
overhead for emulating executed instructions [88, 117]. As for the timing of checking mal-
ware, attackers can evade or subvert the protection mechanisms of prior systems in order
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to periodically analyze and detect them [55, 73] by using kernel-level malware when the
anti-malware systems are inactive.

Hence, we propose ShadowXeck, a system for controlling the behavior of a guest OS
kernel associated with target programs. Control is achieved in two ways: write protection
at page-level granularity, and control of processor instructions related to indirect jumps
at runtime. For write protection, the VMM prohibits untrusted OS kernels from mali-
ciously modifying read-only memory regions such as those containing program code.
For control of processor instructions, the VMM controls indirect jump instructions, such
as indirect jump and call instructions, invoked by an untrusted OS kernel at the target
program context in accordance with security policies. While control of memory manage-
ment operations and processor instructions is implemented by using highest privilege
control, the control operations are executed and security policies are managed in a sepa-
rate VM by using VM isolation.

In this usage model ShadowXeck does not induce any limitations, unlike the previ-
ous systems described above, on using kernel extensions inside VMs; rather, it registers
them as legitimate kernel extensions in advance. For example, users can enable kernel
extensions for use as parts of security systems that they have developed. After a kernel
extension is enabled, its functionality applies to all processes in the kernel context, except
for the processes to be controlled.

To control only the behavior of untrusted OS kernels running in the target program
context, ShadowXeck provides guest OS kernels with different memory mapping, de-
pending on whether the target programs are running in kernel mode. Consequently,
ShadowXeck reduces the number of controlled indirect jump instructions, because the
VMM does not intercept them in a kernel context associated with processes that are not
to be controlled.

1.4 Contributions

The contributions of this work for each of the proposed systems are as follows.

ShadowVox: We have designed and implemented a security system for controlling sys-
tem calls from outside VMs by using two basic techniques: introspection in OS-
level semantics and interposition at processor-instruction granularity. The two ba-
sic techniques are also applied in the other two proposed systems: Shadowall and
ShadowXeck.
Although Garfinkel et al. [43] initially proposed the idea of introspection in OS-
level semantics from outside VMs, which they called virtual machine introspection
(VM introspection, or VMI), and a wide variety of VMI-based systems have been
proposed, we have clarified the OS information required for VMI. Specifically, this
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work reveals OS information relevant to process management and system calls for
VM introspection and what this information depends. In addition, we have pro-
vided a support program for automatically generating the OS information relevant
to process management and system calls.
To show that the proposed “out-of VM” scheme for controlling system calls is ap-
plicable to different processor architectures, we implemented ShadowVox on both
Intel and AMD processor architectures and applied it to control several types of ex-
isting application programs. In addition, we demonstrated the effectiveness of the
“out-of VM” scheme and measured the overhead introduced by ShadowVox.

Shadowall: We have designed and implemented a security system for protecting mem-
ory and virtual disk data by using memory multiplexing and file protection schemes.
A memory protection scheme without cryptographic techniques has been integrated
with a file protection scheme.
To evaluate the viability of the system, we demonstrated that Shadowall could pro-
tect memory and disk data related to application programs from being leaked and
tampered with. the performance overhead was also measured.

ShadowXeck: We have designed and implemented a security system for controlling the
behavior of a guest OS kernel involved with a target application program, with-
out any restrictions on kernel extensions. ShadowXeck controls OS kernel behavior
only when target programs run in kernel mode.
To show the viability of this system, we demonstrated the effectiveness of its protec-
tion schemes: prohibition against write operations to read-only regions, and control
of indirect jump instructions in a kernel context involved with an application pro-
gram. The performance impact of ShadowXeck was also measured.

1.5 Organization

The remainder of this thesis proceeds as follows. Chapter 2 describes the first proposed
system, ShadowVox. We also describe the two basic techniques commonly leveraged
by all of the proposed systems. Then, Chapters 3 and 4 describe the second and third
proposed systems, respectively. Finally, we conclude the thesis in Chapter 5.
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Chapter 2

Control of System Calls

2.1 Motivation

A VMM [20, 35, 67, 71, 77, 78, 101, 105, 116] provides strong isolation between VMs.
This is called VM isolation. If an attacker succeeds in taking over an application program
running in a VM, the damage caused by the compromised program is confined inside the
VM by an isolated execution environment based on VM isolation. There have already
been systems that enforce access control between VMs by using VM isolation [48, 69, 92].

Although these systems based on VM isolation provide coarse-grained control, i.e.,
control at VM granularity, they do not provide fine-grained control inside a VM, i.e., con-
trol at application program granularity. If an attacker succeeds in taking over an appli-
cation program with administrator privileges in a VM, the attacker can insert malicious
programs in the compromised VM and induce leakage of confidential data. A promising
approach for overcoming this problem is to leverage security systems such as sandbox-
ing systems [11, 45, 86, 109] and host-based intrusion detection systems [44, 49, 98, 107].
These systems can monitor and control the behavior of untrusted programs and prevent
attackers from tampering with computing resources.

Schemes that combine a VMM and security systems can be classified into two types
according to where the security systems run: “in-VM” and “out-of-VM” schemes. An
“in-VM” scheme executes security systems on the same VM as the programs whose be-
havior is monitored and controlled by the security systems. The programs whose behav-
ior is monitored and controlled are referred to as target programs. This scheme has two
advantages. First, it requires little or no modification to the code of a VMM or a guest OS
kernel. Second, OS-level semantic views, such as those for processes and files, are easily
available to programs running on a guest OS kernel. Unfortunately, this scheme has a
disadvantage. If an attack evades detection by security systems and successfully obtains
administrator privileges of the guest OS kernel, it can subvert and elude the security
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systems.
In contrast, an “out-of-VM” scheme executes security systems outside the VM on

which the target programs run. This VM is referred to as a target VM. This scheme ad-
dresses the problem of attacks that are aware of security systems. Even if an attacker
obtains the administrator privilege of a guest OS kernel, the attacker cannot stop the
VMM or security system running outside the target VM. On the other hand, this scheme
induces two limitations. One limitation is that security systems obtain only hardware-
level semantic views exposed by a VMM, with information such as register values and
memory data. It is not straightforward for the security systems to identify and control
the inner states of target VMs in terms of OS-level semantics. The other limitation is that
security systems interpose only events that a VMM mediates, such as privileged instruc-
tions, exceptions and interrupts.

For this work, we apply the “out-of-VM” scheme to enhance the security inside tar-
get VMs. As security systems such as sandboxing systems become widely used, attackers
also attempt, with the existence of such systems in mind, to hijack server and client pro-
grams and to cause leakage and tamper with confidential data. Such attackers attempt to
subvert or elude security systems by using privileged programs that have already been
hijacked or by exploiting vulnerabilities of the security systems themselves. Several se-
curity systems run with administrator privileges. Therefore, it is important to protect not
only server and client programs but also security systems.

In this chapter, we present ShadowVox, a security system for controlling system call
execution invoked by target programs from outside target VMs. To overcome the above
two limitations of the “out-of-VM” scheme, we apply two basic techniques: virtual ma-
chine introspection(VM introspection) [43], and dynamic binary instrumentation. VM intro-
spection is a technique to fill the semantic gap [24] between hardware-level and OS-level
semantic views by using OS information relevant to process management and system
calls. Dynamic binary instrumentation is a technique to intercept events that a VMM
cannot intercept without modifying the source code of the OS kernel.

The rest of this chapter is structured as follows. First, we describes the threat model.
Next, in Section 2.3, we explain the above two basic techniques, which are first introduced
for ShadowVox, but are commonly leveraged in all of the proposed systems. Section 2.4
presents the system design, while Section 2.5 describes the implementation details. Then,
Section 2.6 presents an evaluation of the system. Finally, Sections 2.7 and 2.8 discuss
related work and summarize the chapter, respectively.

2.2 Threat Model

ShadowVox is a security system for enhancing the security of ShadowVox itself. It runs
outside target VMs inside a VMM and a separate VM. ShadowVox prevents compro-
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mised programs with administrator privileges from corrupting ShadowVox itself. Even
if an attacker takes over a program with administrator privileges, the attacker cannot
force ShadowVox to terminate. Moreover, the attacker cannot undermine the files con-
taining ShadowVox’s security policies.

ShadowVox’s security concern with target programs (e.g., a Web server and anti-virus
tools) is to control their behavior in user mode. Specifically, like sandboxing systems run-
ning on an OS or application layer [11, 45, 86], ShadowVox controls system calls executed
by target programs, according to security policies.

The VMM and the separate VM are part of the trusted computing base (TCB). Fur-
thermore, an OS kernel running on a target VM, referred to as a target OS kernel, is also
part of the TCB. If an attacker hijacks a target OS kernel, the attacker can subvert or evade
ShadowVox’s control. For example, the compromised target OS kernel could cause Shad-
owVox to misidentify data relevant to process management and system calls, as described
in Section 2.3.1. In another example, the compromised target OS kernel could maliciously
modify system call procedures in the kernel space, such as system call routines and ta-
bles. These attacks in the kernel space can be alleviated by using ShadowXeck, another of
the proposed security systems, which controls the OS kernel behavior. Chapter 4 covers
the details of ShadowXeck.

2.3 Basic Techniques for Controlling Application Programs from
Outside VMs

In this section, we describe the two basic techniques for controlling VMs at application
program granularity. These techniques are applied in all of the proposed systems- Shad-
owVox, Shadowall, and ShadowXeck. First, we describe a technique for identifying the
inner states of a VM from outside the VM. The term virtual machine introspection (VM
introspection, or VMI) [43] is used for the process of identifying these inner states from
outside VMs. Second, we describe a technique for intercepting a processor instruction
issued by a VM, called dynamic binary instrumentation.

2.3.1 Virtual Machine Introspection

The VM introspection technique here is implemented using OS information, i.e., prior
knowledge about process management and system calls in OS kernels and data relevant
to such process management and system calls. In this thesis, we clarify the OS informa-
tion required for VM introspection. Specifically, we describe how to identify inner states
in terms of OS-level semantics from outside of a VM and what the OS information re-
quired for VM introspection depends on. Furthermore, we present auxiliary programs
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for automatically generating the data relevant to process management and system calls
in OS kernels.

Process Identification

VM introspection approaches are primarily classified into two categories according to
process identification methodologies. The first category is for detecting or implicitly con-
trolling process events, such as process creation, from the context switching of the pro-
cess address space. For example, Antfarm [56] identifies context switches of processes
and inferred creation and termination of processes, by tracking write operations to the
CR3 control register for the x86 and x86-64 processor architectures. The CR3 register in-
cludes the physical address of the top-level page table for the currently running process.
A VMM can detect and control write operations to CR3 because they are privileged oper-
ations. This approach only assumes that an OS kernel provides different address spaces
for each process, and most commodity OSs have satisfied this assumption. Therefore,
this approach is also applicable to OS kernels, whose design is not open like Windows.
For several reasons, however, this approach based on address space switching is not suf-
ficient to achieve the current goals.

First, we need to identify which processes are running; that is, we need the names of
processes in order to control only specific applications. In contrast, the above approach
can only identify switching of the process context. In addition, this approach would
require additional prior knowledge of OS kernels for identifying creation and termination
of processes and program execution. For example, Sawazaki [94] has proposed a system
based on address space switching, which identifies differences between process creation
and termination and program execution. This system depends on how entries in the top-
level page table are updated. Second, we also need to identify the inner states of VMs
from other events occurring inside those VMs, such as system calls. The above approach,
however, limits process identification. Finally, this approach cannot recognize differences
between lightweight processes, namely threads, since those having the same thread group
ID share their address spaces.

The second category of VM introspection approaches is for controlling the inner states
of a VM by using prior knowledge of OS kernels running on the VM. This category is fur-
ther classified into two types according to which kind of prior knowledge is leveraged.
In this section, we focus on the Linux OS kernel, whose design is open, as a guest OS ker-
nel. The first type, such as IntroVirt [58], leverages OS kernel functionalities, i.e., existing
functions in the kernel code region. For example, this means invoking the sys getpid
function from outside a VM to identify the ID of a process currently running on the Linux
OS kernel. Leveraging existing functions in the kernel code region requires two kinds of
prior knowledge. One is the calling conventions of the x86 and x86-64 processor archi-
tectures, i.e., how functions pass arguments and how they receive a return value. The
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other is information on functions provided by a guest OS kernel, including the virtual
addresses of their entry points and the types of their arguments and return value. How-
ever, leveraging existing functions in the kernel code region has two drawbacks. First,
extra context switches between a VMM and VM are incurred by invoking the existing
functions. Second, this approach depends on the existing functions. If a VM uses a vul-
nerable function, it can be taken over. In fact, vulnerabilities have been reported in the
Linux OS kernel [96, 97].

For these reasons, we adopt another approach for controlling the inner states of a VM
by using prior knowledge. This approach, exemplified by Livewire [43] and VMwatcher [55],
leverages prior knowledge of process management on guest OS kernels. VMwatcher
obtains the data from a symbol exported by the guest OS kernel (init task union).
Unlike with VMwatcher, we provide a mechanism for obtaining process-related data at
the VMM layer according to how a guest OS kernel obtains hardware-state data, such
as the values of registers and data in RAM. The mechanism depends on the versions of
OS kernels and the architectures on which they run. In the rest of this section, we con-
centrate on version 2.6 of the Linux OS kernel and the IA-32 and AMD64 architectures.
For example, the proposed systems provide a mechanism corresponding to the current
macro to obtain instances of the task struct object including the execution context of
each process. In the IA-32 processor architecture, kernel versions from 2.6.0 to 2.6.19 ob-
tain task struct instances as pointers to a kernel mode stack stored in the task state
segment (TSS), whereas kernel versions 2.6.20 and later obtain them from the FS or GS
segment register. In the AMD64 processor architecture, version 2.6 uses the GS segment
register.

With these mechanisms, the proposed systems leverage information on the data struc-
tures of a guest OS kernel. The information includes the offsets of member variables in
kernel objects and the sizes of the member variables. Table 2.1 lists the information re-
quired in order to obtain process-related data. For example, the pcurrent variable of
the x8664 pda object and the pid variable of the task struct object are leveraged
to obtain the process ID of a currently running process in Linux 2.6.16 on the AMD64
architecture. First, the task struct instance is obtained using the FS register and the
information in pcurrent. Next,the process ID is obtained using the task struct in-
stance and the information in pid. The proposed systems also leverage THREAD SIZE,
which indicates the size of the region including the task struct instance and the ker-
nel mode stack in the IA-32 architecture. All of the leveraged information depends on
the processor architecture, the OS kernel version, and the configuration at the time of
building the OS kernel image. Therefore, we could assume that each VM administrator
will provide this information to the security systems.

However, this is a cumbersome task for VM administrators that have little knowledge
of OS kernels. To overcome this problem, we provide a program (script) to automatically
generate this information in the same way as generating asm-offsets.h on the Linux

22



Table 2.1: Information on data structures related to process management
kernel object member variables purpose
task struct pid, tgid obtaining process and thread group IDs

uid, gid, euid, egid identifying user and group IDs
comm identifying process command name
tasks obtaining process list
active mm obtaining pointer to mm struct object
real parent obtaining pointer to parent process
children obtaining lists of child processes
sibling obtaining lists of sibling processes
ptrace identifying whether process is monitored

by ptrace system call
mm struct pgd identifying top-level page table

start code, end code identifying range of code region
start data, end data identifying range of data region
start brk, brk identifying range of heap region
start stack identifying location of user mode stack
arg start, arg end identifying range of region allocated for

command-line arguments
env start, env end identifying range of region allocated for

environment variables
vm area struct vm start, vm end identifying information on

vm next, vm flags memory-mapped regions
list head prev, next tracking double linked list
x8664 pda pcurrent obtaining pointer to task struct object

(for kernel version 2.6.29 or older )
thread info task obtaining pointer to task struct object

(for IA-32 and kernel version 2.6.19 or older )
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OS kernel. The script generates information on process management and writes it to a
file during the building of an untrusted OS kernel image.

System Call Identification

The proposed systems identify when application programs start and terminate, and they
spawn a new process according to the execution of system calls. Shadowall also identifies
system calls involved in manipulation of memory and files, to protect memory and vir-
tual disk data related to application programs. In addition, ShadowXeck needs to identify
information on all system calls to control their execution. Therefore, as with the process
identification mechanism described above, the proposed systems provide mechanisms
to manipulate data related to system calls by leveraging three types of prior knowledge
about system calls.

The first type of prior knowledge is the calling conventions of system calls, such as
usage of registers and the kernel mode stack. Specifically, we need to understand which
registers are used to pass a system call number and arguments and to store a return
value, and where the system call number, arguments, and the return value are on the
kernel mode stack. This mechanism depends on the architecture on which OS kernels
run.

The second type of prior knowledge is information on the number of a system call
and the relation between the number and name. Since this information depends on the
architecture where OS kernels run and the version of the OS kernel, we assume that VM
administrators provide this information. As with automatic generation of information
on process management, this information is acquired while building guest OS kernel
images.

The third type of prior knowledge consists of understanding which arguments are
pointers to user address spaces and the sizes of the user objects to which they point. This
mechanism depends on the architecture where OS kernels run and the version of the
OS kernel. Therefore, this information is automatically generated while building guest
OS kernel images, in the same way as for information on process management. If an
argument points to a character string, the data are manipulated until the terminating
null character is found.

Limitations of This Approach

Although the proposed approach based on OS information can overcome the problems
of approaches based on switching the CR3 value, such as Antfarm, it has two major limi-
tations. The first limitation is greater dependence on OS kernels than with the CR3-based
approach. In other words, OS kernel source code is required. The second limitation is
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...
c0104c46: 89 f6 mov %esi, %esi

c0104c48: <system call>:
c0104c48: 50 push %eax
c0104c49: fc cld
c0104c4a: 06 push
...

(a) Before patching

...
c0104c46: 89 f6 mov %esi, %esi

c0104c48: <system call>:
c0104c48: f4 hlt
c0104c49: fc cld
c0104c4a: 06 push
...

(b) After patching

Figure 2.1: Overwriting the first byte of a system call routine

that the trustworthiness of identifying the inner states depends on data relevant to pro-
cess management and system calls managed by an OS kernel running inside the VM. If an
attacker can artfully tamper with this data while maintaining consistency with the pro-
cess management and system call procedures inside the VM, the attacker can evade the
control and protection mechanisms of the proposed systems. Note that, unlike IntroVirt,
the proposed approach does not depend on OS kernel functionalities.

2.3.2 Dynamic Binary Instrumentation

Although an original VMM can intercept privileged, sensitive instructions [83, 90], the
proposed systems also need to intercept other instructions related to system calls and
function pointers in the kernel space. Here, we present dynamic binary instrumentation,
a mechanism for intercepting the execution of any instruction for the x86 and x86-64
architectures, whose instructions vary in length.
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Dynamic binary instrumentation consists of two phases: patching and emulation.
In the patching phase, dynamic binary instrumentation overwrites the instruction to be
intercepted, replacing it with the HLT instruction. Figure 2.1 shows an example of the
patching phase for the entry point of a system call routine in the kernel code for the IA-32
architecture. Next, the systems observe the system call invocation inside the VM, because
HLT is a privileged instruction. In addition, they decode the instruction at the entry
point of the system call routine and store its binary data sequence (50 at 0xc0104c48 in
Figure 2.1) in the VMM address space.

In the emulation phase, a general protection fault is induced by the HLT instruction
when the system call is invoked inside the VM. After executing control for system call
invocation, the proposed systems emulate the corresponding original instruction stored
in the patching phase. In addition, they set the instruction pointer to the subsequent
instruction and make the VM restart execution.

This technique enables the proposed systems to intercept any instruction without any
negative effect on the subsequent instruction, because the length of the HLT instruction
is one. They preserve the control flow to any instruction whose previous instruction
has been overwritten. Furthermore, if there is an attempt to overwrite a previous or
subsequent instruction after an instruction has been overwritten, a second patching is
performed without regard to the first patching. The overhead incurred by instruction
emulation, which is generally considerate significant, is reduced because this technique
emulates only one original instruction.

There are two other approaches for intercepting events occurring inside a VM. The
first approach is to intercept such events at page granularity. Before a VM starts run-
ning, writable pages including function pointers are marked as read-only. Then, write
operations to these pages can be intercepted because these operations cause page fault
exceptions. Unfortunately, this approach has two drawbacks. First, the execution of
system calls cannot be intercepted, since they are contained in memory regions that are
originally marked as read-only. Second, redundant page fault exceptions are generated
when untargeted data, such as run queues, exist in the same writable pages. This causes
substantial performance degradation because run queues are frequently updated.

The second approach is to use a CPU emulator. Although a CPU emulator can in-
tercept all executed instructions, such interception adds substantial overhead due to the
emulation of the executed instructions.
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Figure 2.2: ShadowVox: system for controlling system calls invoked by target application
programs

2.4 Design

2.4.1 Overview

As describe above, this chapter presents ShadowVox, a system for controlling the behavior
of processes in a target VM, according to the information on low-level events observed
by a VMM.

Figure 2.2 illustrates the structure of ShadowVox. The VMM and a special VM in the
system cooperate to control the execution of system calls invoked by a specific program,
according to security policies and the given system information for a target OS kernel.
The special VM is referred to as a control VM, and the specific program whose behav-
ior is controlled is a target program. The system information about the target OS kernel
is referred to as target OS information. ShadowVox consists of an in-VMM component
(SV-core), two types of programs (a control daemon and control programs), and control com-
mand utilities in the control VM. SV-core controls the system calls executed by the target
programs. The main processing includes system call interception, identification of target
programs, simple policy decisions, and execution of response actions for the intercepted
system calls. On the other hand, the control VM manages security policies, decisions on
how control programs are managed using the control command utilities, and complex
policy decisions that SV-core does not make. The VMM and the control VM can simulta-
neously control multiple target VMs running on the same VMM.
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In-VMM component: SV-core

SV-core receives the target OS information and security polices through the control com-
mand utilities, and it intercepts the entry and exit of system call procedures in the target
OS kernel space. SV-core must also intercept the exit of a system call, because the execu-
tion must be identified and controlled for certain system calls, such as fork and accept.
When a target program starts, terminates, and generates a new process, SV-core notifies
the control VM of these events. When SV-core cannot also determine how an intercepted
system call must be controlled, it forwards the policy decision to control programs. Later,
Section 2.4.3 explains the proposed security policy.

Control VM

The control daemon manages the target OS information and security policies and no-
tifies SV-core of this information through the control command utilities. Furthermore,
the control daemon launches a control program when a target program starts. The con-
trol program in cooperation with SV-core controls the system calls invoked by the target
program. A control program is launched for each instance of a target program.

ShadowVox provides the following control command utilities to the administrator of
the control VM. All commands must be executed with administrator privileges.

• sv vps: This command retrieves the ID of a target VM. It shows information on all
processes residing in the target VM. The information includes process IDs, user IDs,
and command names. Intuitively, this command is regarded as a remote version of
the ps command in UNIX systems.

• sv vconf: This command sends target OS information. ShadowVox holds system
information by using the binary image file of the OS kernel. It distinguishes the
binary image file by a hash value generated from the file content. The sv vconf
command receives the ID of a target VM and three files. The first file stores the
memory layout of critical data structures of the target OS kernel. The second file
stores system call information. The third file stores information about the memory
locations where SV-core should intercept the entry and exit of system calls.

• sv vcntl: This command enables SV-core to identify information about processes
and system calls inside a target VM. It receives the ID of the target VM and the
binary image file of the target OS kernel. First, the command links the target OS
information given by vconf with the target OS kernel instance. Then, it overwrites
the instructions at the entry and exit of system calls with privileged instructions.

• sv vstart: This command starts execution control of a target program. It receives
the ID of the target VM, the target program name, and a file specifying a security
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[cvm] # sv vconf targetOS.img \
targetOS info.txt syscall info.txt syscall hook.txt

[cvm] # sv vcntl 1 targetOS.img
[cvm] # sv vstart 1 apache2 policy.txt log.txt

Figure 2.3: Usage example in ShadowVox

policy. It provides a command-line option for user to specify the name of a log file
for execution.

Usage Example

Figure 2.3 shows a sample session of the system. In this session, a user attempts to control
processes in a target VM whose ID is 1. In the first line, the user gives ShadowVox the tar-
get OS information for a binary image file of a target OS kernel, targetOS.img. The user
also specifies three files containing information on data structures related to process man-
agement in the target OS kernel (targetOS info.txt), system calls of the target OS
kernel (syscall info.txt), and instructions intercepted by SV-core (syscall hook.txt).
Next, the user executes the sv vcntl command to enable SV-core to control processes
and system calls inside the target VM. In this session, the information registered in the
first line is used as the target OS information of the target VM. In the last line, the user
starts controlling a target program, apache2, with a security policy in a file policy.txt
and a log file log.txt.

ShadowVox can also control currently running processes. First, a user obtains infor-
mation on all processes inside a target VM with the sv vps command. The user then
chooses a list of processes to place under control and stores the information for specify-
ing the processes in a file, proclist-cntl.txt. The target processes are specified with
process IDs or program paths. Finally, the user starts controlling the processes specified
in proclist-cntl.txt with the sv vstart command.

2.4.2 Leveraging Knowledge of OS Kernels

ShadowVox controls system calls invoked by target programs inside VMs by using the
two techniques described in Section 2.3: VM introspection and dynamic binary instru-
mentation. Whereas VM introspection enables ShadowVox to identify inner states at the
OS level (e.g., processes and files), dynamic binary instrumentation enables ShadowVox
to interpose execution of an arbitrary processor instruction. The mechanism of VM intro-
spection restores execution states at the OS level from those at the hardware level, such
as register values and data on memory, according to two types of prior knowledge about
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an OS kernel. The first type is knowledge about process management, i.e., how an OS
kernel identifies kernel objects related to process management from hardware states. The
second type is knowledge about system calls, such as calling conventions.

The above two techniques require system information about an OS kernel, which the
target VM administrator needs to present. This includes the following information:

• Data structures related to process management: This is information on the mem-
ory layouts of kernel objects and the maximum size of the kernel stack. Memory
layout information consists of a pair of elements: the offset of a member variable in
a kernel object and its size (e.g., on Linux, the process ID variable, pid, in the pro-
cess management object, task struct). The VM introspection mechanism lever-
ages this information to identify and control information on processes. Since the
VM introspection mechanism provides a support program to automatically gener-
ate this information at build time, users do not need to be familiar with the data
structures of an OS kernel.

• System calls: This includes the number of system calls, and the relationship be-
tween the number and name of each system call. This category also includes in-
formation, for each system call, on which arguments are pointers to user address
space and the sizes of the user objects to which these arguments point. The VM
introspection mechanism uses the information to identify and control information
on system calls. As with data structures related to process management, the VM in-
trospection mechanism provides a support program to automatically generate this
information.

• Memory locations of the entry and exit of system calls: These are the virtual
addresses of the entry and exit of system calls in the kernel address space. The
dynamic binary instrumentation mechanism uses these addresses during patching
phase to overwrite the virtual addresses with the privileged HLT instruction. This
information depends on having a binary image of an OS kernel. ShadowVox ac-
quires this information from a symbol table file, System.map, generated at build
time for an OS kernel.

Though ShadowVox currently supports only Linux as the target OS, it can support
other UNIX-like OSs if the above-mentioned information is available.

2.4.3 Security Policy

Syntax

Figure 2.4 shows an extracted version of the security policy syntax used by the proposed
system. Appendix A lists all of the syntax. As with traditional sandboxing systems based
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PolicyFile → default: DefAction ModuleSpec*
DefAction → Action | skip
Action → allow | deny(errno) | killProc(signame)

| policyChange(policyfile[,logfile]) | ask
ModuleSpec → ModuleName default: DefAction SysCallSpec*
ModuleName → processMod | fileMod
SysCallSpec → syscallName default: DefAction ControlExpr*
ControlExpr → Cond* Action
Cond → FileCond | Cond or Cond
FileCond → fileEq( argnum,path) | filePrefixEq(argnum,pathprefix)

Figure 2.4: A part of security policy syntax in ShadowVox

on system call interception (e.g., Systrace [86]), the security policies used here specify
controlled system calls through pattern matching of system call arguments. The policy
syntax emphasizes support for flexible, fine-grained policy description more than sup-
port for policy description at a high level of abstraction (e.g., the application level) in this
thesis. Eventually, the security policy syntax should also support user-friendly policy
description at a higher level of abstraction.

The default: field at the top level indicates “Action,” an action taken for system
calls that do not match any pattern. Part of “ModuleSpec” specifies the rule for each
system call. System calls are classified into eleven groups, called modules in ShadowVox.
Examples of these modules are a module for process operations (processMod), a mod-
ule for file operations (fileMod). All eleven modules are described in Appendix A.
Each system call necessarily belongs to only one modules. Examples of system calls are
execve, fork and clone for processMod; open, chown, and poll for fileMod. The
default: field in the specification for each module indicates the default response action
for the module.

Part of “SysCallSpec” indicates the rules for an individual system call. The head of
“SysCallSpec,” syscallName, gives the system call name. The default: field for each sys-
tem call indicates a default response action for the system call. Part of “CotrolExpr” spec-
ifies pairs consisting of system call argument patterns and the corresponding response
actions. Examples of such argument patterns are the file name (fileEq).

The elements in “Action” indicate the actions taken when a system call matches a pat-
tern. allow continues execution of the system call, deny(errno) causes execution of the
system call to fail with the error code errno, and killProc sends the signal named sig-
name to the target process. policyChange(policyfile) dynamically switches the current
security policy to the one specified by the file policyfile. ask asks the user to provide the
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default: deny(EPERM)
fileMod default: allow
open default: allow
fileEq(1,"/etc/passwd") or filePrefixEq(1,"/etc/cron.d")
deny(EACCES)

processMod default: allow
execve default: killProc(SIGKILL)
fileEq(1,"/usr/bin/wserver") policyChange("wserver.pol")

Figure 2.5: Sample security policy in ShadowVox

response action for the intercepted system call when it was executed. The user can select
any response action except for ask. As with allow, skip continues the execution of the
system call. Whereas allow notifies the control program of the system call interception,
however, skip continues execution without notifying the control program. Therefore,
performance degradation due to control of system calls should be reduced by specifying
skip as the response action for system calls that are not security-sensitive, such as wait,
poll, and gettimeofday.

Figure 2.5 shows an example of a security policy. When ShadowVox is given this sam-
ple policy, system calls that do not belong to the processMod module or the fileMod
module will fail with the error code EPERM. The execution of system calls that belong
to processMod or fileMod but do not match any pattern will be continued. Opening
the file /etc/passwd or any file under directory /etc/cron.d will fail with the error
code EACCES. Any other file can be opened. When a target process invokes execve with
the argument /usr/bin/wserver, ShadowVox switches to the security policy stored
in the file wserver.pol. The execution of execve with other arguments will fail and
SIGKILL will force the target process to terminate.

Description

Although a ShadowVox user requires information on the system calls executed by a tar-
get program to describe an appropriate security policy, it is not straightforward to acquire
such information. The user can describe the security policy by using a log file contain-
ing information on the system calls executed by the target program. To generate such
a log file, the user runs the target program on ShadowVox with a security policy whose
default: field at the top level contains allow. The allow specification signifies that
the control program will be notified of the system calls executed by the target program.

However, it is difficult to collect all system call patterns that target program can po-
tentially execute during log-file generation. The problem in policy generation from a log
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file is the specifications for system call patterns that are not recorded in the log file but
that the target program can execute. To address this problem, ShadowVox provides the
ask response action, which asks the user to determine the response action at runtime.

Unlike ShadowVox, another approach uses static binary analysis [36, 87] to acquire
information on system calls executed by a target program from its binary code. Although
this approach can collect all the system calls executed by a target program, it has two
drawbacks. First, it requires the target program’s code and the shared libraries that it
uses. In contrast ShadowVox does not assume that target VM administrators provide
the binary code of target programs. Second, this approach cannot acquire information on
system call arguments whose values are not determined until runtime. For these reasons,
the proposed system adopts the log file approach.

2.4.4 Advantages

ShadowVox has the following advantages over other security systems.

Difficulty in attacking the security system: If an attacker takes over a process in a target
VM, the attacker cannot take control of the control VM and the control programs
because of the isolation between VMs.

Process-granularity execution control: A response action is applied to anomalous target
processes only. Other processes in the same target VM are not affected. In contrast,
if execution control was applied at VM granularity, possible response actions would
be coarser, such as a VM restart, which has the serious drawback of also terminating
benign processes.

Uniform control of multiple VMs: If the same program is running in multiple target
OSs on a VMM, the system can simultaneously control multiple process instances
of the program with the same security policy. For example, if the same Web server
program is running in ten guest OSs on the same VMM, one control VM can control
ten servers with the same security policy.

Security enhancement of unprotected OSs: The proposed system is also useful for vir-
tual hosting in which each target VM and target OS is managed by a different ad-
ministrator. Some target OSs might be managed by a novice administrator and
might not be sufficiently protected against attacks. ShadowVox provides a safety
net for such target VMs and target OSs.

2.5 Implementation

ShadowVox has been developed using the para-virtualization version of Xen [20] 3.0.3
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as the VMM, with para-virtualized Linux OS kernel 2.6.16 as the target OS. ShadowVox
supports the IA-32 and AMD64 architectures, and virtual multiple processors.

2.5.1 Obtaining Process Information

As mentioned in Section 2.3.1, ShadowVox identifies inner states related to process man-
agement by using the VM introspection technique. The VM introspection technique is
implemented by using the data structures of a target OS kernel, such as the offsets and
sizes of member variables in kernel objects (e.g., the pid variable in the task struct
object). ShadowVox provides a support program for automatically generating these data
structures in the same way as generating the asm-offsets.h file on Linux. More con-
cretely, the offsets and sizes of member variables in kernel objects are generated from,
respectively, the offsetof and sizeof Linux macros at the time of building a target
OS kernel image.

The memory address space for the para-virtualization version of the Xen VMM is
shared among all VMs. The virtual address space is not changed during system call
execution. Hence, SV-core (the in-VMM component) can directly access instances of
task struct, which is a kernel object for managing the execution context of a pro-
cess, when it intercepts system calls. The process management data on Linux, including
task struct, are resident in guest memory.

sv vps is a command for obtaining a list of processes in the target VM specified by
a given VM ID. The VMM obtains this information as follows. First, if the target VM is
running, SV-core stops it. The VMM switches its address space to that of the target VM
by using the execution states kept by the virtual CPU of the target VM. Next, SV-core
obtains a list of processes by using register values and memory data of the target VM
and tracking the tasks member variables of task struct instances. Finally, SV-core
switches the address space back to the original one and sends the obtained information
to the control VM.

2.5.2 Managing Target Processes

When the sv vstart command is executed, SV-core adds the specified program file
paths or process IDs to a hash table for managing target processes. When the execve sys-
tem call is invoked in the target VM, the VMM checks whether the given program path is
in the hash table. If it is, SV-core adds the ID of the invoking process to the list; otherwise,
it does nothing. Currently, ShadowVox does not support paths that are symbolic links.
When the fork, clone, or vfork system call is invoked in a target VM, the control VM
checks the given security policy. If the policy specifies the controlChild : detachProc
option (described in Appendix A), the new process is not controlled. Otherwise, SV-core
adds the new process ID to the hash table. Lastly, when a target process invokes the
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Figure 2.6: Control flow on ShadowVox for system call invocation by a target process

exit group or exit system call in a target VM, SV-core deletes the hash table entry for
the target process ID.

2.5.3 Controlling System Calls

When a system call is invoked in a target VM, SV-core first checks whether the invoking
process is one of the target processes. If it is not, SV-core does nothing special and lets
the system call continue. Next, it checks whether the response action for the invoked
system call is skip. If it is, SV-core lets the system call continue. Otherwise, it reads the
execution states of the target VM and obtains the number and arguments of the system
call. It then notifies the control program that a system call has been invoked. The control
program determines the response action and notifies SV-core what that is. SV-core then
executes the response action and continues the target process (if it is still alive). As for
system call exits, SV-core checks only those system calls involved in managing target
processes and policy decisions (e.g., fork and accept) and lets the execution of other
system calls continue.

To communicate between the VMM and the control VM, ShadowVox uses two func-
tionalities provided by Xen-the event channel and shared memory-which are created and
deleted for each control program.

Figure 2.6 shows an example of the control flow until a response action for a target
process (P1) is taken. In the rectangle of processes inside the target VM, solid lines signify
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a process that is running and dotted lines represent a process that is sleeping. To min-
imize negative effects of execution control on untargeted processes, when a system call
is checked, only the corresponding target process is suspended; the enclosing target VM
is not suspended. In Figure 2.6, untargeted programs (P2, P3) are not suspended while
the system call invoked by P1 is checked. To achieve this, ShadowVox makes the target
process repeatedly execute the intercepted instruction until the policy is enforced.

Currently, ShadowVox does not have a mechanism to prevent race condition attacks
in which another thread modifies system call arguments [113]. Many techniques have
been proposed to prevent such attacks [40, 42], and several could be applied in Shad-
owVox. However, preventing race condition attacks involves a tradeoff between security
and performance. It would be an interesting to evaluate the effectiveness of these tech-
niques in the context of security setting proposed here.

2.5.4 Obtaining System Call Information

SV-core identifies the number and arguments of an executed system call from register
values and data on the kernel stack of the target VM, using the VM introspection tech-
nique described in Section 2.3.1. The relationships between the number and name of a
system call, the type and size of each argument, and the calling conventions depend on
the OS kernel version and the architecture on which the OS kernel runs. In particular,
there are four major architectural differences.

The first difference is the number of system calls. For example, on Linux 2.6.16, used
for developing the prototype system, the number of system calls for the IA-32 architec-
ture is 311, whereas the number for the AMD64 architecture is 273. The second difference
is the relationship between the number and the name. For example, system call number 2
is fork on IA-32 but open on AMD64. Furthermore, there are system calls supported by
only one of the two architectures. For example, whereas readdir is only supported on
IA-32, arch prctl is only supported on AMD64. The third difference is in the system
call interfaces for network operations and interprocessor communication (IPC) opera-
tions, i.e., semaphores, message queues, and shared memory. On IA-32, socketcall is
the system call for network operations, and the first argument determines which socket
function (e.g., socket, bind, or connect) is executed. Similarly to the network operations,
ipc is the system call for IPC operations, and the first argument determines which IPC
function (e.g., semop, msgsnd, or shmat) is executed. In comparison, on AMD64, a sys-
tem call is defined for each socket or IPC function. The fourth difference is in how ar-
guments are passed on mmap. They are passed using the user stack on IA-32 but using
registers on AMD64. (On IA-32, mmap2 passes the arguments by using registers.)

The VM introspection technique relies on the above knowledge. As with informa-
tion on process management, ShadowVox provides a support program for automatically
generating data relevant to system calls. More precisely, the relationships between the
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number and name of a system call, the size of the user object pointed to by an argument,
and the memory layouts on the kernel stack are generated, respectively, from the header
files, such as unistd.h for both the IA-32 and AMD64 architectures on Linux kernel 2.6.16,
the sizeof macro, and the offsetof macro, at the time of building a target OS kernel
image.

2.5.5 Obtaining System Call Arguments

The control VM uses system call arguments to control the execution of system calls. When
a system call is intercepted, SV-core stores the value of each system call argument. If the
argument type is an on-memory object, the control VM reads the address space of the
user process in the target VM. Examples of on-memory objects are path names given to
an open system call and network addresses given to a connect system call.

When the control VM accesses an address in the user space of a target VM, a page fault
may occur. ShadowVox avoids such page faults as follows. If a system call argument is
a virtual address in the user space, SV-core reads the page table of the target process and
checks whether a page enclosing the address is present. If not, it forces the target OS
kernel to handle page faults. When the target OS kernel completes this handling, SV-core
then notifies the control VM of the system call invocation.

2.5.6 Applying Response Actions

SV-core applies a response action to a target VM when an invoked system call matches a
rule in a given security policy. The killThread, detachProc, and createNewMonitor
actions are explained in Appendix A.

As the response action for a system call failure (deny(errno)) at the entry of a system
call, SV-core changes the invoked system call to getpid. It replaces the return value
of getpid with a number corresponding to the error code name errno. For the failure
response action at the exit of a system call, such as accept, recvfrom, or recvmsg,
SV-core first forces the target process to execute the close system call. It then replaces
the return value with the error code number.

As the response action for killing a target process or a target thread (killThread),
SV-core forces the target process to send the signal signame with the kill or tgkill
system call, respectively.

As the response action for switching a security policy (policyChange), SV-core
changes to the security policy in the file policyfile. policyfile is read not when SV-core
takes the response action but when the target program starts.

As the response action for asking the control VM administrator which response action
SV-core should take (ask), a control program first outputs information on the intercepted
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system call. The control VM administrator decides the response action according to this
information, and the control VM notifies SV-core of the response action.

As the detachProc response action when a target process executes the ptrace sys-
tem call, SV-core deletes the target process monitored by ptrace from the hash table
for managing target processes. As another response action when a target program exe-
cutes ptrace, for the case of createNewMonitor, SV-core notifies the control daemon
of launching a new control program for the target process monitored by ptrace, in ad-
dition to deleting the target process from the hash table.

2.5.7 Intercepting System Calls

System Call Handling in Linux

Linux OS kernel 2.6 running on the IA-32 architecture (Linux-IA32) supports two schemes
for invoking system calls. One uses a software interrupt, the INT 0x80 instruction. The
other uses the SYSENTER instruction. Either scheme can be chosen at boot time accord-
ing to the processor version.

SYSENTER is an instruction provided by IA-32 architectures more recent than the
Pentium II. The behavior of SYSENTER is configured by the value in the model-specific
register (MSR). Updating MSR values requires the highest privilege level. When SYSEN-
TER is executed, MSR values are loaded into several registers, including the instruction
pointer and the stack pointer. In addition, SYSENTER sets the privilege level to zero (the
highest).

Linux-IA32 supports two schemes for switching kernel mode to user mode at the exit
of system calls. One uses interrupt handling through the IRET instruction, while the
other uses the SYSEXIT instruction.

Linux OS kernel 2.6 running on the AMD64 architecture (Linux-AMD64) uses the
SYSCALL instruction to invoke system calls. Linux-AMD64 supports two schemes: in-
terrupt handling through the IRET instruction, and the SYSRET instruction.

A VMM can intercept the software interrupt, SYSENTER/SYSEXIT, and SYSCALL/S-
YSRET, since their handling requires the highest privilege level. However, it cannot inter-
cept interrupt handling through IRET, because switching to a lower privilege level does
not require the highest privilege level.

System Call Handling in Xen

In the para-virtualization version of Xen running on the IA-32 architecture (Xen-IA32),
a system call is handled without passing through the VMM by using the software in-
terrupt. When a system call is invoked, control moves directly to a system call handler
in a guest OS. The source code of a guest OS for Xen is modified to modify the config-
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uration of an interrupt descriptor table. Furthermore, Xen-IA32 does not support SY-
SENTER/SYSEXIT. On the other hand, in the para-virtualization version of Xen running
on the AMD64 architecture (Xen-AMD64), a system call is invoked with SYSCALL. At
the exit of a system call, both Xen-IA32 and Xen-AMD64 use interrupt handling through
IRET.

System Call Interception in ShadowVox

ShadowVox uses the dynamic binary instrumentation described in Section 2.3.2 for in-
tercepting a system call entry on Xen-IA32 and a system call exit on Xen-IA32 and Xen-
AMD64. The source code of a target OS kernel does not need to be modified to introduce
dynamic binary instrumentation. In other words, the original target OS code for Xen can
be used with ShadowVox.

To intercept system call invocations using the software interrupt, ShadowVox patches
the binary code of the target OS kernel. When the sv vcntl command is executed, SV-
core overwrites the first byte in the code of the system call interrupt handler with the
HLT instruction. The code address is included in the target OS information. HLT is a
privileged instruction, so if it is executed at the user level, an interrupt is raised and
control returns to SV-core. To continue the intercepted process, SV-core emulates the
overwritten instruction and passes control back to the target OS kernel.

ShadowVox forbids modifying the physical page enclosing the instruction overwrit-
ten with HLT. Hence, even if an attacker hijacks a target VM, the attacker cannot tamper
with the instruction overwritten with HLT and thus cannot elude interception by SV-core.

Finally, in implementing ShadowVox, Xen-IA32 was extended to support system call
handling using SYSENTER/SYSEXIT.

2.6 Evaluation

We evaluated three aspects of ShadowVox: applications to existing application programs,
its effectiveness, and its impact on performance.

2.6.1 Applications

To confirm that ShadowVox controls system calls executed with several types of appli-
cation programs, we tested three cases in which ShadowVox controlled server programs
and security systems on both the IA-32 and AMD64 architectures. First, target programs
were run on ShadowVox, and the system calls that they executed were recorded from
start up to termination. Next, the target programs’ security policies were generated from
log files, and ShadowVox was used to control the target programs according to the gen-
erated security policies. The three test cases were the following:
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Figure 2.7: Application example for Sendmail and ClamAV (clamav-milter and clamd)

Controlling server programs: The target programs were two Web servers, Apache and
thttpd, and a mail server, Sendmail. For the Web servers, requests to fetch static
and dynamic content were sent. For the mail server, requests to send and receive e-
mails were sent. The capability of ShadowVox to control multiple Apache instances
running on different target VMs using a common security policy was also tested.

Controlling security programs: Five programs were selected as follows: an anti-virus
tool suite, ClamAV [2]; host-based and network-based intrusion detection systems,
Tripwire [60] and Snort [8], respectively; a command-line program for tracing sys-
tem calls strace; and a sandboxing system based on system call interposition, Sys-
trace [86]. For ClamAV, files under a home directory were scanned using two types
of virus-scanning programs, clamscan and clamdscan/clamdscan. In addition, the
virus databases used by these two programs were initialized and updated using
the freshclam command-line program. Tripwire checked the integrity of the tar-
get VM’s file system, and initialized and updated the database used for integrity
checking. Snort logged access to the port number used by Apache. As programs
for handling by strace and Systrace, three command-line programs, ps, ls, cp were
executed. Requests to fetch static content were sent to thttpd, which was monitored
by strace and Systrace. The values for strace and Systrace listed in Table 2.2 are val-
ues for system calls executed by these programs and do not include the system calls
executed by their target programs.

Controlling a server program in collaboration with a security program: For this case, as
shown in Figure 2.7, Sendmail was the server program and ClamAV (clamav-milter,
clamd) was the security system. When an e-mail containing an attachment file was
sent, Sendmail sent a request to scan the attachment file to an instance of clamav-
milter running on the same target VM. Then, clamav-milter forwarded the virus
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Table 2.2: Numbers of executed system call types for each target program
application name IA-32 AMD64
thttpd 41 47
Apache 57 68
Sendmail 67 74
ClamAV freshclam 34 39

clamscan 33 32
clamdscan 21 23
clamd 45 49
clamd-milter 61 58

Snort 32 41
Tripwire 48 55
strace 22 26
Systrace 40 N/A

scan request to an instance of clamd running on another target VM

Table 2.2 summarizes the numbers of executed system call types. This tabulation
shows that a target program should have a security policy specified for each architecture
on which it runs.

2.6.2 Effectiveness Against Attacks on Security Systems

ShadowVox enhances the trustworthiness of security systems based on system call inter-
position. Even if a program running with administrator privileges is hijacked inside a
target VM, the compromised program cannot disable ShadowVox’s control mechanisms
for the target programs. This was demonstrated in two scenarios using the Apache Web
server as the program protected by a security system and the ProFTPD [85] ftp server as
the compromised program with the administrator privilege.

First, we assumed a scenario in which the security system was not protected by Shad-
owVox. Systrace [86] was selected as the security system running in the target VM. Sys-
trace’s security policy specified that Apache must not read files, except for specific ones.
The specific files included configuration files under the /etc/apache2 directory and
10 files, under the /var/www directory, containing static content. Although Apache per-
mitted access to files under /var/www from the Internet, Systrace forbade Apache from
disclosing files newly added under the directory. At this point, ProFTPD was hijacked
from another physical machine by exploiting the buffer overflow vulnerability (CAN-
2003-0831). The sh shell program was launched with the administrator privilege and
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used to copy the /etc/password password file to /var/www, which also required the
administrator privilege. After that, Systrace’s security policy was tampered with so that
all files under /var/www could be accessed from the Internet. Consequently, although
Systrace still controlled Apache, the /etc/password content could be obtained though
a Web browser.

Second, we assumed a scenario in which a security system, i.e., a control program for
Apache, was protected by ShadowVox. The control program monitored Apache by using
a file containing the same policy rules as Systrace. As in the Systrace scenario, ProFTPD
was hijacked, sh was launched, and /etc/password was copied to /var/www. There-
after, we attempted to tamper with the policy file used by the control program. How-
ever, this failed since the policy file was managed from outside the target VM, i.e., inside
the control VM. As a result, ShadowVox’s control mechanism was not subverted, and
/etc/password content could not be obtained.

2.6.3 Performance Impact

Setup

ShadowVox was tested on the IA-32 and AMD64 architectures. The IA-32 architecture
had an Intel Pentium 4 3.0-GHz processor with hyper-threading enabled, 1 GB of RAM,
and a 1-Gbps NIC. The AMD64 architecture had dual-core AMD Opteron 2.8-GHz pro-
cessors, with 8 GB of RAM and a 1 Gbps NIC. In the experiments, the control VM and
one target VM were run on top of the Xen VMM. Para-virtualized Linux OS kernels ran
inside both VMs. When a request to make a policy decision is sent to a control program,
the control VM is not always running on the VMM since the VMM scheduler determines
which processors (physical CPUs) are assigned to which VMs. In the experiments to force
the control VM to always run on the VMM, the control VM and target VM were config-
ured to use different processors. On the IA-32 architecture, the control VM and target VM
were both configured with one processor and one virtual CPU, whereas the control VM
and target VM were both configured with two processors and two virtual CPUs on the
AMD64 architecture. On the IA-32 architecture, the memory sizes of the control VM and
target VM were 512 and 256 MB, respectively. On the AMD64 architecture, the memory
sizes of the VMs were both 1 GB.

Microbenchmarks

To investigate how the system call interception and communication between the VMM
and the control VM contribute to the entire overhead, microbenchmark programs were
run on ShadowVox. Execution times were compared by using the following settings.
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ShadowVox (SYSENTER): Para-virtualized Linux running on IA-32 (system calls are in-
voked with SYSENTER instruction)

ShadowVox (INT0x80): The same setting as the above except that system calls are in-
voked with the software interrupt

ShadowVox (SYSCALL): Para-virtualized Linux running on AMD64 (system calls are
invoked with SYSCALL instruction)

Xen: Para-virtualized Linux running on IA-32 or AMD64

Xen+ptrace: Para-virtualized Linux running on IA-32 or AMD64 with an extension for
intercepting system calls using ptrace

Linux: Native Linux running on IA-32 or AMD64

Linux+ptrace: Native Linux running on IA-32 or AMD64 with an extension for inter-
cepting system calls using ptrace

The ShadowVox settings (SYSENER, INT0x80, and SYSCALL) were further divided
into two cases based on the response action in the security policy: allow and skip.
Specifically, the allow case means that the SV-core notified the control program of inter-
ception, while the skip case means that it did not notify the control program.

The microbenchmarks were four programs described below. Each program invoked
10,000 sets of system calls.

getpid: This program repeated invocation of the getpid system call.

open: This program opened a file in a home directory and immediately closed it, with
the open and close system calls.

socket: This program created a TCP/IP socket the and immediately closed it, with the
socket and close system calls. The system call handling for network operations
differs between the IA-32 and AMD64 architectures, as described in Section 2.5.4.

fork: This program forked a process, and the parent process waited for the child pro-
cess. The child process immediately completed its execution with the exit group
system call. A given security policy specified that the child process also had to be
controlled. The parent process repeatedly invoked the fork and waitpid (IA-32)
or wait4 (AMD64) system calls.

The experimental results on IA-32 are indicated in Figures 2.8, 2.9, 2.10, and 2.11.
The experimental results on IA-64 are shown in Figures 2.12, 2.13, 2.14, and 2.15. The
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Figure 2.8: getpid microbenchmark results on ShadowVox, Xen, and Linux (IA-32)
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Figure 2.9: open microbenchmark results on ShadowVox, Xen, and Linux (IA-32)
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Figure 2.10: socket microbenchmark results on ShadowVox, Xen, and Linux (IA-32)
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Figure 2.11: fork microbenchmark results on ShadowVox, Xen, and Linux (IA-32)
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Figure 2.12: getpid microbenchmark results on ShadowVox, Xen, and Linux (AMD64)
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Figure 2.13: open microbenchmark results on ShadowVox, Xen, and Linux (AMD64)
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Figure 2.14: socket microbenchmark results on ShadowVox, Xen, and Linux (AMD64)
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Figure 2.15: fork microbenchmark results on ShadowVox, Xen, and Linux (AMD64)
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figures indicate the average execution time per system call sequence, so that lower values
are better. The results show that the overhead incurred by ShadowVox, for both the
allow and skip cases was lower than that incurred by Xen+ptrace except for fork in the
allow case. This indicates that ShadowVox controlled executed system calls with lower
overhead as compared with an approach that monitors processes from inside a target OS
kernel, with a process tracing facility provided by the target OS kernel. The main reason
for the lower overhead is that the number of notifications to the control program is less
than that of the ptrace monitor program. For example, for a single getpid execution,
SV-core either notified the control program of interception once, i.e., at the system call
entry (allow case), or it did not notify the control program at all (skip case). In contrast,
the ptrace monitor program performed notification twice, i.e., at the system call entry
and exit. The same consideration explains why fork in the allow case had overhead
close to that incurred by Xen+ptrace, since notification was also performed for system call
interception at the exit. The difference in overhead between Xen and the skip case was
much smaller than the difference between Xen and the allow case. This indicates that
the overhead due to system call interception was much smaller than that due to execution
control of system calls including communication between different VMs via the VMM. A
user can reduce the overhead incurred by ShadowVox by specifying the skip action for
system calls that usually do not require control, such as poll and gettimeofday.

Application Benchmarks

We expected that the overhead incurred by controlling application programs would not
be as high as that incurred by controlling microbenchmark programs. To confirm this, we
measured the overhead imposed on the performance of a Web server program and secu-
rity systems. The application programs were run on ShadowVox to record their executed
system calls, and their security policies were described. To obtain practical security poli-
cies, the policies were generated for each application program by using Systrace, and the
generated policies were used to describe the security policies for ShadowVox. allow and
skip were specified as the response actions for rules generated by Systrace that had pol-
icy conditions for system call arguments and for those with no conditions, respectively.
Furthermore, the policy rules generated by Systrace were modified to allow execution
of the access, stat, and lstat system calls to continue without notifying the target
program. Specifically, skip was specified as the response action for these three system
calls.

The application programs included the following:

Web server Apache: Requests were sent to fetch two types of static content (1- and 100-
KB files) and dynamic content (CGI) to Apache by using the ApacheBench bench-
mark program. The CGI program obtained information on the platforms on which
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Apache and ApacheBench were running and sent that information to Apachebench.
Apache ran on the target VM while ApacheBench ran on a different machine in the
same LAN. The platform running ApacheBench consisted of a Pentium 4 3.2-GHz
processor with hyper-threading enabled, 2 GB of RAM, and a 100-Mbps NIC. The
number of requests was a power-of-two number from 1 to 1024. Appendices B.1
and B.2 describe the security policies for Apache running on the IA-32 and AMD64
architectures, respectively.

Anti-virus tool suite ClamAV and file system integrity checker Tripwire: For ClamAV,
we scanned files for viruses by using two types of programs: clamscan and clamd.
clamscan is a command-line virus scanner, which reads the virus databases every
time it is executed. clamd is a virus scanner daemon, which performs virus scans
according to requests received from the clamdscan client. clamd reads the virus
databases at start-up or when update requests for the databases are received from
users. ClamAV’s six test files, including five infected files, were scanned. For clamd,
the system calls executed by clamdscan were also controlled. For Tripwire, the file
system of the target VM were scanned for changes.

Web server thttpd in combination with network-based intrusion detection system
Snort or sandboxing system Systrace:

thttpd was executed on the target VM, while ApacheBench was executed on a dif-
ferent machine, which was the same physical machine used in the above Apache
case, in the same LAN. ApacheBench issued requests to fetch a 1-KB file. The num-
ber of requests was a power-of-two number from 1 to 1024. Snort monitored ac-
cess to the port used by thttpd, while Systrace monitored the system calls invoked
by thttpd. Snort was controlled in two cases based on which programs were tar-
geted: Snort, or both Snort and thttpd. Systrace was controlled according a secu-
rity policy specifying that thttpd did not need to be controlled. (The policy spec-
ified detachProc in the execByPtracingProc: field. detachProc and the
execByPtracingProc: field are explained in Appendix A.)

To compare with an existing security system based on system call interposition, the
throughput was also measured for an instance of Apache whose behavior was controlled
by Systrace running in the target VM on the IA-32 architecture. In this experiment, Sys-
trace controlled Apache by using the ptrace system call. Systrace 1.6e does not support
the AMD64 architecture.

Experimental results for the Web server on IA-32 are shown in Figures 2.16, 2.17, and
2.18, and experimental results for the Web server AMD64 are shown in Figures 2.19, 2.20,
and 2.21. The values indicate the processing time per request, so that smaller values
are better. The results show that the performance degradation due to ShadowVox was
lower than that due to Systrace. This indicates that system call interception by para-
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Figure 2.16: Web service throughput on ShadowVox, Xen, and Systrace for IA-32 (1-KB
file)
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Figure 2.17: Web service throughput on ShadowVox, Xen, and Systrace for IA-32 (100-KB
file)
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Figure 2.18: Web service throughput on ShadowVox, Xen, and Systrace for IA-32 (CGI)
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Figure 2.19: Web service throughput on ShadowVox and Xen for AMD64 (1-KB file)
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Figure 2.20: Web service throughput on ShadowVox and Xen for AMD64 (100-KB file)
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Figure 2.21: Web service throughput on ShadowVox and Xen for AMD64 (CGI)
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Figure 2.22: File Checking on ShadowVox and Xen (IA-32)
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Figure 2.23: File Checking on ShadowVox and Xen (AMD64)

virtualization of the VMM has less impact on performance than that of the ptrace pro-
cess tracing facility. Systrace also provides a kernel patch for reducing the overhead due
to system call interception. However, this kernel patch was not applicable to the target
OS kernel since it was a para-virtualized OS kernel with the source code modified from
that of original OS kernel. In contrast, ShadowVox controlled the target program with
lower overhead than that incurred by ptrace, without modification of the target OS
kernel source code.

Figures 2.22 and 2.23 summarize the experimental results for the security systems on
IA-32 and AMD64, respectively, while Figures 2.24, 2.25 show those for the Web server
in cooperation with Snort on IA-32 and AMD64, respectively. Lastly, Experimental re-
sults for the Web server in cooperation with Systrace on IA-32 are shown in Figure 2.26.
As above, smaller values are better for the data in all of these figures. As expected, the
results for application programs show that the performance degradation for these pro-
grams was lower than that for the microbenchmark programs. The main reason for the
lower overhead is that system call execution accounts for a smaller potion of the entire
execution of the application programs.

52



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  2  4  8  16  32  64  128

P
ro

ce
ss

in
g 

tim
e 

pe
r r

eq
ue

st
 [m

se
c]

# of requests

Xen

ShadowVox
(controlling Snort)

ShadowVox
(controlling Snort and thttpd)

Figure 2.24: Web service throughput on ShadowVox and Xen for IA-32 (Snort)
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Figure 2.25: Web service throughput on ShadowVox and Xen for AMD64 (Snort)
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Figure 2.26: Web service throughput on ShadowVox and Xen for IA-32 (Systrace)

53



Table 2.3: Number of policy rules
application name IA-32 AMD64
Apache 134 47
Apache (CGI) 143 65
ClamAV clamscan 54 64

clamd 116 102
clamdscan 41 40

Tripwire 81 76
Snort 93 94
Systrace 78 N/A

In addition, Table 2.3 summarizes the number of policy rules for each target program.
The applied security policies were regarded as practical security policies.

Throughout this evaluation, ShadowVox was found applicable to several applica-
tion programs and enhanced the security of a system based on system call interposition.
We expect that the performance degradation due to ShadowVox would be acceptable to
users.

2.7 Related Work

2.7.1 Enhancing Security from Outside VMs

Livewire [43] is an intrusion detection system that controls the behavior of a VM from
outside. As in this work, Livewire uses information on the guest OS to understand the
behavior in a monitored VM. However, there is a difference in which events in a moni-
tored VM are intercepted by the VMM. Livewire intercepts write accesses to non-writable
memory regions and accesses to a network device. On the other hand, ShadowVox in-
tercepts system calls invoked by target processes. Therefore, Livewire cannot intercept
instructions at a system call exit, since they are not privileged instructions and the their
execution does not cause illegal access faults. In contrast, ShadowVox intercepts instruc-
tions at a system call exit by using dynamic binary instrumentation. Furthermore, there is
a difference in the granularity of response actions for intercepted events. While Livewire
takes response actions at VM granularity, ShadowVox takes response actions at process
granularity.

IntroVirt [58] is a system that detects and responds to intrusions from outside a VM.
It intercepts the execution of vulnerable code parts and executes vulnerability-specific
predicates in the target system. While security checks in IntroVirt are performed accord-
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ing to a vulnerability specification and a corresponding predicate, ShadowVox works
according to a specification of how to check and control system calls. Since IntroVirt’s
protection mechanism depends on known vulnerabilities, it cannot prevent the behavior
of target programs that include unknown, vulnerable code. In addition, there is a dif-
ference in the mechanism for obtaining execution states at OS-level abstraction outside
a VM. Whereas IntroVirt obtains these states by using the guest OS kernel code, Shad-
owVox restores execution states from register values and data on the guest memory, as
described in Section 2.3.1.

VMwatcher [55] is a system that detects malicious software (malware) by comparing
the memory and virtual disk states reconstructed from outside with the memory and
virtual disk states obtained from inside it. The states reconstructed from outside a VM are
also used as input data to existing anti-malware systems. Whereas VMwatcher performs
the malware detection when a user issues a request, ShadowVox controls the behavior of
a target process when the target process executes a system call. Furthermore, ShadowVox
controls the target process according to a security policy.

Asrigo et al. [17] proposed a honeypot system that collects information on file and
network socket operations in a VM. Whereas that system collects the behavior of a guest
OS kernel, ShadowVox controls the behavior of target processes.

XenAccess [81] is a library for monitoring raw memory access and disk I/O and
restoring their inner states at OS-level abstraction from outside a VM. Unlike XenAccess,
ShadowVox controls a monitored VM according to the behavior of target processes.

Lycosid [57] is a system that detects covertly existing processes in a VM. It uses the
Antfarm [56] technique, which infers the existence and behavior of processes in a VM
from the switching of process address spaces. Although Lycosid does not require infor-
mation on a guest OS kernel, it cannot precisely identify process termination. Further-
more, it cannot control process behavior, file operations, and network operations.

2.7.2 Access Control at VMM and OS Layers

sHype [92] and NetTop [48] provide an infrastructure for controlling information flows
and resource sharing between VMs. VMware ACE [104] provides a secure virtual desk-
top environment by managing packages consisting of a pair of a VM instance and a se-
curity policy. Terra [41] deploys security-sensitive programs in a separate trusted VM to
protect these programs from other, untrusted programs. While the granularity of execu-
tion control in these systems is at the VM level, the proposed system controls execution
at the process granularity.

There are also security-enhanced OSs based on mandatory access control (MAC) [10],
such as SELinux [52], LIDS [4], TOMOYO Linux [46], and AppArmor [76]. Unlike ap-
proaches that enhance security from outside a VM, security-enhanced OSs can provide
fine-grained control at OS-level abstraction. For example, such OSs can limit privileges
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for root accounts. However, in practice, it is difficult to describe MAC-based security
policies in consideration of the relationships between all the processes and files on a sys-
tem [18, 53]. Consequently, users of security-enhanced OSs suffer from a tradeoff be-
tween the fine-grained control and the resulting complexity of the security policies. In
contrast, ShadowVox simply makes attacks on security systems harder through isolation
between VMs. There is also a difference in application for multiple execution environ-
ments, i.e., multiple target VMs. Whereas one security-enhanced OS must run for each
target VM, one VM (i.e., the control VM) on ShadowVox can simultaneously manage and
control multiple target VMs.

2.7.3 System Call Interposition

A number of security systems based on system call interception have been proposed.
Most of these systems, including those in [37, 38, 45, 86, 98], run a security program
on the same OS as the protected programs and potential malware. This makes it easier
for malware to attack these security systems. On the other hand, with ShadowVox, the
security system runs outside the guest OS. It is difficult for an attacker to stop the security
system because the attacker cannot even observe it.

2.8 Summary

We have proposed ShadowVox, a system that enhances the security of VMs at application-
program granularity by controlling the execution of system calls from outside the VMs.
This “out-of-VM” scheme makes it harder to attack ShadowVox, since it runs outside the
target VMs. ShadowVox controls processes according to a given security policy by using
two basic techniques: VM introspection and dynamic binary instrumentation. VM intro-
spection is a technique for identifying execution states and events in OS-level semantics
from outside VMs by leveraging OS information on process management and system
calls. We have clarified the OS information required for VM introspection. More con-
cretely, we have revealed what prior knowledge on the OS information and what data
relevant to this prior knowledge are required, how OS-level semantic views are iden-
tified using the information, and what the information depends on. Dynamic binary
instrumentation is a technique for intercepting events such as system calls without mod-
ifying the source code of OS kernels. A security policy given by the user specifies which
system calls are controlled and how they are controlled.

We implemented ShadowVox on the IA-32 and AMD64 processor architectures and
confirmed that it controlled a diverse range of application programs, including server
programs and security systems. In addition, we demonstrated that ShadowVox con-
trolled the behavior of an Apache server instance under the condition that a ProFTPD
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server instance with administrator privileges had been hijacked. The experimental re-
sults of the throughput for the Apache Web server. showed that system call interposition
with ShadowVox has less impact on performance than that by a security system using
the ptrace process tracing facility.

Future work on the proposed system will include the following considerations. First,
the security policy approach should be refined. The current policy description is based on
system call arguments and depends on processor architectures and OS kernel versions.
To relieve users of the burdensome task of description, ShadowVox should support auto-
mated policy generation based on the execution logs of target programs. Another way to
reduce the required description effort would be to raise the abstraction level of a security
policy. A useful side effect of raising the abstraction level would be in cutting erroneous
descriptions. As described in Section 2.5.3, we also plan to explore and implement an
effective prevention mechanism against attacks using race conditions, such as symbolic
link and time-of-check-to-time-to-check attacks.
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Chapter 3

Protection for Application Data on
Memory and Virtual Disk

3.1 Motivation

The effectiveness of security systems running on the OS and application layers is ensured
as long as that no attacker can compromise the target OS kernel and privileged programs
running in the same execution space. However, the target OS kernel and privileged pro-
grams are vulnerable [1, 5, 6, 7]. In addition, the libraries used by such programs can also
be vulnerable [3, 5, 7]. Therefore, if an attacker exploits these vulnerabilities, the attacker
can subvert or disable the protection mechanism designed at the OS and application lay-
ers. Since Janus [45] and Systrace [86] control the behavior only of programs specified by
the user, an attacker can hijack programs whose behavior is not controlled by these secu-
rity systems. Using such hijacked programs, the attacker can illegally operate on target
program data on memory and disk after tampering with the security policies of the secu-
rity system. For example, the attacker can induce leakage of confidential information on
a program controlled by the security system. The attacker can also tamper with the code
regions of target programs controlled by the security system to modify their control flow.

A VMM-based approach is useful for protecting target program data on memory and
disk from untrusted programs, including target OS kernels, running in the same execu-
tion space as the target programs. Security systems based on a VMM can isolate target
program data in one VM from other untrusted programs running in another VM. For
example, Terra [41] runs a target program outside the target VM. However, Terra’s ap-
proach increases the amount of computing resources consumed and the number of inter-
VM context switches, since users must assign one VM per target program to protect the
target program data. If there is more than one target program, the impact of resource
consumption and inter-VM context switches are greater because the user must assign
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one VM to each target program to isolate all of the target programs.
Other examples are Nizza [100] and Proxos [103]. These systems isolate the security-

sensitive components of a target program, such as a key authentication mechanism, from
the rest of the target program components and other untrusted programs, in order to run
the target program with a smaller trusted computing base (TCB). However, these security
systems lose their compatibility with the existing target program binaries in addition to
requiring extra inter-VM context switches. Hence, the user must modify the source code
of existing target programs to use them with these systems.

In this chapter, we present Shadowall to achieve two goals simultaneously. The first
goal is to solve the problem of security systems running in the OS and application layers,
i.e., to prevent compromised programs in the same execution space as target programs
from inducing leakage and tampering with target program data on memory and disk.
The second goal is to address the problems with existing VMM-based security systems,
i.e., to overcome the problems with resource consumption, inter-VM context switches,
and target program binary compatibility. To achieve these two goals, a VMM on Shad-
owall controls memory management operations and interposes system call procedures
in cooperation with a different VM from the target VMs. Shadowall can protect the con-
fidentiality and integrity of target program data when target programs run inside target
VMs.

We assume that a user applies Shadowall to existing server and client programs as
target programs without modifying their source code. In addition, the target programs
include proprietary programs that governments and corporations plan to develop. Such
proprietary programs require preservation of not only their integrity but also their con-
fidentiality. Application of Shadowall to proprietary programs prevents attackers from
analyzing their content.

The rest of this chapter is organized as follows. Section 3.2 describes the threat model.
Section 3.3 presents the design of the proposed system, followed by a description of a pro-
totype implementation in Section 3.4. Section 3.5 discusses the evaluation of the system.
Finally, Sections 3.6 and Section 3.7 discuss related work and summarize the chapter,
respectively.

3.2 Threat Model

Shadowall prevents attackers from inducing data leakage and tampering with target pro-
gram data. The target program data include memory data in the user space and virtual
disk data such as executables, configuration files, and database files. Attackers are as-
sumed to maliciously manipulate memory data through APIs for controlling processes,
such as the ptrace system call on Linux, loadable kernel modules, and special devices
such as /dev/mem and /dev/kmem.

59



A VMM and a trusted VM isolated from the target VMs are the trusted computing
base (TCB) of Shadowall. Meanwhile, target VMs are not part of the TCB; that is, Shad-
owall does not trust any programs running inside target VMs.

If an attacker exploits vulnerabilities of OS kernels and privileged programs, the at-
tacker can maliciously manipulate target program data regardless of whether the target
program is vulnerable. For example, an attacker can tamper with target program data on
memory, such as control data and non-control data [25], to alter the behavior of a target
program. Control data include return addresses saved on the stack and function pointers.
Non-control data include variables used as effective user IDs and authenticated flags.

An attacker can also tamper with such data to circumvent or subvert the protection
provided by security systems. For example, the attacker can tamper with files related to a
security system controlling a target program, such as configuration, policy, and database
files. Then, the attacker can leak target program data that had originally been confidential
because the protection of the security system has already been disabled. Furthermore, to
make an attack more difficult to detect, the attacker can transiently modify target pro-
gram data on memory and a virtual disk. With mimicry attacks [79, 108], an attacker can
evade sophisticated detection by a security system by tampering with target program
data.

To protect target program data, we need to protect both memory data and the virtual
disk data. For example, an attacker can modify the control flow of memory data if its
data are not protected. An attacker can similarly leak or tamper with the content of target
program files on a virtual disk if its data are not protected.

Shadowall identifies target program contexts by using the VM introspection tech-
nique described in Section 2.3.1. If a compromised OS kernel falsifies target program
data managed in the kernel (e.g., process and memory management data), the target pro-
gram might run incorrectly. Even so, Shadowall can prevent the compromised OS kernel
from leaking and tampering with the target program data on memory and a virtual disk.

On the other hand, certain threats are outside the scope of Shadowall. The first threat
consists of to hijacking a target program by exploiting its own vulnerability to buffer
overflows. To prevent this kind of attack, we assume that Shadowall is used with a secu-
rity system that controls the behavior of a target program from outside a target VM, such
as a sandboxing and intrusion prevention systems (e.g., ShadowVox, a VMM-based sand-
boxing system that controls the system calls invoked by target programs, as described in
Chapter 2). A second threat outside Shadowall’s scope is modification of kernel space
data related to a target program in order to change its behavior. This kind of attack is
often accomplished using kernel-level rootkits. One example is gathering network data
related to a Web server, where an attacker captures the network data at the kernel layer
and forwards it to the attacker’s malicious program. Another example is attacks such
as those on denial of services (DoSs), where an attacker removes target processes from a
scheduling list and remains at DoSs pending system call events.
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Figure 3.1: Shadowall: system for protecting memory and virtual disk data involved with
target application programs

3.3 Design

3.3.1 Overview

Figure 3.1 outlines the structure of the proposed system, Shadowall. The proposed data
protection mechanisms are incorporated into a VMM and a VM controlling the target
VMs, called a control VM.

The mechanism for protecting memory data includes an in-VMM component called
SW-core. The mechanism for protecting virtual disk data, on the other hand, includes both
SW-core and a control program residing in the control VM. A control program is generated
for each target program instance by a control daemon. Furthermore, a command utilities are
provided for controlling target program data from outside a target VM in the control VM.

A security policy and information on a target OS kernel, called target OS information,
are used to control a target program from outside the target VM. Since the control VM
manages the security policy and target OS information, if an attacker takes over the target
VM, the attacker cannot tamper with them.

Files that include target program data used at runtime are also managed inside the
control VM. Such a file is referred to as a real file. However, a file associated with a real
file is deployed inside a target VM. The associated file is referred to as a dummy file. The
dummy file is deployed in a target VM to maintain consistency with the file operations
performed by a target OS kernel.

The target program data are controlled at process granularity by using the target OS
information, as with the sandboxing system, ShadowVox, described in Chapter 2. The
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target OS information includes information on kernel objects for process management
and on system calls. Shadowall controls the execution state of a target program from
outside the target VM by using the target OS information. A support program is also
provided to automatically generate target OS information that depends on the OS kernel
image. Hence, a target OS kernel requires that its design, in terms of processes and system
calls, be available. For example, the target OS can be a UNIX-like OS.

In deploying Shadowall, the target VM user or the control VM administrator deter-
mines which target programs to place under control, and which target files protect, in
which parts of the protected memory area. These decisions are registered in the proposed
system by using the control command utilities and the security policy.

3.3.2 Usage

To control the target program data from outside a target VM, the following command-line
programs are provided.

• mkdummy: This is a command to create dummy files for a target program. The
argument is a file describing the associated real files. Whenever a target file is up-
dated, the user creates the associated dummy file. The dummy files created by this
command are deployed inside a target VM.

• sw vconf: This is a command to register target OS information. The arguments
include a target OS kernel image and three files necessary to control the target pro-
gram data. One file stores information on kernel objects related to process man-
agement in a target OS kernel. The second file stores information on system calls.
The third file stores information on pairs consisting of a symbol and a virtual ad-
dress for intercepting the entry and exit of system calls. Shadowall manages one set
of target OS information for each target OS kernel image. A hash value generated
from the target OS kernel image is used as an identifier for the corresponding target
OS information.

• sw vcntl: This is a command to associate a target OS kernel with target OS in-
formation. The arguments are a target OS kernel image and an identifier for the
target VM. After this command is executed, Shadowall can execute control at pro-
cess granularity from outside the target VM.

• sw vstart: This is a command to start control of target program data. The argu-
ments are a target VM ID, the name of a target program, and a security policy for
the target program.

Figure 3.2 shows an example of procedures related to target prog residing in a
target VM whose ID is 1; these procedures are followed until data control starts. First,
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[cvm] $ mkdummy target files.txt
[cvm] # sw vconf targetOS.img \

targetOS info.txt syscall info.txt syscall hook.txt
[cvm] # sw vcntl 1 targetOS.img
[cvm] # sw vstart 1 target prog policy.txt

Figure 3.2: Usage example in Shadowall

the user executes mkdummy to create dummy files. The target files, such as executable
and configuration files, are specified in the target files.txt file. Next, the user no-
tifies the control daemon of the target OS information for the target OS kernel image
by using sw vconf. The user provides arguments consisting of the target OS kernel
image file, targetOS.img, and the three files for controlling the target data from out-
side the target VM, as described above. targetOS info.txt contains the information
on kernel objects for process management, syscall info.txt contains the informa-
tion on system calls, and syscall hook.txt contains the information on symbol /
virtual address pairs for intercepting the entry and exit of system calls. Next, by exe-
cuting sw vcntl with arguments consisting of the target VM ID 1, and the target OS
kernel image targetOS.img, the user associates the target VM instance with the target
OS information registered through sw vconf. Finally, the user executes sw vstart to
send a request to start controlling the target data related to target prog. The user pro-
vides sw vstartwith arguments consisting of the target VM ID 1, the name of the target
program target prog, and the security policy file policy.txt. After this, whenever
target prog starts, its memory and virtual disk data are protected according to the
security policy.

3.3.3 VMM-based Protection Mechanisms

Memory Data Protection

Paging is adopted as a memory management scheme in many commodity OSs such as
Windows and Linux. In paging, the OS kernel makes one process share page tables ac-
cessed in different execution modes, namely, the kernel and user modes. Thus, for a
virtual address, a process running in user mode accesses the same physical page as when
it is running in kernel mode.

In the VMM architecture, unlike an OS kernel running directly on hardware, the
VMM manipulates address translation into the physical addresses of VMs. To protect
target data in the user space, the proposed system extends the memory management
scheme to the VMM layer, so that the VMM can interpose in memory management and
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Figure 3.3: Physical page multiplexing according to execution modes

multiplex physical pages. The multiplexing of physical pages depends on the execu-
tion mode of a target program. As indicated in Figure 3.3, the VMM presents physically
different memory mapping from a guest virtual address (gVA), to a host physical page
(gPA) according to the execution mode. The term real page represents the physical page
accessed when the target program runs in user mode. In contrast, the physical page ac-
cessed by the target OS kernel is a dummy page. After memory multiplexing, the physical
addresses accessed by the target OS kernel remain the same as before. Switching between
the user and kernel modes occurs at the entry and exit of exceptions and the entry and
exit of interrupts. Switching also occurs at the entry and exit of system calls.

Since a VMM running at a higher privilege level than an OS kernel controls the final
address translation of a target VM, malicious address translation can be disabled at the
VMM layer. Even if a compromised OS kernel attempts to leak and tamper with target
program data, Shadowall forces it to access the corresponding dummy pages.

A target OS kernel accesses user space data, such as file path names and objects for
network connections, in certain system call procedures. Therefore, Shadowall needs to
adjust the user space data so that the target OS kernel can appropriately cope with the
user space pointer of a system call argument. To achieve this, the VMM manipulates
target program data so that only the memory region used by a system call can be tem-
porarily shared between the content of a dummy page and the content of the associated
real page. The sharing duration is from a system call entry to a system call exit.

This data sharing is a limitation on the proposed memory protection scheme. In other
words, it gives an attacker the chance to gather and modify user space data to which
system call arguments point. Note that the attacker cannot leak and corrupt user space
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data involved with the files whose content is protected by Shadowall, i.e., thetarget files.
The details of this are described later in this section.

Unlike existing systems [26, 66, 119] that use cryptographic protection to multiplex
protected pages logically, Shadowall multiplexes protected pages physically. Whereas
this approach requires extra physical pages for multiplexing, the other approach intro-
duces additional overhead due to encryption and decryption. In a target VM configured
with multiple virtual CPUs, target processes cannot run in parallel to exclusively manip-
ulate decrypted pages.

Virtual Disk Data Protection

The content of target files is protected through VM isolation and control from outside the
target VM. The content of a real file is managed outside the target VM. Control of the con-
tent of a target file depends on which process manipulates it. target files are specified by
the security policy. When a control program manipulates a target file, the in-VMM com-
ponent, SW-core, and a control program in the control VM emulate the procedures of the
system call involved in a file operation to update the content of the real file. Since system
call emulation is not processed through the target OS kernel, the user space data need
not be shared between the real page and the dummy page, as described in Section 3.3.3.
The proposed file protection scheme protects the contents of a target file on memory in
combination with the memory protection scheme described in Section 3.3.3.

System calls related to operations on file content, such as open and read, are emu-
lated, while those related to operations on file attributes, such as stat and fchown, are
not emulated. This approach has two advantages. First, it reduces the number of kinds
of emulated system calls. Second, it does not require emulating changes in user IDs or
group IDs related to a target file in the control VM. User and group IDs are assumed to
be controlled by a combination of Shadowall and a sandboxing system to control them,
described in Chapter 2.

Unlike the proposed scheme, there is a VMM-based approach for protecting a target
file in combination with NFS. However, this combination approach with NFS has two
main problems. First, an NFS client transfers the content of a target file to a target OS
kernel through file manipulation. A compromised target OS kernel can leak and tamper
with the content during the NFS data transfer. In contrast, the proposed scheme can
protect the target file content because the file transfer is processed outside the target VM.
Second, NFS access control is enforced through user and group IDs, whereas Shadowall
controls file operations according to which processes execute.
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Shared Data and Network Data Protection

With regard to protecting shared data related to a target program, the user is assumed
to specify that all programs accessing the shared data are target programs. Shadowall
does not hide shared library data, such as that in libc libraries, on the memory and vir-
tual disks because this shared data are also used by other programs that Shadowall does
not control. If Shadowall hid the shared data, the uncontrolled programs would crash.
Instead, Shadowall prevents attackers from tampering with the shared data by requiring
target programs to access the shared data stored as a target file in the control VM instead
of the shared data in a target VM.

Since network data are accessed through procedures within a target OS kernel, at-
tackers can maliciously access them. To protect private network data related to a target
program, the target program is assumed to use a secure communication mechanism in
the application layer, such as SSL. Whereas private network data are protected by SSL,
Shadowall protects data related to the SSL certificate and the SSL private key. Meanwhile,
public network data such as Web content is not assumed to be protected because users
can confirm that content through their Web browsers.

3.3.4 Security Policy

Figure 3.4 lists the syntax of the proposed security policy. It specifies which parts of
memory regions are protected, which files are target files, and how the target data are
placed under control.

The executable: field is followed by pathOutsideVM, the executable path name of a
target program in the control VM. The target memory and virtual disk data are specified
in the parts following the shadowMemoryFile: field.

For memory data protection, the user specifies whether all target program data are
multiplexed (all) or parts of the data are multiplexed (partially). For partial mul-
tiplexing, the user specifies the parts. The multiplexing granularity includes an OS seg-
ment (“KernSeg”), the memory-mapped region (mmapRegion), and the section (ELFSec)
and segment (ELFSeg) of the ELF executable. The specifications of the OS segment in-
clude the code region (text), the static and dynamic regions (data and brk, respec-
tively), the stack region (stack), and the region for environment variables and command-
line arguments (env and arg, respectively). In partial multiplexing, the user can also
specify which parts are read-only regions (“ReadOnlyRgn”). Such read-only regions are
not multiplexed at the VMM layer because they are protected by prohibiting write oper-
ations to a read-only region.

The “ShadowFileSpec” part indicates target files, with outsideVM and insideVM cor-
responding to real and dummy files, respectively. The “Permission” part indicates the
permission for a target file.
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PolicyFile → executable : pathOutsideVM
shadowMemoryFile:ShadowMemFile
CalleeSpec*

ShadowMemFile → all ShadowFileSpec*
| partially PartSpec+ ShadowFileSpec*

PartSpec → kernelSeg : KernSeg+ | mmapRegion | ReadOnlyRgn
| ELFSec : secName+ | ELFSeg : segNum +

KernSeg → text | data | brk | stack(DOWN | UP, size) | env | arg
ReadOnlyRgn → readOnlyRegions : RORegion+
RORegion → text | mmapRegion

| ELFSec : secName+ | ELFSeg : segNum+
ShadowFileSpec → shadowFile :( pathName(insideVM, outsideVM)

<Permission+> )+
Permission → read | write | create | append
CalleeSpec → calleeExecve :(pathInsideVM policyFile)+

Figure 3.4: Security policy syntax in Shadowall

executable : ./shadow/master prog
shadowMemoryFile : partially

kernelSeg : data,brk,stack(DOWN,1GB),env,arg,mmapRegion
readOnlyRegions : text

shadowFile :
pathName(/home/A/control.cfg,./target.cfg) <read>
pathName(/home/A/control.log,./target.log) <read|append>

Figure 3.5: Sample security policy in Shadowall

Shadowall also provides a specification to control the execve system call invoked by
a process that is currently controlled. The calleeExecve: field is followed by pathIn-
sideVM, the executable path name of a target program inside a target VM, and policyFile,
the security policy for controlling the callee program.

Figure 3.5 shows a sample security policy for the target program master prog. While
the code region of the memory data are protected by write-protection, the other regions
are protected by the multiplexing scheme. While master prog has permission to read
the configuration file control.cfg, it also has permission to read and append the log
file control.log in the virtual disk data.

The following use cases are assumed for partial multiplexing. The first case is pro-
tecting existing programs published on the Internet. No existing program data neces-
sarily requires multiplexing. We need only prevent tampering with the write-protected
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regions of existing programs, such as the code region. Here, the security policy speci-
fies that write-protected regions are read-only, whereas multiplexed regions are writable.
Another case is protecting particular regions containing confidential data. Specific areas
include memory-mapped regions containing the contents of password files and private
key files. The presence of the ELF sections or segments in self-developed programs is
also assumed as the particular protected regions. The security policy explicitly speci-
fies that regions containing confidential data be multiplexed. However, an attacker can
modify the behavior of a target program by tampering with unprotected memory re-
gions. Therefore, Shadowall should be used in combination with the sandboxing system
described in Chapter 2 to mitigate against this kind of attack.

3.3.5 Features

Shadowall has the following main features.

Data protection scheme isolated from target VMs: Since the proposed memory and vir-
tual disk protection schemes are based on control at a higher privilege level than
that of the target VM, together with VM isolation, compromised programs residing
in the target VM cannot subvert these protection schemes. Furthermore, since a tar-
get program runs inside a target VM, Shadowall does not require allocating extra
VMs for each target program, which would increase the costs of resource consump-
tion and inter-VM context switching.

Retaining compatibility with existing binaries: Unlike previous systems that partition
a target program into trusted and untrusted parts [100, 103], Shadowall does not
require modifying the source code of a target program or target OS kernel.

Protection control from outside target VMs: Previous systems [26, 91, 119] have pro-
tected target data by using an auxiliary utility inside a target VM. However, if an
attacker takes over a program residing in a target VM, the attacker can delete the
auxiliary utility or abuse it to hide a malicious program. In contrast, Shadowall
prevents this attack because it does not require any auxiliary utilities. Control from
outside target VMs also has an advantage in that target VM administrators can del-
egate the security maintenance of a target program to a control VM administrator.

Fine-grained, process-granular control: Execution control is only applied to target pro-
grams specified by the user of a control VM or a target VM. Unlike previous systems
that perform control at VM granularity [48, 93], other programs in the same target
VM are not affected.
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3.4 Implementation

We have implemented Shadowall by using a para-virtualization version of Xen [20] 3.0.3
and Linux OS kernel 2.6.16 as the target OS kernel.

3.4.1 Multiplexing User Address Space

Management of Multiplexed Memory Regions

SW-core manages two types of information on the user space data of a target program.
The first type is information on memory-mapped regions, including the range of virtual
addresses currently assigned to the target program. Intuitively, this information corre-
sponds to the vm area struct object of a Linux OS kernel. The second type is informa-
tion on physical memory regions. This information includes, by the page, pairs of real
physical and dummy addresses. It also includes the reference count for each physical
address after control is started. In addition, when the target physical page is temporar-
ily saved on the virtual disk, i.e., there is a transition to the page-out state, SW-core adds
the entry of the bottom-level page table to this information. Whereas the information on
memory-mapped regions is managed for each target process, the information on physical
memory regions is managed for each target VM.

Target Page Table Update

To multiplex target physical pages, Shadowall provides a target program with separate
page tables for each execution mode. On Xen for the AMD64 architecture, called Xen-
AMD64, the VMM provides a process running in a VM with a separate top-level page
table for each execution mode. The proposed multiplexing mechanism was implemented
by extending Xen-AMD64.

When a page fault occurs in a multiplexed region, SW-core multiplexes the associated
physical page. The page fault handling by SW-core needs to maintain consistency with
the page fault handling by target OS kernels so that the page fault handling by SW-core
cannot cause a target program or a target OS kernel to crash.

When SW-core intercepts a page fault at the exception entry, the page table entry has
not yet been updated by a target OS kernel. Therefore, SW-core forces the target OS kernel
to carry out page fault handling before its own page fault handling. Although the page
fault handling by a target OS kernel applies to a dummy page, page fault handling by
SW-core applies to a real page. Thus, a compromised target OS kernel cannot maliciously
manipulate the content of a real page.

To force a target OS kernel to carry out page fault handling, SW-core first saves the
value of the CR3 register and the virtual address of the instruction pointer when inter-
cepting the entry of the page fault exception. The CR3 register value is stored at the vir-
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Table 3.1: Page fault handling for each transition of page table entry

PPBA: physical page base address; #PF: page fault exception;
P: present bit; R/W: read/write bit; −: don’t care condition

#PF entry #PF exit SW-core
PPBA P R/W PPBA P R/W handling

0 0 - 6= 0 1 - page allocation
6= 0 1 0 6= 0 1 1 copy-on-write
6= 0 0 - 6= 0 1 - page-in

Table 3.2: Update of page table entry for each page fault exception

PPBA: physical page base address; #PF: page fault exception;
P: present bit; R/W: read/write bit; −: don’t care condition

#PF entry #PF exit SW-core
PPBA P R/W PPBA P R/W handling
6= 0 1 0/1 6= 0 1 1/0 R/W update
6= 0 1 - 6= 0 0 - page-out
6= 0 0 - 0 0 0 page release

tual address of the top-level page table for the currently executing process. Next, SW-core
continues to run the target VM to make the target OS kernel handle the page fault excep-
tion. Finally, when intercepting the exit of a page fault exception, SW-core determines
whether the faulty page needs to be multiplexed by the values saved at the exception
entry. If necessary, it multiplexes the faulty page.

Table 3.1 summarizes how SW-core handles each page table entry transition before
and after page fault handling by a target OS kernel. In allocating a new page, SW-core
allocates a real page and initializes it. The initialized data are not copied from the page
allocated by the target OS kernel, i.e., the dummy page, but from a target file or the
existing real page. In copy-on-write, the manipulation of multiplexing depends on the
transition of the base address of the physical page in the associated page table entry. If
the base address at the exit of the page fault exception is the same as that at the entry,
SW-core updates the attributes of the page table entry. On the other hand, if the base
address at the exit is different from the base address at the entry, SW-core allocates a new
real page. The initialized data on the new real page are copied from the original real
page. The attributes of the page table entry are also updated as they become necessary.
In page-in handling, SW-core restores the real page from the information on physical
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memory regions. The restored real page is determined according to the page table entry
value at the entry of the page fault exception.

The para-virtualization version of Xen enforces read-only control on the bottom-level
page tables. These page tables are validated and updated through page fault handling
by the VMM or function calls to pass control from a VM to the VMM (i.e., hypercalls
on Xen). Table 3.2 indicates how SW-core handles each page table entry update. In an
attribute update, it updates the real page table entry associated with a dummy page ta-
ble entry. In page-out, it updates the information on the physical memory regions in
order to manage the real physical page. In both page-in and page-out, a target OS ker-
nel manipulates dummy physical pages, while SW-core manipulates their corresponding
real physical pages. Therefore, Shadowall can prevent a compromised target OS ker-
nel from maliciously manipulating real physical pages during page-in or page-out. In
page release, the reference count for the target physical page is decremented by 1. If the
reference count becomes 0, SW-core releases information on the target physical regions
corresponding to the target physical page.

Interception of Execution Mode Switching

To switch the user address space of a target program between the user and kernel modes,
SW-core requires interception of the entry and exit of exception and interrupt handling,
and of the entry and exit of system call procedures. For exception and interrupt handling,
in software virtualization, the VMM can intercept their entries to control exceptions and
interrupts occurring on the hardware. On Xen-AMD64, the VMM can also intercept their
exits to control them through hypercalls. For a system call procedure on Xen-AMD64, the
VMM can also intercept its entry to handle the SYSCALL instruction invoking the system
call. On the other hand, as described in Section 2.3.2, a binary patching mechanism is in-
troduced to intercept the exit of a system call procedure that is in place. When sw vconf
is executed, SW-core overwrites the first byte when the system call procedure exits with
the HLT instruction.

3.4.2 Target File Protection

Target Dummy Files

A real target file is managed inside the control VM. When a real target file is created
or updated, the user creates the associated dummy target file by using the mkdummy
command. An ELF executable and or a script such as a shell script, Perl, or Python script
is assumed as the target executable. For an ELF executable, a Linux OS kernel requires
an ELF header, an ELF program header, and a .interp ELF section in order to load
the executable in memory. Therefore, the mkdummy command clears the contents of the
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dummy executable file except for the three pieces of ELF-related data. For scripts, the
script file has to begin with a line of the #! form so that a Linux OS kernel can load the
corresponding script executable in memory. Therefore, the mkdummy clears the contents
of the dummy script file except for the line of the #! form. In addition, the user needs
to deploy the real script executable in the control VM. The content of a target file shared
with an uncontrolled program, such as a libc library file, is not cleared, while the content
of all other target files is cleared.

File Manipulation Emulation

To control an operation on a target file, SW-core interposes at the entry and exit of system
calls related to a file operation. When a control program has manipulated a target file,
SW-core intercepts the system call. Then, it and the control program emulate the inter-
cepted system call. The control program manipulates the real file content corresponding
to invoked system calls. Meanwhile, SW-core communicates with the control program
and transfers the real content between the real file and the memory regions including
its content. Communication between the SW-core and the control program uses mecha-
nisms provided by Xen: the event channel facility, and shared memory between a VMM
and a VM. Although a system call is also executed inside the target VM, a target OS kernel
does not manipulate a real file but a dummy file.

3.4.3 System Call Handling

System Call Arguments

System call arguments include pointers to user space. In Shadowall, a target program
running in user mode manipulates real memory regions, whereas a target program run-
ning in kernel mode manipulates dummy memory regions. To maintain the consistency
of a system call procedure between different execution modes, a target program running
in different execution modes must manipulate the same memory data only during the
system call procedure. To achieve this, SW-core makes the target program share mem-
ory regions manipulated in the system call procedure between a real page and a dummy
page only during the procedure.

To share limited memory regions, SW-core uses information on the user space pointer
of a system call argument. This information includes the number of system calls, and
the numbers and sizes of pointer arguments. Through sw vconf, this information is
registered as part of the target OS information. The proposed system provides a support
tool to automatically generate this information at the time a target OS kernel is generated,
because the information depends on the OS kernel.

When a user space pointer is used as an input argument, SW-core copies the target
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data from a real page to a dummy page at the entry of a system call. In contrast, when a
user space pointer is used as an output argument, it copies the target data from a dummy
page to a real page at the exit of a system call. The target data on the dummy page are
cleared at the exit.

If the user space regions to which system call arguments point are not assigned when
data sharing manipulation starts, SW-core restarts execution of the target VM to make
the target OS kernel handle the page fault for the user space regions in advance. After
page fault handling by the target OS kernel, SW-core intercepts the system call again and
starts data sharing manipulation.

Program Execution Start and End

When a target program starts running through the execve system call, SW-core initial-
izes the information on the memory-mapped regions for the target program. The ini-
tialization uses the memory-mapped information of a process such as the start code
and start data members of an mm struct kernel object. In cooperation with a control
program, SW-core loads the content of the target program executable into memory. For
an ELF executable, the content is loaded in conformity with ELF-related headers. For
scripts, after reading the script file, SW-core loads the corresponding script executable.
The memory-mapped information also includes the executable content by the page. If
SW-core has already managed the content of the real page, it copies the real content to
the initialized page. In addition, the loaded memory regions are multiplexed in confor-
mity with the security policy.

When a process that has already been been controlled invokes execve, SW-core re-
leases the process’ associated the memory-mapped information. According to the se-
curity policy, SW-core determines whether the executed program must be controlled.
If necessary, it initializes the memory-mapped information and multiplexes the loaded
memory regions in the same way as described above.

When a target program invokes the exit group and exit system calls to terminate
execution, SW-core releases information on the memory-mapped regions and physical
memory regions.

Heap and Memory-mapped Regions

When a target program invokes the mmap and brk system calls, SW-core updates the
information on memory-mapped regions. It handles page faults and updates page ta-
ble entries on the basis of this information. When the mmap and mprotect system calls
are invoked, SW-core also updates the read and write permission in the information on
memory-mapped regions. For mmap, SW-core also adds information on whether the file
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referenced by the file descriptor argument is a target file. If it is a target file, in combi-
nation with a target program, SW-core fills in the content of the memory-mapped region
with the real file content. In addition, if memory-mapped regions associated with a target
file have the PROT WRITE and MAP SHARED flags, the content of a memory-mapped re-
gion is written to a real file when a target program invokes the munmap or close system
call.

Signal Handling

On Linux, a signal handler is executed while switching between the user and kernel
modes. An OS kernel saves the current execution context including the argument of a
signal handler, on a user mode stack when receiving a signal. As with system call argu-
ments, when a user mode stack region is multiplexed, Shadowall needs to intercept the
signal handler invocation and transfer shared data between the user and kernel modes.
To intercept a signal handler invocation, which occurs when a target program invokes
the system calls to set up a signal handler, such as sigaction and signal, SW-core
overwrites the first byte of the signal handler in the same way as for interception of a
system call’s exit. When intercepting the signal handler invocation, SW-core copies data
related to the signal handler to the real user mode stack. It manages the signal handler
information for each process.

File Manipulation

To identify a target file by a file descriptor, Shadowall manages information on the file
descriptor associated with a target file. When a target program invokes the open system
call, Shadowall adds the file descriptor information. When a target program invokes the
close system call, Shadowall deletes the file descriptor information. In cooperation with
a control program, SW-core emulates system calls for manipulating file content, such as
read, write, and lseek.

Process Creation

When a target program executes a system call for creating a new process, such as fork,
SW-core duplicates the information on the memory-mapped regions of the calling pro-
cess at the exit of the system call. In addition, the information on the file descriptor and
signal handler are also duplicated. When fork is intercepted at the system call exit, the
entries in the page tables for the new process are mapped to dummy pages. Therefore,
SW-core updates the page tables for the new process so as to make a target program
running in user mode manipulate real pages.
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When a target program executes the clone system call to create a new light weight
process (i.e., a thread), the new process shares the necessary data with the calling pro-
cess. If the CLONE VM flag is set, the memory-mapping information is shared with the
calling process. Similarly, if the CLONE FILES flag is set, the file descriptor information
is shared. If the CLONE SIGHAND flag is set, the signal handler information is shared.

Interprocess Communication

Pipes and message queues are used for interprocess communication. The transferred data
are kept in kernel space. Shadowall protects the data by using a cryptographic technique.
In the pipe case, when a target program invokes the pipe system call, SW-core adds
pipe file descriptors to the file descriptor information. Then, when the target program
transfers data by using the pipe file descriptors, the data are encrypted before transfer
and decrypted afterward. When the msgsnd and msgrcv system calls are invoked in
message queues, the data are again respectively encrypted and decrypted. The current
prototype system encrypts and decrypts variable length data transferred in interprocess
communication through XOR operations by the byte in cipher-block chaining mode.

3.5 Evaluation

We evaluated Shadowall by using two metrics: its effectiveness against malicious oper-
ations on memory and virtual disks, and its performance overhead. In the experiments,
Shadowall ran a hardware platform with two dual-core AMD Opteron 2.8 GHz proces-
sors, 8 GB of RAM, and a 1 Gbps NIC. The control VM and target VM were both config-
ured with 4 CPUs and 1 GB of memory running a para-virtualized Linux OS kernel.

3.5.1 Effectiveness Against Malicious Operations

thttpd Web Server

In the experimental application to the thttpd Web server, its chroot jail function was pro-
tected. First, we ran a thttpd server instance configured with the chroot jail function
enabled. The chroot jail was configured to limit the file system that thttpd could manipu-
late to files under the /var/www directory. The thttpd server in this configuration could
thus not execute a CGI program using a /usr/bin/perl executable.

To simulate an attack against thtttpd, its configuration data on memory and a vir-
tual disk was tampered with so that it could execute the CGI program. To tamper with
the configuration data, we restarted thttpd and forced it to clear the chroot jail variable,
do chroot, to disable the chroot jail function. To modify the do root variable, the GDB
debugger was used to make thttpd stop temporarily just before its chroot jail function
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was checked and the do chroot variable was cleared. As a result of this tampering,
thttpd could then access the /usr/bin/perl executable and execute the CGI program,
even though it started running with the chroot jail function enabled according to its con-
figuration file. Furthermore, to prevent the attack footprint from being detected, records
indicating that thttpd was restarted and run it with its chroot jail function disabled were
deleted from the log file /var/log/syslog.

Next, to demonstrate that Shadowall could prevent the attack described above, thttpd
was controlled with Shadowall. The security policy specified that all the memory regions
had to be multiplexed and that target files had to include the log file /var/log/syslog.
The policy also specified the memory and virtual disk data related to the system logging
utilities, syslogd, because its logs are in /var/log/syslog. Although we attempted to
disable the chroot jail function in the same way as previously described, it could not
be disabled for thttpd running under Shadowall control. Since the code regions on the
dummy page had been cleared, a breakpoint could not be set for when the do chroot
variable was checked. Furthermore, since the real log file was controlled outside the
target VM, its content could not be manipulated.

ClamAV Anti-virus Tool Suite

The virus scanning procedure was protected in an experimental application to the Cla-
mAV anti-virus tool suite [2]. An infected file, mw.exe, was scanned using the command-
line anti-virus scanner, clamscan. First, a virus database file, mw.hdb, including the virus
signature for mw.exe, was created. Second, clamscan was executed to scan the mw.exe
file according to the mw.hdb database. The scanner wrote a program message that mw.exe
was infected to the standard output. To simulate an attack against clamscan, it was
forced, in two ways, to print a false message that mw.exe was not infected. The first
way was by tampering with the memory data related to clamscan. The return value of
the cl scandesc function, representing the scanning results with the GDB debugger,
was modified. The second way was by tampering with the virtual disk data related to
clamscan. The virus signature for the mw.exe file in the mw.hdb database was modified.

Next, we demonstrated that Shadowall could prevent this attack by controlling clam-
scan. The security policy specified that all the memory regions had to be multiplexed and
that target files had to include the mw.hdb database file. Although we attempted to force
clamscan, running under Shadowall control, to print a false message, it instead printed a
true message that mw.exe was infected. As in the case of thttpd above, the return value
of the cl scandesc function on the real page could not be tampered with, not could the
content of the real mw.hdb database file deployed outside the target VM.
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3.5.2 Impact on Performance

Microbenchmarks

To ascertain which components contributed to the cost of the overhead introduced by
Shadowall, we used the microbenchmark programs described below. A system call se-
quence was repeated 10,000 times for each microbenchmark.

getpid: This program repeatedly invoked the getpid system call.

mmap (alloc, write): mmap(alloc) allocated a 4 KB anonymous memory-mapped region
and then immediately freed the allocated memory-mapped region with the mmap
and munmap system calls. For mmap(alloc), Shadowall updated the information
on memory-mapped regions. For mmap(write), which wrote data to the allocated
region. Shadowall also updated the information on physical pages, including the
handling of memory multiplexing due to page fault exceptions.

read (w/ emu, w/o emu): After read(w/ emu, w/o emu) opened a file under the home
directory, it read 1 KB of content from a target file deployed both inside and outside
the target VMs. For read(w/ emu), SW-core and a control program copied the con-
tent of the real file to the real memory page. For read(w/o emu), SW-core copied
the content of the dummy memory page to the real memory page.

write (w/ emu, w/o emu): write(w/ emu, w/o emu) wrote 1 KB of data to a target file
deployed both inside and outside the target VMs. For write(w/ emu), SW-core
and a control program copied the content of the real memory page to the real file.
For write(w/o emu), SW-core copied the content of the real memory page to the
dummy memory page.

fork: A parent process created a new child process with the fork system call. The par-
ent process waited for the child process to terminate with the wait4 system call.
The child process immediately terminated with the exit group system call. Shad-
owall updated the information for controlling the new child, as described in Sec-
tion 3.4.3.

pipe: This program created pipes for interprocess communication with the pipe system
call. After a new child process was created with fork, this program transferred
1 KB of data between the parent and child processes. In addition to updating the
information for controlling the new child, Shadowall encrypted and decrypted the
data transferred between the parent and child processes.

The execution time was also measured for each micorobenchmark running on a Xen
VMM (Xen) and a Linux OS kernel (Linux), and the measured times waere compared
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Figure 3.6: getpid microbenchmark results on Shadowall, Xen, and Linux
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Figure 3.7: mmap (alloc) mi-
crobenchmark results on Shadowall,
Xen, and Linux
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Figure 3.8: mmap (write) mi-
crobenchmark results on Shadowall,
Xen, and Linux

with those for Shadowall. The Linux platform was configured with 1 GB of memory.
For Shadowall, the execution time was also measured for each microbenchmark running
without memory or virtual disk protection. For all the processes running on the target
VM, Shadowall interposed the handling of page fault exceptions, page table updates, and
system call procedures.

The experimental results for the microbenchmarks are shown in Figures 3.6, 3.7, 3.8, 3.9,
3.10, 3.11, and 3.12. The values in the figures are the execution times for each system call
sequence. The “target” and “non-target” rows for Shadowall in the figure correspond to
the respective results for each microbenchmark running with and without memory and
virtual disk protection. The “read(w/ emu)” and “write(w/ emu)” columns only indi-
cate the results for the “target” of Shadowall because the real file was manipulated in that
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Figure 3.9: read microbenchmark results on Shadowall, Xen, and Linux
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Figure 3.10: write microbenchmark results on Shadowall, Xen, and Linux
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Figure 3.11: fork microbenchmark re-
sults on Shadowall, Xen, and Linux
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Figure 3.12: pipe microbenchmark re-
sults on Shadowall, Xen, and Linux
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case.
For “target” programs, the overhead incurred by emulation of target file operations

(“read(w/ emu)” and “write(w/ emu)”) was higher than that incurred by memory ma-
nipulation (“mmap”) and encryption/decryption operations (“pipe”). The factors induc-
ing this higher overhead were considered to be the context switching between VMs and
the data transfer between VMs. One factor in the higher overhead incurred by “getpid”
was considered to be the interposition of system calls, which had more execution time
impact on “getpid” than on the other microbenchmarks because system call invocations
account for a large portion of its execution.

Application Benchmarks

Shadowall was expected to control target applications with less performance impact than
on the microbenchmark programs. To confirm this, we used the thttpd and Apache Web
servers and the ClamAV anti-virus tool suite as target programs. The security policy for
each application specified that all memory regions had to be multiplexed and the target
files had to include the applications’ configuration files. As with the microbenchmarks,
the performance of Shadowall was compared with that of a Xen VMM (Xen) and a Linux
OS kernel (Linux), where the latter was configured with 1 GB of memory.

The throughput for Web services was measured using the ApacheBench benchmark
tool for the thttpd and Apache servers. ApacheBench was launched on a separate physi-
cal machine that had an Intel Pentium 4 3.0 GHz processor with hyper-threading enabled,
1 GB of RAM, and a 1 Gbps NIC. This machine was connected to the physical machine
running Shadowall via a gigabit network, and the two physical machines were deployed
within the same LAN. ApacheBench issued requests to fetch two kinds of static content
(1 KB and 100 KB files) and dynamic content (CGI). The CGI program, using a Perl script,
showed the computing environment of the physical machine on which Apache ran. The
security policy for CGI specified that the target files had to include the script file and the
Perl executable. The number of requests was configured as 128. Whereas one process
handled all the requests in thttpd, multiple processes handled the requests in Apache.

The clamscan and clamd scanners for ClamAV were also used. The clamd program is
an anti-virus daemon for handling scanning requests sent from the clamd client, clamd-
scan. While clamscan read the virus database for every request, clamd only read the virus
database when it starts running or receives an update request from a user. The anti-virus
tools were used to scan 15 files, including five infected files. The clamscan, clamd, and
clamdscan programs were specified as target programs as was the virus database file.
First, the virus database file was created from the five infected files. Then, the virus
database was deployed inside the control VM and used to scan for viruses. File opera-
tions on the database file inside the control VM were emulated.

Figures 3.13, 3.14, and 3.15 indicate the experimental results for the Web servers and
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Figure 3.13: thttpd Web server throughput on Shadowall, Xen, and Linux
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Figure 3.14: Apache Web server throughput on Shadowall, Xen, and Linux
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Figure 3.15: Virus scanning times on Shadowall, Xen, and Linux

anti-virus tool suite. As expected, Shadowall could control the applications with lower
overhead than that incurred by controlling the microbenchmarks. The results for the
application benchmarks also indicate that Shadowall had a reduced impact on system
performance, relative to that of the original Xen. For the static content processed by the
Web servers and clamd, the overhead introduced by Shadowall was smaller than that
for the CGI and clamscan cases. The main factor in the larger overhead incurred by
CGI services was that, after the script file was read, the Perl executable was loaded into
memory for every request. Meanwhile, the main factor in the larger overhead incurred by
clamscan was that the target files, such as the configuration files and the virus database
file, were read at the time of initialization.

Although the proposed memory multiplexing scheme doubled the physical memory
use of the applications, the extent of the multiplexed memory region should be reducible
by applying demand paging and shared memory between threads. To explore this pos-
sibility, the impact on the maximum amount of multiplexed memory and the number of
current processes after the time of initialization was also measured for the server pro-
grams: thttpd, Apache, and clamd. The number of multiplexed 4 KB pages was about
240 for thttpd and clamd, and about 1,600 for Apache. Whereas the number of current
processes was only one for thttpd and clamd, Apache consisted of 56 threads in four
processes. We believe that users can accept these numbers of multiplexed pages.

In summary, although the performance of the target programs was degraded more
than when they were run on a Linux OS kernel in this evaluation, Shadowall could pro-
tect the memory and virtual disk data related to these programs.
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3.6 Related Work

3.6.1 Data Protection at VMM and Hardware Layers

There have been VMM-based systems [26, 91, 119] that use memory multiplexing schemes
to protect the memory data in user space. These previous systems require dedicated pro-
grams or commands for controlling a target program deployed inside a target VM. In
contrast, Shadowall does not require adding any dedicated programs because it executes
control from outside the target VM. Overshadow [26] and SP3 [119] use cryptographic
techniques to provide logically different views of the target program page to different
execution modes, whereas Shadowall provides physically different views of the target
program page to different execution modes. Although this increases the physical mem-
ory use, the proposed memory multiplexing scheme does not impose the extra overhead
incurred by cryptographic schemes, which add the costs of encryption and decryption
operations. Furthermore, for a target VM with multiple virtual CPUs, a decrypted page
must be manipulated exclusively in order to prevent its content from being leaked and
tampered with. As a result, cryptographic schemes also introduce overhead due to their
exclusive operations for decrypted pages. Unlike the previous systems, Shadowall can
also specify partially multiplexed memory regions. Rosenblum et al. [91] provided dif-
ferent views that physically depend on instruction and data fetches, whereas the memory
multiplexing scheme here depends on the execution mode. As with its scheme for mem-
ory data protection, Overshadow encrypts its content for virtual disk protection, whereas
Shadowall manages and controls its content outside target VMs. Neither SP3 or Rosen-
blum et al. [91] provided a scheme for virtual disk protection.

XOM [66] is a trusted processor architecture that protects the code and data regions
of a target program by using dedicated instructions and cryptographic operations. To
protect a target program running on top of XOM, a user must use a XOMOS [65], i.e., an
OS dedicated to running on top of XOM.

Several existing systems [41, 55, 100, 103, 115] make a target program run outside a
target VM by using a VM isolation scheme. Unlike these existing systems, Shadowall
runs a target program inside a target VM but its memory and virtual disk data are con-
trolled from outside the target VM. Proxos [103] executes trusted system calls in a trusted
VM while executing untrusted system calls in an untrusted VM. It requires modifying the
source code of not only an OS kernel but also a target program. In contrast, Shadowall
supports a target program without requiring any changes to its source code. Proxos’ se-
curity policy specifies which system calls are trusted, whereas Shadowall’s security pol-
icy specifies which parts of memory regions and which files are protected. Nizza [100]
is a microkernel-based trusted architecture that isolates security-critical software compo-
nents such as a key authentication mechanism from an untrusted OS. Like Proxos, Nizza
requires modifying the source code of a target program and of programs that cooper-

83



ate with the target program. VPFS [115] is a private file system based on a microkernel,
which protects sensitive files stored in an untrusted OS. A sensitive application running
in a trusted VM manipulates the sensitive files through a VFS server. Unlike Shadowall,
VPFS requires modifying the source code of the sensitive application to use the VPFS
client API. To detect stealthy malware outside an untrusted VM, VMwatcher [55] period-
ically performs integrity checks on memory and virtual disk data , whereas Shadowall
controls data manipulation when operations occur.

To protect sensitive files such as shared libraries inside an untrusted VM, SVFS [123]
controls access to sensitive files from outside an untrusted VM. It provides access con-
trol mechanisms at the file system layer, whereas Shadowall protects the content of a
target file by controlling system calls. Since SVFS transfers sensitive file data by using
an NFS client, a compromised OS kernel in an untrusted VM can manipulate such con-
tent maliciously. Shadowall, on the other hand, can prevent malicious manipulation by
a compromised OS kernel because SW-core and the control program running in a control
VM transfer the content of a target file between memory and a virtual disk.

3.6.2 Data Protection at OS and Application Layers

Various existing security systems run at the OS and application layers to enhance the se-
curity of applications at process granularity. PeaPod [84], using OS-level virtualization,
controls the behavior of an untrusted program by providing isolation between the pro-
tection domains allocated by the process and access control between protection domains.
Janus [45] and Systrace [86] are sandboxing systems that control system calls invoked by
untrusted programs according to their security policies. Solitude [54] is an isolation and
recovery system based on a file system at the application layer. According to a security
policy, Solitude provides an execution environment bound to a name space based on a
file system for untrusted programs. None of these various security systems can prevent
attacks from untrusted programs that are not under the systems’ control. Tripwire [60]
periodically checks file-system integrity, but unlike Tripwire, when operations for mem-
ory and virtual disk data occur, Shadowall controls these operations. SELinux [52] and
LIDS [4] are security-enhanced OSs that enforce mandatory access control to protect their
execution environments. Since security systems running at the OS and application layers
are managed and controlled by an OS kernel, the compromised OS kernel and privileged
programs can evade and subvert data protection mechanisms provided by the security
systems.
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3.7 Summary

We have proposed Shadowall, a security system that protects memory and virtual disk
data relevant to target programs specified by the user, from outside the target VMs. Even
if an OS kernel or a privileged program is compromised in a target VM, Shadowall pre-
vents the compromised program from leaking and tampering with the memory and vir-
tual disk data related to the target programs. Shadowall hides this data from other pro-
grams, including an untrusted OS kernel running inside the same target VM. To protect
memory data in user space, the VMM multiplexes physical pages to provide different
views to different execution modes. To protect virtual disk data, a separate trusted VM
manages files related to an untrusted program. When a target program invokes a system
call involved in file operations, the VMM emulates the invoked system call in coopera-
tion with the trusted VM. For each target program, the user applies a security policy to
specify which parts of memory regions and which files are protected. Experimental eval-
uation demonstrated that Shadowall successfully disabled synthetic attacks that attempt
to modify the memory and virtual disk data of existing application programs.

The following are current avenues of exploration for future work. First, the imple-
mentation of Shadowall’s memory protection mechanism, through which target pro-
grams execute new programs, should be improved, since the experimental results for
CGI Web throughput showed that the overhead was significant larger in this case than
in other cases. In particular, program loading should be optimized. In the current naive
implementation, whenever a program is launched by a target program, Shadowall reads
the binary data from a separate VM, the control VM. A caching mechanism should thus
be introduced for this binary data. Another topic work for future work is to maintain
compatibility with legitimate programs. The current prototype system does not permit
even legitimate programs (e.g., security systems) to manipulate “real” data involved in
untrusted programs. To overcome this limitation, the security policy could be extended
so that only particular programs specified by the user can manipulate “real” data related
to untrusted programs but protected by Shadowall. Finally, the protection of register val-
ues when switching the execution mode is under investigation in order to enhance the
proposed data protection scheme.
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Chapter 4

Application-aware Control of Kernel
Behavior

4.1 Motivation

Kernel-level malware using rootkits, referred to as malicious kernel-level rootkits, poses se-
rious threats in two ways. First, such malware attacks impact system-wide behavior and
sensitive or critical data. For example, malicious kernel-level rootkits attempt to tamper
with OS kernel code and data to install backdoors. Second, many malware programs
can subvert or circumvent anti-malware software in order to hide their activities and
presence. Various systems have been proposed for detecting [59, 73, 74] and prevent-
ing [43, 62, 68, 88, 99, 114] these attacks.

However, these existing systems have three drawbacks: strict limitation on kernel ex-
tensions, evasion of control and protection mechanisms, and performance degradation.
Regarding strict limitation on kernel extensions, Patagonix [68] and NICKLE [88] per-
mit only authenticated kernel code to be executed in untrusted VMs. Loadable kernel
modules are often used to extend the functions of a Linux OS kernel without forcing it to
restart. To get such extensions recognized as legitimate by Patagonix and NICKLE, how-
ever, users must register their loadable kernel modules in advance. Kruegel et al. [62]
verified the validity of loadable kernel modules at load time. Certain existing security
systems, however, such as sandboxing and anti-virus systems, have utilized loadable
kernel modules that monitor and control processes and files [34, 42] in manners similar
to those used by malicious kernel-level rootkits. Therefore, it can be difficult to distin-
guish between malicious kernel modules used by kernel-level rootkits and legitimate
ones used by security systems. Consequently, Kruegel et al.’s protection scheme could
mistakenly regard a legitimate loadable kernel module as illegitimate.

As for evasion of control and protection mechanisms, prior systems [55, 68, 73] per-
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form runtime checks periodically or on demand. The difficulty in subverting or evading
systems based on periodic runtime or on-demand checks [55, 68, 73] depends on the in-
tervals of these checks. A longer interval induces lower overhead but also increases the
chances of timing attacks.

Lastly, there are three problems that degrade performance. First, unlike self-contained
malicious programs at the user level, malicious kernel-level rootkits are not used alone
but in cooperation with other malicious programs. Therefore, most systems [88, 111, 121]
use a CPU emulator to control and analyze behavior and data flow through system-wide
tainting and slicing techniques and control at the granularity of a processor instruction.
Second, another group of prior systems [43, 99] based on hardware protection mecha-
nisms uses non-executable (NX) bits or write-protect bits, on the Intel and AMD archi-
tectures, for each page. This coarse-grained control at page granularity frequently causes
unnecessary page faults when controlled and uncontrolled data are mixed in the same
page. Finally, runtime checking at the kernel level generally imposes much higher over-
head than that at the user level, since the kernel space is shared among all processes.
Consequently, runtime checking does not occur in the context of processes to be con-
trolled but in the context of all currently running processes.

In this chapter, we present ShadowXeck, a system for controlling only the behavior of
target OS kernels associated with improving existing systems in the two ways described
above. The proposed system does not confine the functions of kernel extensions inside
target VMs. These functions instead apply to all currently running processes except for
those to be controlled inside the target VMs. Furthermore, this system reduces perfor-
mance degradation because it performs control only at the kernel context involving the
target programs, in accordance with a security policy. In other words, ShadowXeck does
not interpose by controlling kernel behavior involved in programs that are not to be con-
trolled.

One usage scenario is to control programs that are vulnerable to attack by kernel-
level rootkits (e.g., system utility programs such as ps and ls). Another usage scenario
is to complement security systems that provide security for application programs at the
user level. For example, although ShadowVox, presented in Chapter 2, can control the
entry and exit of system calls, it cannot control system call procedures in kernel mode.
In cooperation with ShadowXeck, ShadowVox can reduce the trusted computing base
(TCB), because ShadowXeck ensures the execution of legitimate kernel code and the use
of a valid system call table. In contrast, ShadowXeck is inadequate for controlling OS ker-
nel behavior for all processes. Examples include controlling a keyboard interrupt handler
and a process scheduler. Control of the behavior of all processes does not take advantage
of ShadowXeck’s two key features, i.e., control with no restriction on kernel extensions,
and lower performance overhead.

The rest of this chapter is organized as follows. In Section 4.2, we describe the threat
model. Section 4.3 presents the design of the proposed system, followed by a detailed
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description of a prototype implementation in Section 4.4. Sections 4.5 and 4.6 discuss
an evaluation of the system and related work, respectively. Finally, we summarize the
chapter in Section 4.7.

4.2 Threat Model

We assume that attackers have the ability to modify the control flow of target OS kernels
by tampering with their code and data through kernel-level malware. A large amount
of kernel-level malware attempts to modify an OS kernel’s control flow. Among 26 ex-
amples of real-world, kernel-level malware on Linux, including PhalanX and 25 others
shown by Petroni et al. [74], 25 (96%) have functionality for modifying the control flow
of OS kernels. In the threat model for ShadowXeck, the main goals of attackers are to
hide their presence and activities from system utility programs, such as ps and ls com-
mands, to induce leakage of system and personal confidential data manipulated by priv-
ileged programs, and to disable the protection mechanisms of security systems, such as
sandboxing and intrusion detection systems, on the victimized VM.

Here, kernel-level malware is assumed to be embedded using loadable kernel mod-
ules and special devices such as /dev/kmem and /dev/mem. Attackers can accomplish
this in the following two ways.

• An attacker tampers with read-only data in arbitrary memory locations by grant-
ing malicious write permission for this data. For example, such data includes code
regions and the system call table on Linux. The attacker accomplishes this by set-
ting the R/W bits of the page table entry for read-only regions or by creating new
memory mappings to these regions.

• An attacker tampers with values in registers and writable data on memory in or-
der to modify the control flow determined by these values at runtime. The val-
ues are used by indirect jumps, such as indirect CALL and JMP instructions, at the
processor-instruction level. From the perspective of a higher level, e.g., programming-
language level, this kind of attack includes tampering with function pointers re-
lated to a virtual file system (VFS) or a /proc file system. This kind of attack
belongs to the category of kernel object hooking (KOH) [39].

ShadowXeck is a security system for ensuring that the behavior of target OS kernels
in the target program context is legitimate, even if kernel-level malware resides in the tar-
get VM. In other words, ShadowXeck is not a security system for detecting the existence
of kernel-level malware, getting rid of it, and ensuring the safety of OS kernel behavior.
Instead, it allows target VM users to extend OS kernels under the condition that they do
not modify write-protected regions in the kernel space. Hence, malicious kernel-level
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rootkits could potentially be inserted in target VMs. ShadowXeck cannot prevent a mali-
cious kernel-level rootkit from subverting target application programs using in-OS kernel
functions.

The VMM and a special VM cooperating with the VMM are the trusted computing
base (TCB). Moreover, ShadowXeck depends on process management data for the target
OS kernels, because it identifies the launch, termination, and process creation of a target
application program by using the VM introspection technique described in Section 2.3.1.
For example, an attacker can modify process management data involved with target ap-
plication programs in order to bypass identification by ShadowXeck. However, execu-
tion of these target application program without ShadowXeck’s control can be thwarted
through combination with Shadowall, because Shadowall does not load target applica-
tion program data into memory.

Here, we do not consider detection and prevention of tampering with the data struc-
tures managed by OS kernels to conceal malicious presence and activities [59, 114]. This
kind of attack belongs to the category of direct kernel object manipulation (DKOM) rootk-
its [50]. ShadowXeck does not focus on corruption of lists of current processes and load-
able kernels. This kind of attack also includes tampering with lists of running process,
such as the run queue in Linux and callback functions for handling an interrupt. Further-
more, ShadowXeck does not focus on tampering with return addresses on kernel stacks,
such as in return-to-libc attacks. Rather, ShadowXeck can be used in combination with
existing techniques [32, 64] to mitigate this kind of threat.

In addition, improving the security of target programs at the user level is outside the
scope of ShadowXeck. However, the behavior of target programs can be controlled using
ShadowVox presented in Chapter 2. Furthermore, user space memory and virtual disk
data can be protected using Shadowall presented in Chapter 3.

4.3 Design

4.3.1 Overview

Figure 4.1 shows the structure of ShadowXeck. A user operates ShadowXeck through
control command utilities, while the security policies for each target program are man-
aged in the control VM. ShadowXeck has three types of components:

• In-VMM component (SX-core): This component prevents adversaries from corrupt-
ing read-only regions. In addition, it controls the behavior of target OS kernels for
each target program by using target OS information.

• Control command utilities: These includes commands for providing SX-core with tar-
get OS information and starting control of the behavior of the target OS kernels.
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Figure 4.1: ShadowXeck: system for controlling the behavior of OS kernels at the contexts
of target application programs

The utilities also include the commands for generating the target OS information
on process management structures and system calls, as described in Section 2.3.1,
and template security policies, as described in Section 4.3.4.

• Control daemon, control program: The control daemon handles requests from a control
command. It also launches a control program for each target program when the
target program starts. The control program provides security policies to SX-core
and writes execution logs received from SX-core to a file.

With regard to protecting read-only regions, ShadowXeck permits target VM users to
use the kernel extensions without departing from the designs of target OS kernels. For
example, the system does not permit modification of data that were originally read-only,
such as data in code regions.

With regard to controlling indirect jumps, ShadowXeck does not control them when
kernel-level malware tampers with a value in a register or at a memory location where a
destination address is stored. Rather, ShadowXeck conforms with the security policy in
place when indirect jumps are executed.

Control of indirect jumps is based on the target process context. To determine whether
the current process context is involved with a target program, ShadowXeck uses informa-
tion on the design of a target OS kernel. This information includes the process manage-
ment data structure and system calls. Hence, a Linux OS kernel was chosen as the target
OS kernel because Linux can acquire this information. UNIX-like OSs are also considered
applicable in ShadowXeck.
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4.3.2 Controlling OS Kernel Behavior

To control the behavior of target OS kernels, we have developed two runtime protection
schemes. First, ShadowXeck prevents illegitimate manipulation of each page table in-
side the target VM at the VMM layer to prevent tampering with read-only data, such as
code regions and the system call table. Second, ShadowXeck controls the control flow
of a target OS kernel determined at runtime. This corresponds to the control of indi-
rect jump instructions at the assembly-language level, such as indirect CALL and JMP
instructions whose control is transferred according to the values of a register or values
stored on writable memory regions. In other words, this control approach corresponds
at the program-language level to function pointers and switch statements in the C lan-
guage. Whereas the scheme for protecting read-only data are applied for each target OS
kernel, the scheme for controlling indirect jump instructions is applied for each target
program.

Approaches for controlling indirect jump instructions at the VMM layer are primarily
classified into two categories according to their memory access contexts: instruction con-
text, data context. Approaches based on instruction context control when indirect jumps
are executed, while approaches based on a data context control when destinations are
written and read. The proposed system belongs to the category of approaches based on
instruction context. ShadowXeck intercepts indirect jump instructions issued by a target
OS kernel. In the instruction context, there is another possible approach that makes a
target OS kernel render different views according to the memory access context, in the
same way as the system developed by Rosenblum et al. [91] and NICKLE [88]. This ap-
proach multiplexes memory regions including indirect jump destinations, and it renders
different physical pages according to whether memory manipulation is performed in an
instruction or data context. However, this approach also requires synchronizing data
between physical pages associated with the same virtual address, since this will also in-
clude data, except for indirect jump destinations, that do not require control. In fact, the
Linux OS kernel, used in the evaluation described here, allocates function pointers for
operating on /proc file system entries as indirect jump destinations and run queues as
data that are frequently updated but are not targets in the same physical page. Further-
more, indirect jump destinations also exist in data that are dynamically allocated in the
kernel space, such as function pointers in the file and sock kernel objects. Dynamically
allocated data must be multiplexed when they are allocated and released, in addition to
the above synchronous processes.

The approaches based on data context are divided into two types. One type uses a
hardware memory protection mechanism [82, 99]. This type of approach clears the R/W
bits in a page table entry associated with pages including indirect jump destinations in
order to prohibit write operations to those pages. However, this approach performs con-
trol at page granularity as with the approach based on memory multiplexing. Therefore,
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Figure 4.2: Multiplexing kernel address space including indirect jump instructions

redundant interceptions are also frequently caused by write operations to data that are
co-located with indirect jump instruction destinations but not with targets. In the sec-
ond type of approach, a target OS issues write and read instructions to indirect jump
destinations [74, 112]. However, this approach causes redundant interceptions, i.e., it
also intercepts instructions that are not indirect jump instructions. Furthermore, these
approaches require the source code of a target OS kernel in order to collect indirect jump
destinations through data flow analysis of the OS kernel.

4.3.3 Application-aware Control

Multiplexing Kernel Address Space

To reduce the performance degradation of processes that are not to be controlled, Shad-
owXeck renders different code regions, depending on the process context at the kernel
level. To control indirect jump instructions issued only in the context associated with the
target program, it multiplexes physical pages that contain indirect jump instructions in
the kernel space, as shown in Figure 4.2. The VMM translates virtual addresses inside
a target VM (gVA) into physical addresses in physical memory, since it needs to control
Memory Management Unit (MMU) operations on the physical machine. This multiplex-
ing at the VMM layer not only prevents kernel-level malware residing in a target VM
from disabling this but also is transparent to a target OS kernel; that is, ShadowXeck pro-
vides different views to a target OS kernel without making the OS kernel aware of the
address translation. ShadowXeck needs to intercept indirect jump instructions to control
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them when they are issued by a target OS kernel. Therefore, dynamic binary instrumen-
tation, described in Section 2.3.2, is applied to force generation of an exception when a
target OS kernel issues an indirect jump instruction.

Indirect jump instructions are controlled in the context of all processes, rather than
only that of the target program, in two ways: for flexibility for kernel extensions, and for
system performance. First, one goal is to permit target VM administrators to use kernel
extensions, such as loadable kernel modules, without any harm to the original design
of a target OS kernel. Whereas ShadowXeck enables target VM administrators to utilize
kernel extensions flexibly, unlike with previous approaches [68, 88], the behavior of a
target OS kernel associated with a target program is controlled according to the security
policy. Second, ShadowXeck reduces the performance degradation incurred by control-
ling indirect jump instructions, since its control is executed only in the context of a target
program.

The kernel address space is partially multiplexed, in that only physical pages includ-
ing indirect jump instructions in the kernel space are considered. A Linux OS kernel
shares the kernel address space containing code and data regions among all current pro-
cesses. The kernel address space is roughly classified into two regions: write-protected
and writable regions. Multiplexing can be performed separately for each region because
the regions are generally aligned with a page boundary 1. Indirect branch instructions
exist in the write-protected regions. ShadowXeck ensures consistency among the differ-
ent physical pages that depend on the current process context, since data in the write-
protected regions are not updated dynamically. The kernel address space also contains
writable shared data, i.e., data that must be shared across the execution of all processes
and are dynamically updated, such as run queues and process lists. If the whole ker-
nel address space of a target program was multiplexed, it would require ensuring the
consistency of the writable shared data, since they exist in different physical pages. Par-
tial multiplexing enables ShadowXeck to intercept indirect jump instructions issued by
a target OS kernel without an extra mechanism to maintain such consistency of writable
shared data. The proposed multiplexing scheme has an additional advantage of reducing
the number of multiplexed physical pages.

The Linux OS kernels for x86 and x86-64 architectures use large pages of 4 and 2 MB,
respectively, to manage the kernel address space. The amount of multiplexed memory,
however, can be reduce because the VMM manages the address translation to physical
pages. To achieve this, ShadowXeck manages the address space of a target OS kernel
with a smaller 4-KB boundary 2.

1Linux version 2.6.18 and older kernels are not aligned with page boundaries
2The original Xen 3.0.3 manages the kernel address space running on a VM with a 4-KB aligned page.
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Leveraging Information on OS Kernels

To control indirect jump instructions according to the process context of a target OS ker-
nel, ShadowXeck uses three types of information, on process management, system calls,
and indirect jump instructions. This information is collectively referred to as target OS in-
formation. As described in Section 2.3.1, information on process management and system
calls is used to identify when a target program starts and generates a new process, and
to intercept the entry and exit of system calls at the VMM layer. Information on indirect
jump instructions includes the instructions themselves and the memory locations where
they are executed.

4.3.4 Security Policy

Control of Indirect Branch Instructions

ShadowXeck uses security policies to control indirect jump instructions issued by a target
OS kernel. A security policy is described by the administrator of a target VM or of the
control VM, which is a trusted, separate VM. The challenge in describing a security policy
is to identify legitimate branch destinations for each instruction. It is not straightforward
for users who do not know enough about the internal structure of an OS kernel to deter-
mine whether an issued instruction is legitimate. Furthermore, the virtual addresses of
branch destinations depend on the binary image of an OS kernel.

To overcome this challenge, ShadowXeck provides two operation modes on Shad-
owXeck: profile and control. In the usage scenarios here, the user first runs a target pro-
gram in profile mode to log information on indirect jump instructions. This information
includes the following:

• the current instruction pointer;

• the virtual address of a branch destination (destIP); and

• information on whether the virtual address of a branch destination is stored in a
register or on memory. If it is stored on memory, the information also includes the
virtual address of the branch source (srcIP).

In profile mode, the user needs to repeat each operation more than once for a target
program, such as by executing commands and sending requests to a server program be-
cause destIP and srcIP can differ for each operation. Next, the user describes the security
policy for the target program according to the above information obtained from execu-
tion in profile mode. Finally, the user runs the target program in control mode to control
the behavior of the target OS kernel. During execution in control mode, if the current
security policy regards a branch instruction as illegitimate, when in fact it is legitimate,
the user needs to update the security policy accordingly.
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PolicyFile → defAction: Action+ IndirectSpec+
IndirectSpec → currIP: virtAddr CondAct+
CondAct → (destIP:(virtAddr | *), memLoc:(virtAddr | *),

action: Action+)
Action → allow | fix(virtAddr) | raiseException | log

Figure 4.3: Security policy syntax in ShadowXeck

Syntax

Figure 4.3 lists the security policy syntax. A security policy specifies how each indirect
jump instruction should be controlled for different branch sources and destinations.

The defAction: field at the top level is followed by “Action”, an action taken for
indirect jump instructions that do not match any pattern. The rule part of “IndirectSpec”
specifies pairs consisting of a condition and a response action (“CondAct”) for an individ-
ual indirect jump instruction whose virtual address is specified by the part following the
currIP: field. The condition part describes pairs consisting of the virtual addresses of a
branch source and destination (the virtAddr sections following memLoc: and destIP:).
The * in the condition part represents the case of being true at any time. When both
virtAddr sections are specified by *, “CondAct” represents the specification for indirect
jump instructions that do not match any condition.

(“Action”) specifies how an issued indirect jump instruction should be controlled.
allow permits execution of the indirect jump instruction to continue. log logs infor-
mation on the indirect jump instruction and continues its execution. fix means that
the indirect jump destination is fixed with a specific virtual address (virtAddr), whereas
raiseException means that ShadowXeck forces a general purpose exception immedi-
ately after restarting execution of the indirect jump instruction.

Generation

A ShadowXeck user describes security policies for each target program by using logs
generated in profile mode. However, it is not easy even for users who are familiar with
OS kernels to describe appropriate security policies corresponding to each execution log.
To reduce the time and effort in description, ShadowXeck provides the following two
command utilities.

• mkpolicy: This is a command for generating a policy template file. The user gives
three input arguments and one output argument. The input arguments are the
name of the execution log file and the response actions for “defAction” and “Con-
dAct”. The output argument is the name of the policy template file. When a branch
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destination is stored in a register, virtAddr for memLoc is described as * in the policy
rule. Furthermore, when the branch destinations for a pair of currIP and destIP
are stored in a dynamically allocated memory region, the virtAddr parameters for
memLoc are likely to be different. In this case, they are replaced with *, and their
elements are fused together to form one policy rule. The user manually updates the
rules in a generated policy template, if necessary.

• readlog: This is a command for displaying the data in the execution log given
as an input argument. This information includes the three components of indirect
jump instructions, as described in Section 4.3.4. The command shows these com-
ponents in order of interception or of a statistical summary for each indirect jump
instruction. To show them comprehensively, data based on the virtual addresses
included in execution are translated into a log output based on symbols such as
function names. The symbol-based output, which is more comprehensive than the
output based on virtual addresses, should help in describing security policies.

4.3.5 Usage

Control Commands

The following commands are provided for controlling the behavior of target OS kernels.

• mkindirect: This is a command for generating information on indirect jump in-
structions, which is part of the target OS information. The generated information
includes the virtual addresses of memory locations where these instructions are
issued.

• sx vconf: This is a command for providing the SX-core with three types of target
OS information: process management structures, system calls, and indirect jump
instructions. Whereas information on indirect jump instructions is generated us-
ing mkindirect, information on process management structures and system calls
is generated at the time of creating a target OS kernel image, as described in Sec-
tion 2.3.1. SX-core manages the target OS information by using a hash value gen-
erated from the binary image of the target OS kernel. Consequently, the target OS
information can be shared among target VMs that leverage the same binary image
of an OS kernel.

• sx vcntl: This command makes SX-core correlate a target VM with target OS in-
formation that has already been provided by sx vconf. This command should be
executed by the target VM. The protection mechanism for write-protected regions
becomes active after execution of this command.
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[cvm] $ mkindirect targetOS.img output indirect.txt
[cvm] # sx vconf targetOS.img \

process info.txt syscall info.txt output indirect.txt
[cvm] # sx vcntl 1 targetOS.img
[cvm] # sx vstart profile 1 target prog output prof.log
[cvm] $ mkpolicy output prof.log log allow policy.txt
[cvm] # sx vstart control 1 target prog policy.txt

Figure 4.4: Usage example in ShadowXeck

• sx vstart: This is a command for controlling target programs in profile or con-
trol mode. The command should be executed by the target program. The control
mechanism for indirect jump instructions becomes active after execution of this
command.

Usage Example

Figure 4.4 shows an example of the flow that continues until control using control mode
starts. The target program in this example is target prog running on a target VM
whose ID is 1.

The user executes three commands before starting profile mode. First, the user gen-
erates output indirect.txt, the file including information on indirect jump instruc-
tions, by issuing mkindirect with targetOS.img, the file with the target OS kernel
image, as the input argument. Second, the user issues sx vconf to provide SX-core with
the target OS information on targetOS.img. The target OS information consists of three
files containing information on process management structures (process info.txt),
system calls (process info.txt), and indirect jump instructions (output indirect.txt).
Third, sx vcntl links the target VM to the target OS information that has already been
provided by sx vconf. The user gives sx vcntl the target VM ID (1) and targetOS.img,
corresponding to the target OS kernel, as input arguments.

Henceforth, the user starts controlling the target VM in profile and control modes.
First, the user runs ShadowXeck in profile mode by using sx vstart to gather infor-
mation on issued indirect jump instructions. sx vstart is given three input arguments
and one output argument: the operation mode, profile; the target VM ID, 1; the name
of the target program, target prog; and the name of the file for logging issued indirect
jump instructions, output prof.log. After finishing the execution in profile mode, the
user executes mkpolicy to create policy.txt, the file containing the policy template
for target prog, and updates policy.txt appropriately. The three input arguments
for mkpolicy are output prof.log; log, the response action when any policy con-
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dition is not met, and allow, the response action when one of the policy conditions is
met. Finally, the user starts operation in control mode by executing sx vstart, with
control, the target VM ID, target prog, and policy.txt as inputs. Afterward,
whenever target prog is executed in the target VM, ShadowXeck controls the behav-
ior of the target OS kernel associated with it. ShadowXeck provides a mechanism for
controlling indirect jump instructions with sx vstart in control mode, while enabling
the protection mechanism for write-protected regions at the time of executing sx vcntl.

4.3.6 Advantages

The proposed system has the following advantages.

Difficulty in disabling and abusing protection mechanisms: SX-core prevents corrup-
tion write-protected data and controls indirect jump instructions issued by target
OS kernels, and it runs at a higher privilege level than do the target VMs. Fur-
thermore, the target OS information and security policies are managed, and control
commands are executed, in the control VM isolated from the target VMs. Conse-
quently, if an attacker hijacks a target VM, the attacker cannot subvert the protec-
tion mechanisms at the VMM layer or abuse control commands and tamper with
security policies in the control VM.

Optimization of controlling the behavior of OS kernels: The system controls the behav-
ior of only target OS kernels in the context associated with target programs, because
of the partial multiplexing in the kernel space. Furthermore, the control is based not
on the hardware memory protection mechanism but on specific instructions, i.e.,
indirect jump instructions. As a result, there are no redundant page faults caused
by control that is not based on the hardware memory protection mechanism. The
multiplexing scheme is also useful from the perspective of hiding memory regions
patched to force SX-core to intercept indirect jump instructions when the target OS
kernel is runs in a context other than those of the target programs.

Automatic generation of information on OS kernels: Information on write-protected data
and indirect jump instructions depends on binary images of the target OS kernels,
as does information on process management structures and system calls. The sys-
tem provides commands to dispense with the time and effort of generating the in-
formation on write-protected data and indirect jump instructions. Users need only
issue these commands for the file of the target OS kernel image.

Maintenance of binary compatibilities: The system does not require users to modify
the source code of target programs and target OS kernels.
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Unified control over multiple VMs: In a usage model that distributes target VMs in which
a target OS has already been installed, if the same target program runs on a target
VM, the system can simultaneously control the behavior of the target OS kernels
involved in the target program.

4.4 Implementation

We have designed and implemented ShadowXeck on an AMD64 processor architecture,
using a para-virtualization version of Xen [20] 3.0.3 as the VMM, and a Linux OS kernel
2.6.16 as the target OS kernel.

4.4.1 Obtaining Information on OS Kernels

ShadowXeck requires two types of information on target OS kernels: the memory ranges
for write-protected memory regions and information on indirect jump instructions as
generated by mkindirect. This information is gathered using the file of the target OS
kernel image, since the information depends on each instance of an OS kernel. The cur-
rent prototype system supports ELF as an executable and x86 and x86-64 as the CPU
architecture.

The ranges for write-protected memory regions are used to prevent tampering with
code and read-only data within those regions. ShadowXeck reads the ELF program
header from the file of an OS kernel binary image and extracts the virtual address ranges
of ELF segments that do not have write permission, i.e., those for which PF W is cleared.
On the other hand, the information on indirect jump instructions is used to control those
instructions when issued by target OS kernels. ShadowXeck extracts the information by
using the objdump program with the binary image file. This includes the virtual ad-
dresses for the indirect CALL and JMP instructions.

4.4.2 Protection for Write-protected Regions

A target VM is forbidden from modifying write-protected regions in the VMM layer in or-
der to protect code and read-only data contained within those regions. When sx vconf
is executed, the control daemon extracts information on the read-only memory ranges
from the target OS kernel image file, which is one of sx vconf’s arguments, and sends
it to SX-core. Then, SX-core traverses the page tables of the currently running process
and obtains physical addresses corresponding to the memory ranges. The kernel address
space on Linux can be traversed from the top-level page table of the current process be-
cause the kernel address space is shared among all processes.

When sx vcntl is executed, the protection mechanism is activated. On a para-
virtualization version of Xen, the entries of the bottom-level page tables are updated via
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the handler for a page fault exception or a hypercall, which is a software interrupt from a
VM to a VMM. Thus, to protect write-protected regions, SX-core controls updates of their
entries on the basis of virtual addresses obtained at the time of executing sx vcntl.
When an update is attempted on an entry of a bottom-level page table, SX-core checks
whether granting of write permission is attempted on one of the physical pages for write-
protected regions; that is, it checks whether the R/W bit is set in one of the entries. If the
granting of write permission is attempted, SX-core makes the target VM generate a page
fault exception.

4.4.3 Interception

Dynamic Binary Patching

To control the behavior of a target OS kernel running in the context of target programs,
SX-core must capture two types of events that occur in the kernel space: indirect jump
instructions and system calls. To achieve this, the mechanism of dynamic binary instru-
mentation, described in Section 2.3.2, is applied to the target OS kernel. SX-core over-
writes the first byte of each instruction to be intercepted with the binary sequence of the
HLT instruction. It needs to overwrite only that instruction, i.e., only the instruction to
be intercepted, and it can intercept the instruction since HLT is a privileged instruction
whose length is one. When the instruction overwritten by HLT is executed, SX-core em-
ulates the original instruction and continues to execute the target VM.

There is another technique for intercepting any instruction. HookSafe [112] over-
writes an intercepted instruction with a five-byte JMP instruction. However, if the length
of the subsequent instruction is less than five, the subsequent instruction must also be
overwritten. For example, if the subsequent instruction is the destination of another as-
sembly routine, HookSafe’s binary patching cannot overwrite it. If it was overwritten, it
would become an invalid opcode.

Indirect Branch Instructions

Dynamic binary patching is applied to each indirect jump instruction when sx vcntl
is executed. The target OS information includes the virtual addresses of indirect jump
instructions to be intercepted. SX-core traverses the currently running process and dupli-
cates physical pages including indirect jump instructions. For each duplicated physical
page, ShadowXeck overwrites indirect jump instructions with the HLT instruction. Fur-
thermore, for each indirect jump instruction, SX-core saves a byte sequence consisting of
the instruction and its length in order to emulate the instruction and execute the subse-
quent instruction. The duplicated physical pages are used when the address space of a
target OS kernel is multiplexed.
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In cooperation with control programs, SX-core logs all issued indirect jump instruc-
tions in profile mode or indirect jump instructions whose response action is log in control
mode. The log data are transferred between SX-core and the control programs by using
two facilities of Xen: shared memory between a VMM and the control VM, and the event
channel.

Start and End of Execution and Process Creation

The proposed system needs to identify when a target program executes, spawns new
processes, and terminates control of the kernel behavior at process granularity. To ac-
complish this, ShadowXeck performs control at the system-call level, i.e., at the entry
and exit of system calls. On the para-virtualization version of Xen for the AMD64 archi-
tecture (Xen-AMD64), the VMM can intercept the entries of system calls because it must
handle the SYSCALL instruction that set the current privilege level to zero (the highest).
On the other hand, the facility of dynamic binary patching is applied in the same way for
indirect jump instructions to intercept the exits of system calls. Binary patching is applied
to the kernel address space not only with interception of indirect jump instructions but
also that without interception. In this section, the kernel address space with interception
of indirect jump instructions is referred to as target kernel space, and that without inter-
ception as the original kernel space. In addition, SX-core intercepts the exits of system calls
on demand, i.e., only when a target program starts or spawns a new process.

When a target program starts inside a target VM with the execve system call, SX-
core creates the corresponding target kernel space not at the entry but at the exit since a
target OS kernel still does not create an original kernel space for a target program at the
entry. At the entry, if a target program attempts to start, SX-core overwrites the binary
code of the system call exit with the HLT instructions to intercept the execve exit. At the
exit, SX-core multiplexes the kernel address space and overwrites the binary code of the
system call exit with the original code. When a target program executes a new program,
SX-core updates the target kernel space at the time of starting the target program above.

When a target program generates a new child process with system calls such as fork
and clone, SX-core creates the target kernel space for the child process at the exit. As
in the above execve case, SX-core uses dynamic binary patching to intercept system
call exits on demand. When SX-core intercepts the first exit of a parent process running
in the target kernel space or of a child process running in the original kernel space, it
multiplexes the kernel address space for the child process and overwrites the binary code
of the system call exits in the original kernel space with the original code.

When a target program terminates with the exit group and exit system calls, SX-
core releases the top-level page table for the target program.
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4.4.4 Multiplexing Kernel Address Space

The kernel address space is partially multiplexed to control the behavior of target OS
kernels only in the context of target programs. The multiplexing scheme is transparent
to a target VM, which remains unaware of it. The context of ShadowXeck corresponds
to the value of the CR3 control register containing the physical address of the current
top-level page table. When SX-core intercepts a write operation to the CR3 register of a
privileged instruction, it renders different views of the kernel address space according
to the current value of the CR3 register. SX-core multiplexes only memory ranges that
contain indirect jump instructions in the kernel space, for each the page.

ShadowXeck starts procedures for multiplexing when a target program is executed
with the execve system call. First, SX-core duplicates the current top-level page table
(ORIG PT). Next, a newly created top-level page table (NEW PT) is updated to intercept
indirect jump instructions in the kernel space. SX-core traverses NEW PT and replaces
it with the physical address of a page containing the interception code for each entry
of a bottom-level page table that contains indirect jump instructions. Moreover, SX-core
manages the pair consisting of ORIG PT and NEW PT. Afterward, when switching of
the current top-level page table to ORIG PT is attempted, SX-core sets a physical ad-
dress that does not point ORIG PT but NEW PT to the CR3 register. When the target
program terminates, SX-core releases NEW PT and the pair of ORIG PT and NEW PT.
Furthermore, when the target program executes a different program, SX-core releases the
current NEW PT and the corresponding pair with ORIG PT, and creates new ones. Shad-
owXeck intercepts only indirect jump instructions issued by target OS kernels running in
the context using NEW PT.

ShadowXeck can prevent attacks from threads running only in kernel mode, called
kernel threads, which use the memory address space of a previously running process. If a
malicious kernel thread running after a process belonging to a target program attempts
to tamper with an indirect jump instruction, SX-core can prevent the attack since it runs
in the memory address space that includes interception of indirect jump instructions.
In addition, code and static data in the Linux kernel space should reside in the mem-
ory if the kernel is normally running. Therefore, unlike with the multiplexing scheme
in ShadowXeck for the user space, SX-core does not need to save and restore physical
pages including the interception code through page-out and page-in handling to prevent
compromised target OS kernels from disabling the protection scheme.

4.5 Evaluation

We evaluated the feasibility of the proposed system from two viewpoints: its effec-
tiveness against kernel-level malware, and the performance degradation introduced by
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Table 4.1: Linux kernel-level rootkits
name attack vector target object
adore-ng LKM function pointer
Mood-NT /dev/kmem system call table
SucKIT2 /dev/kmem kernel text
eNYeLKM LKM kernel text
Superkit /dev/kmem kernel text
phalanX /dev/mem system call table
Knark /dev/kmem system call table
KIS LKM system call table
Synapsys LKM system call table
override LKM system call table

LKM: loadable kernel module

ShadowXeck. In the experiments, ShadowXeck was run on a hardware platform with
two dual-core AMD Opteron 2.8 GHz processors, 8 GB of RAM, and a 1 Gbps NIC. The
control VM and the target VM were both configured with 4 CPUs and 1 GB of memory
running a para-virtualized Linux OS kernel.

4.5.1 Effectiveness Against Kernel-level Malware

ShadowXeck controls the behavior of target OS kernels through two protection schemes:
protecting write-protected data and controlling indirect jump instructions issued by tar-
get OSs. Whereas ShadowXeck prevents tampering with write-protected data at the
VMM layer, it controls indirect jump instructions according to the security policies for
target programs.

Modification of System Call Table

For write-protected data, the Linux system call table was protected. Many Linux kernel-
level rootkits tamper with system calls, as indicated in Table 4.1. However, such kernel
malware fails in tampering with entries of the system call table because the current Linux
OS kernel prohibits their modification. For example, kernel version 2.6.0 or later prevents
the installation of kernel-level rootkits that assume that the symbol of the system call
table is available. Furthermore, kernel version 2.6.16 or later can also prevent installation
of kernel-level rootkits that assume that the system call table is writable.

Even if a Linux OS kernel initializes the system call table as read-only data, attackers
can tamper with its entries. They can create a new page table entry to translate another
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virtual address into the physical address of the physical page containing the system call
table. The R/W bit in the new page table entry is set, while that in the original page table
entry remains to be cleared. This is a general technique for granting write permission to
any read-only region. Therefore, attackers can also tamper with kernel text data by using
this technique.

To demonstrate this, a malicious loadable kernel module, MalLKM, was implemented.
MalLKM takes as an argument the virtual address of a system call table entry that it at-
tempts to tamper with, orig vaddr. First, MalLKM obtains an instance of the page ker-
nel object corresponding to orig vaddr with the virt to page macro. Next, it creates a
writable memory region corresponding to the page instance by using the vmap function
with new vaddr as one of the arguments. Finally, MalLKM saves the value of the system
call entry and overwrites it with pseudo-exploit code. This pseudo-exploit code informs
the /var/log/message file that the attack has succeeded and executes the saved origi-
nal code.

The experiment demonstrated that ShadowXeck prevented MalLKM from tampering
with the system call table. First, MalLKM was installed on Xen, and it tampered with
the open entry in the system call table. After this attack, MalLKM’s message was output
when open was invoked on Xen. Next, MalLKM was installed on ShadowXeck, and it
attempted to tamper with the open entry. However, MalLKM failed to tamper with the
entry, and the attempt caused a general protection fault.

Modification of Function Pointers

For indirect jump instructions, ShadowXeck protected the behavior of the target OS ker-
nel involved in the system utility programs ps, ls, and netstat. We selected these programs
since several types of current malware attempt to circumvent them to conceal the mal-
ware’s malicious activities and existence. OS kernel behavior was modified with a kernel-
level rootkit, adore-ng, and its user-level auxiliary program, ava [12]. adore-ng tampers
with the function pointers of root and /proc file systems to hide processes, files, and
network ports. In this experiment, adore-ng targeted the process of the current bash shell
program, the test executable file under the home directory, and port number 2222 used
by nc running in listen mode.

After the installation of adore-ng and hiding of three targets by ava, to simulate mod-
ification of OS kernel behavior, ps, ls, and netstat were executed on Xen. adore-ng tam-
pered with the lookup function pointer of the proc root inode operations variable
to hide the three targets. To hide the bash process from ps, adore-ng tampered with the
readdir function pointer of the proc root operations variable. To hide the test ex-
ecutable from ls, adore-ng tampered with the readdir function pointer of the
ext3 dir operations variable. To hide port number 2222 from netstat, adore-ng tam-
pered with the seq show function pointer of a tcp seq afinfo instance. As a result,
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defAction : allow log
currIP: 0xffffffff8010bd6d
(destIP: 0xffffffff8010bdfc, memLoc: *, action: allow)
(destIP: 0xffffffff8010c420, memLoc: *, action: allow)
(destIP: 0xffffffff80117bb0, memLoc: *, action: allow)

currIP: 0xffffffff80125a91
(destIP: 0xffffffff80127a90, memLoc: *, action: allow)

...
currIP: 0xffffffff8018f4b8 # do lookup()

(destIP: *, memLoc: 0xffffffff80366f48,
action: fix(0xffffffff801b8280)) # proc root lookup()
(destIP: *, memLoc: 0xffffffff803671a8,
action: fix(0xffffffff801ba650))
(destIP: *, memLoc: 0xffffffff80368588,
action: fix(0xffffffff801bbad0))

...
currIP: 0xffffffff80194bfd # vfs readdir()

(destIP: *, memLoc: 0xffffffff80367030,
action: fix(0xffffffff801b81a0)) # proc root readdir()

...

Figure 4.5: A part of the security policy for ps in ShadowXeck

the three targets could be hidden from ps, ls, and netstat.

Next, we demonstrated that ShadowXeck disabled the modifications by adore-ng.
First, the target programs, ps, ls, and netstat, were run on ShadowXeck in profile mode to
gather information on the indirect jump instructions issued by those programs. Second,
security policies were generated for each target program by using the gathered informa-
tion. Figure 4.5 shows a part of the security policy for ps. A part of the security policy
for netstat is shown in Appendix C. All of the security policies specified that the lookup
of proc root inode operations, used in the do lookup function, had to be fixed at
proc root lookup, using the fix specification. Similarly the security policy for ps also
specified that readdir of proc root operations, used in the vfs readdir function,
had to be fixed at proc root readdir, using the fix specification. The security policy
for ls also specified that readdir of ext3 dir operations, used in the vfs readdir
function, had to be fixed at ext3 readdir, using the fix specification. Finally, the se-
curity policy for netstat specified that if a show function pointer of a seq operations
instance, used in the seq read function, was neither unix seq show, raw seq show,
tcp4 seq show, nor udp4 seq show, then a general protection fault had to be gener-
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ated using the raiseException specification. For show, we used raiseException
because a seq operations instance was dynamically allocated, and there were four
possible instances of show. In the other cases, we used fix because each variable with a
function pointer was statically allocated.

Finally, the targets of adore-ng were hidden in the same way as on Xen, and the target
programs were executed on ShadowXeck by using the targets’ security polices. ps and ls
reported the existence of the bash process and the test file, respectively, while a general
protection fault occurred and netstat failed to execute. Although function pointers were
modified by adore-ng, the behavior of the target programs running on ShadowXeck was
determined by the targets’ security policies. In another respect, ShadowXeck permits
users to leverage any kernel extension and thus maintains the flexibility of kernel exten-
sions.

4.5.2 Impact on Performance

To clarify the overhead introduced by ShadowXeck, three kinds of application programs
were used as target programs. First, the target programs were run in profile mode to col-
lect the indirect jump instructions issued by the target OS kernel in the programs’ context.
The issued indirect jump instructions were collected when they launched, the execution
of each benchmark program was repeated 10 times and terminated. Next, security poli-
cies were created from the collected data. Finally, the target programs were run using
their security policies in control mode in order to measure their execution times.

The application programs are enumerated below with their experimental descrip-
tions.

• System utility programs (ps, ls, netstat): These programs were executed without any
arguments.

• Web servers (thttpd, Apache): To measure the throughput of each Web server, Apache-
Bench was run on another physical machine deployed in the same LAN as the phys-
ical machine on which ShadowXeck ran. The physical machine for ApacheBench
was an Intel Pentium 4 3.2 GHz processor with hyper-threading enabled, 2 GB of
RAM, and a 100 Mbps NIC. ApacheBench sent requests to obtain two kinds of static
content (1- and 100-KB files) for each Web server. In addition, it sent requests to
obtain dynamic content (CGI) for Apache. The CGI program (a Perl script) dis-
played information on the physical machines on which Apache and ApacheBench
ran. Specifically, the Perl program displayed two CGI environmental variables
(HTTP REFFER, HTTP USER AGENT, and REMOTE ADDR) and the result of the geth-
ostbyname function. The number of both requests was configured as 128 times.
Whereas thttpd handles all requests with one process, Apache processes them by
using multiple threads.
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• Anti-virus tool suite (ClamAV [2]): The time required for scanning 15 files (five
of which were infected) was measured for two types of virus scanning programs:
clamscan and clamd/clamdscan. First, a virus database file containing the virus sig-
natures of the five infected files was created. The clamscan command-line program
specified files or specified directories. The clamd daemon scanned files or directo-
ries at the request of the clamdscan client program. While clamscan read the virus
database files for every request, clamd read them at start up or when receiving an
update request from a user.

ShadowXeck only intercepts indirect jump instructions issued by target programs be-
cause of its memory multiplexing scheme. Therefore, it could be expected to reduce per-
formance degradation for programs that ShadowXeck does not target. To confirm this,
the execution times were also measured for benchmark programs not controlled by Shad-
owXeck. In addition, the benchmark programs were run using Linux OS kernels running
on bare metal and on the QEMU CPU emulator. QEMU has been used to develop several
previously proposed systems for analyzing, detecting, and preventing kernel-level mal-
ware [55, 63, 88, 89, 111, 121, 122]. The Linux on bare metal was configured with 1 GB
of RAM. The Linux on QEMU was configured with four virtual processors and 1 GB of
memory.

Figure 4.6 shows the experimental results for the system utility programs. Figures 4.7,
4.8, 4.9, 4.10, and 4.11 show the experimental results for Web servers. Figure 4.12 shows
the experimental results for anti-virus tool suite. The binary image of the Linux OS ker-
nel used as the target OS kernel included 1378 indirect jump instructions (1290 CALL
instructions and 88 JMP instructions), and the number of 4 KB pages containing these
instructions was 82.

The main factor in the higher performance degradation of the system utility programs
was that the interposition of ibis accounted for a larger portion of execution than for the
other benchmark programs. In addition, the number of indirect jump instructions issued
was measured for a single execution of each of the system utility programs. The numbers
for ps, ls, and netstat were approximately 5480, 1150, and 1480, respectively. This shows
that the main reason for the higher overhead with ps than with ls and netstat was the
amount of interposition of indirect jump instructions. For Web service throughput, the
larger penalties for CGI on Apache were due to the additional handling for the execve
system call each time CGI invoked execve. This handling includes identification of the
execution name and memory multiplexing for the target programs. As expected, Shad-
owXeck controlled the target programs with lesser impact than on the other programs.
Furthermore, it controlled the target programs with much smaller performance penalties
relative to QEMU.

In summary, we believe that ShadowXeck could control the behavior of untrusted OS
kernels within acceptable performance penalty ranges throughout all of the evaluations.
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Figure 4.6: Execution time for system utility programs on Shadowall, Xen, Linux, and
QEMU
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Figure 4.7: thttpd Web server throughput on ShadowXeck, Xen, Linux, and QEMU
(file 1KB)
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Figure 4.8: thttpd Web server throughput on ShadowXeck, Xen, Linux, and QEMU
(file 100KB)
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Figure 4.9: Apache Web server throughput on ShadowXeck, Xen, Linux, and QEMU
(file 1KB)
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Figure 4.10: Apache Web server throughput on ShadowXeck, Xen, Linux, and QEMU
(file 100KB)
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Figure 4.11: Apache Web server throughput on ShadowXeck, Xen, Linux, and QEMU
(CGI)
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Figure 4.12: Virus scanning time on ShadowXeck, Xen, Linux, and QEMU

4.6 Related Work

There has been a variety of research on kernel-level malware, which can be divided into
four categories.

4.6.1 Control of Kernel Behavior

HookSafe [112] is closely related system that controls the behavior of kernel-level mal-
ware by prohibiting modification of write-protected data in the kernel space and con-
trolling function pointers in the kernel space. However, there are several differences in
controlling function pointers between HookSafe and ShadowXeck. First, HookSafe con-
trols them according to memory access in the data context, i.e., according to read and
write operations for indirect jump destinations. On the other hand, ShadowXeck con-
trols the pointers according to memory access in the instruction context, i.e., according to
execution of indirect jump instructions. Second, HookSafe requires the source code of an
OS kernel in order to collect memory locations from indirect jump destinations, whereas
ShadowXeck does not require the source code because the memory locations from indi-
rect jump instructions are collected of a binary image of an OS kernel. Third, the binary
patching mechanism in HookSafe for intercepting operations on reading and writing in-
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direct jump destinations can potentially overwrite subsequent instructions, since Hook-
Safe overwrites the instruction that manipulates the indirect jump destination with a 5-
byte JMP instruction. In comparison, ShadowXeck does not have this problem because
an indirect jump instruction is overwritten with a 1-byte HLT instruction. Furthermore,
the two systems differ in profiling. Whereas the purpose of profiling on HookSafe is to
acquire instructions that manipulate the indirect jump destination, the purpose of profil-
ing on ShadowXeck is to acquire indirect jump instructions issued by a target program.

Livewire [43] pioneered a virtual machine introspection (VM introspection) scheme
that execution states at the OS level, such as processes and files, from outside an un-
trusted VM. Livewire provides an event-driven protection module for detecting tam-
pering with security-sensitive memory regions, including kernel code and the system
call table by maintaining these regions as read-only at the VMM layer. Lares [82] marks
pages including protected data as read-only in order to monitor their modification. How-
ever, this page-granularity protection causes unnecessary page fault exceptions caused
by writes to data that were not targeted in the same pages.

UCONKI [117] provides an access control mechanism to protect kernel integrity. Mean-
while, ShadowXeck controls kernel behavior by forbidding modification of write-protected
data and controlling indirect jump instructions. Whereas UCONKI requires creation of
security policies for access control from scratch, ShadowXeck can reduce the effort of
generating security policies by using templates generated from execution logs. Further-
more, a UCONKI prototype system based on QEMU adds significant overhead incurred
by instruction emulation.

4.6.2 Prevention and Detection of Disapproved Kernel Code Execution

There have been several systems for preventing and detecting execution of kernel-level
malware by forbidding execution of any unauthenticated kernel code [68, 88, 99]. NICKL-
E [88] provides different views depending on memory access contexts by multiplexing
the kernel address space and permitting only authenticated code to be executed in the in-
struction context. In contrast, ShadowXeck multiplexes the kernel address space accord-
ing to the contexts of application programs. Furthermore, unlike ShadowXeck, NICKLE
does not provide a protection mechanism for read-only data. SecVisor [99] allows OS
kernels to execute only authenticated code by applying hardware memory protection
mechanisms. It provides a W⊕X protection scheme in which authenticated kernel code is
executable but not writable, while other, unauthenticated regions including kernel data,
user code, and user data are made writable but not executable by controlling the R/W
bits of page table entries and using their NX bits (No eXecute bits), on an AMD architec-
ture. Patagonix [68] detects execution of unauthenticated kernel code by using the NX
bits of page table entries and trusted databases of authenticated kernel code.

Unlike ShadowXeck, these systems require registration of kernel extensions, such as
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loadable kernel modules, beforehand. In contrast, ShadowXeck controls indirect jump
instructions in the contexts of target programs while preserving the flexibility of ker-
nel extensions. Furthermore, these systems cannot control the behavior of authenticated
code.

Kruegel et al. [62] detected kernel-level rootkits by analyzing binaries of loadable ker-
nel modules (LKMs) at load time. The legitimacy of the LKMs is identified from whether
they write to forbidden function pointers and whether they use and write to forbidden
kernel symbols. The binary analysis can potentially limit the leveraging of kernel ex-
tensions of LKMs, since a legitimate LKM with the behavior close to that of kernel-level
rootkits (e.g., the LKMs of anti-malware systems) can be falsely identified as an illegit-
imate LKM. Unlike in ShadowXeck, the binary analysis is performed in the same exe-
cution space as untrusted OSes. If attackers take over an untrusted OS with the binary
analysis mechanism, they can subvert it. The same holds for an existing rootkit detection
system, chkroot [27]. Furthermore, this approach cannot prevent attacks with special
devices (/dev/mem, /dev/kmem).

4.6.3 Detection of Kernel-level Malware at Periodic Intervals or on Demand

Livewire also provides a polling protection module to detect tampering with the /proc
file system interface used to acquire currently running processes. The module detects
modification by comparing the interface acquired from outside the VM with the inter-
face acquired inside the VM. VMwatcher [55] reconstructs the inner states of memory
and virtual disks (e.g., processes and files) by using the VM introspection scheme, and
it detects malware by comparing the reconstructed states outside a VM with those ob-
tained through existing programs inside the VM. The reconstructed data are also used
for execution of off-the-shelf anti-malware systems outside the VM.

Copilot [73] periodically detects malicious modification to data related to an un-
trusted OS kernel by using a PCI-based kernel monitor. Peroni et al. [59] proposed a sys-
tem for detecting integrity violations in kernel objects (e.g., a process list) from security-
relevant, user-specified constraints on the kernel objects. Protected kernel objects are
checked asynchronously to determine whether their constraints hold. Whereas this sys-
tem requires expert knowledge about an OS kernel in order to describe the constraints,
ShadowXeck eases users’ burden of policy description by providing a command for gen-
erating policy templates.

SBCFI [74] monitors kernel integrity at periodical intervals. The kernel integrity is
checked according to a legitimate control flow graph generated from the source code of
an OS kernel.

These systems do not control kernel behavior but instead detect modification of ker-
nel object data periodically or on demand. Therefore, compromised OS kernels running
on these systems are likely to execute malicious function pointers. In comparison, Shad-
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owXeck can prevent compromised OS kernels from executing malicious function point-
ers at the time of execution.

4.6.4 Analysis of Kernel-level Malware

There are several systems for investigating the behavior of kernel-level malware [63, 89,
111, 121]. HookFinder [121], based on a dynamic tainting scheme, and K-Tracer [63],
based on a dynamic slicing technique, analyze kernel-level malware to identify and ex-
tract how it hijacks an OS kernel’s control flow, i.e., the hooking behavior of an OS kernel.
PoKeR [89] also identifies information on modified kernel objects that are both statically
and dynamically allocated. HookMap [111] identifies kernel hooks that can potentially
be modified to hijack the kernel control flow through execution of anti-malware systems.
HookMap’s approach is based on the assumption that kernel-level malware will sub-
vert anti-malware systems. Although all of these systems can precisely and easily obtain
system-wide information on untrusted VMs by using the QEMU CPU emulator, they
cause substantial performance degradation due to the instruction emulation by QEMU.

4.7 Summary

We have proposed ShadowXeck, a security system that controls the behavior of target
OS kernels in the process contexts of target VMs. ShadowXeck controls the behavior of
target programs without limiting the availability of kernel extensions and with minimal
impact on the performance of programs that are not controlled. This is accomplished
in two ways. First, the system prevents modification to read-only memory regions in
kernel space, including code and read-only data. Second, it applies application-aware
control to indirect jump instructions, i.e., indirect CALL and JMP instructions, issued by
target OS kernels according to security policies. A security policy specifies which indirect
jump instructions should be controlled and how they should be controlled. The system
provides a command for automatically generating security policies.

Experimental evaluation demonstrated that Shadowall protected against two types
of attacks on target OS kernels. The first type is tampering with the entries of a system
call table, which are in read-only memory regions. The second type is tampering with
the function pointers of the root and /proc file systems. Moreover, ShadowXeck could
control target programs with much smaller performance penalties relative to a CPU em-
ulator.

The results point toward two major, interesting aspects for future work. The first as-
pect is to provide a mechanism for controlling the behavior of loadable kernel modules
(LKMs). In contrast with the code and data of OS kernels, the code and data of LKMs are
dynamically loaded into the kernel space. To address this challenge, two functionalities
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will be introduced into Shadowall. One is the functionality to control memory data at a
relative address. The other functionality is to apply the dynamic binary instrumentation
technique to LKMs at load time. The second aspect of the future work is to retrofit the
security policy specification. As the experimental results for the effectiveness of Shad-
owXeck indicate, the destination of an indirect jump instruction cannot always be fixed.
To ameliorate this problem, the specification will be extended. In the current specifica-
tion, response actions are determined by only one indirect jump instruction at conditional
expression. Instead, the system should support description of sequences of indirect jump
instructions at a conditional expression, so that security policies can specify appropriate
fix response actions for as many indirect jump instructions as possible.
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Chapter 5

Conclusion

5.1 Summary of This Work

We have presented VMM-based security systems for enhancing the security of applica-
tion programs from outside VMs. These systems effectively and efficiently create barriers
for attacks on the security systems themselves, as well as on higher-level security systems
running at the OS or application layer. The proposed systems also provide fine-grained
control, i.e., control at application-program granularity. The systems identify application
programs, control their behavior, and protect data relevant to the programs in OS-level
semantics, while maintaining the two VMM properties of VM isolation and highest priv-
ilege control. More concretely, the proposed security systems simultaneously have four
properties: (i) strong isolation from untrusted programs through VM isolation, (ii) high-
est privilege control of memory and virtual disk data, (iii) introspection at OS-level ab-
straction, and (iv) interposition on any events controlled by these systems. In addition,
the users do not need to modify the source code of application programs.

Specifically, we have designed and implemented three security systems with dif-
ferent, non-overlapping security concerns for target application programs: ShadowVox,
Shadowall, and ShadowXeck. ShadowVox monitors and controls the behavior of target ap-
plication programs in user mode. Shadowall protects memory data in the user space
of target application programs and file content related to these programs. ShadowXeck
monitors and controls the behavior of target application programs in kernel mode.

ShadowVox controls the system calls executed by a target application program through
two basic techniques: VM introspection and dynamic binary instrumentation. Even if
target application programs themselves and privileged programs are taken over, Shad-
owVox prohibits compromised target programs from illegally executing system calls, and
it prevents hijacked privileged programs from interfering with target application pro-
grams that normally run. VM introspection is a technique for bridging the semantic gap
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between the OS-level semantic views of security systems and the hardware-level seman-
tic views exported by a VMM. Dynamic binary instrumentation is a technique for inter-
mediating any event at processor-instruction granularity. VM introspection and dynamic
binary instrumentation are commonly used in all three of the proposed security systems.
This work has shed light upon the information about OS kernels required for VM intro-
spection, i.e., information about process management and system calls. Furthermore, a
support program is provided for automatically generating data required for VM intro-
spection. The proposed system requires the source code of target OS kernels since the
control mechanism depends on information on process management and system calls.
Note, however, that it does not require modifying the source code. Although the current
system supports only Linux as a target OS kernel, the proposed approach can be applied
to other OS kernels whose source code is open (e.g., UNIX-like OS kernels).

Shadowall protects memory and virtual disk data relevant to a target application pro-
gram by concealing them from other, untrusted programs, including OS kernels, while
leaving the target application program in the same VM as the untrusted programs. The
system hinders victimized programs, including OS kernels, from enabling leakage and
tampering with data involved with target programs. Toward this goal, it incorporates a
memory protection scheme that provides different views according to execution modes,
without cryptographic techniques, and it integrates the scheme with a file protection
scheme that manages files and emulates file manipulations by outside VMs.

ShadowXeck controls the behavior of OS kernels by providing write-protection at
page granularity and controlling indirect jump instructions. More precisely, the system
controls OS kernels in the contexts of target application programs, while maintaining the
availability of kernel extensions and lowering the impact on the performance of other,
uncontrolled programs. It thwarts the illegitimate execution of OS kernel code and func-
tion pointers in the contexts of target programs. To enable application-aware control for
indirect jump instructions, this work has provided a memory multiplexing scheme that
generates different views according to the process context.

In this thesis, we have discussed experimental evaluation results for the proposed sys-
tems. The results showed that ShadowVox could control the behavior of a wide variety
of application programs. They also demonstrated that ShadowVox prevented a compro-
mised, privileged program from disabling ShadowVox’s control mechanism for a Web
server program running in the same VM as the compromised program. Next, the exper-
iments demonstrated that Shadowall successfully disabled attacks attempting to mod-
ify the memory and virtual disk data of application programs. Finally, the experiments
demonstrated that ShadowXeck disabled modification by kernel-level malware. As a re-
sults of the evaluations, we believe that these three systems can enhance the security of
application programs within acceptable performance penalty levels.
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5.2 Future Directions for This Work

There are several directions for this work in the future. First, the three proposed security
systems do not deal with one remaining security concern: protection for writable data
in the kernel space. None of the systems can hinder attackers from corrupting writable
data for the purpose of stopping the security systems (e.g., modification of run queues
to remove target application programs) through a methodology known as direct kernel
object manipulation (DKOM). Attackers can also break the VM introspection technique,
that is, they can cause the security systems to misidentify the inner states of VMs by cor-
rupting process management data such as task struct instances. We should provide
a mechanism to protect target application programs from DKOM attacks.

Another interesting task for future work is to make the in-VMM mechanisms for con-
trolling and protecting target application programs smaller, with the goal of reducing the
VMM complexity. More concretely, parts of the in-VMM mechanisms that strongly de-
pend on target OS kernels should be moved into target VMs. The VMM reinforces the
security of the mechanisms inside the target VMs themselves.

Finally, the approaches described here can also be applied to VMMs based on hardware-
assisted virtualization technologies such as Intel VT [29] and AMD-V [14]. The security
systems should be implemented with attention to the differences of in memory manage-
ment between software-based VMMs and those based on hardware-assisted virtualiza-
tion. Whereas a software-based VMM resides in the address space of target VMs, a VMM
based on hardware-assisted virtualization does not reside in a target VM’s address space
but in its own address space.
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Appendix A

Security Policy Syntax of ShadowVox

The security policy in ShadowVox specifies which system calls are controlled and how
they are controlled by using pattern matching of system call arguments. Figure A.1
shows the policy syntax in ShadowVox.

Here, “DefMacro” indicates the path, the path name of a header file defining the
macros used in the policy rules. For example, a user can use the macro names EPERM, in
place of the number 1 in the error code rule, and SIGTERM, in place of the number 15 in
the signal rule.

The default: field at the top level indicates the response action taken for a system
call that does not conform to any pattern. Subsequently, the syntax specifies the policy
options, through “PolOption,” and the policy rules for each system call, through “Mod-
uleSpec”. This appendix explains the rule for each system call, followed by its options.

The “ModuleSpec” section specifies how each system call is controlled. In Shad-
owVox’s policy, system calls are classified into eleven groups, called modules. Each system
call necessarily belongs to only one module. The processMod module includes system
calls related to process operations (e.g., execve). The fileMod module includes system
calls related to file operations (e.g., open). The networkMod module includes system
calls related to network operations (e.g., socket). The ipcMod module includes system
calls related to interprocess-communication operations (e.g., semctl). The signalMod
module includes system calls related to signal operations (e.g., sigaction). The fsMod
module includes system calls related to file-system operations (e.g., getdents). The
idMod module includes system calls related to ID operations (e.g., getuid). The memor-
yMod module includes system calls related to memory operations (e.g., mmap). The
systemModmodule includes system calls related to system-management operations (e.g.,
uname). The timeMod module includes system calls related to time operations (e.g.,
nanosleep). Lastly, the unimplementedMod module includes system calls that are not
implemented (e.g., vserver). In addition, the default: field in “ModuleSpec” signi-
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PolicyFile → DefMacro* default: DefAction PolOption* ModuleSpec*
DefMacro → includeMacro(path)
DefAction → Action | skip
Action → allow | deny(errno) | ask | killProc( signame)

| killThread(signame) | policyChange(policyfile[,logfile])
PolOption → execByPtracingProc: PtAction | signalMask(signames)

| controlChild: detachProc
PtAction → detachProc | createNewMonitor
ModuleSpec → ModuleName default: DefAction SysCallSpec*
ModuleName → processMod | fileMod | networkMod | ipcMod | signalMod

| fsMod | idMod | memoryMod | systemMod | timeMod
| unimplementedMod

SysCallSpec → syscallName default: DefAction ControlExpr*
ControlExpr → Cond* Action
Cond → ProcessCond | FileCond | NetworkCond | IdCond

| MemoryCond | CurrIdCond | argEq(argnum,value)
| Cond and Cond | Cond or Cond

ProcessCond → cloneFlagsEq( cloneflags) | ptraceRequest(requests)
FileCond → fileEq( argnum,path) | filePrefixEq(argnum,pathprefix)

| fileFlagsEq(fileflags)
NetworkCond → socketDomainEq(domain) | socketTypeEq(socktype)

| socketProtocolEq(sockprot) | ipaddrEq(ipaddr)
| netaddrEq(netaddr) | portEq(portnum)
| unixsockEq(unixsock) | unixsockPrefixEq(unixsock)
| ifindexEq(ifindex) | packetTypeEq( packettype)
| sockoptEq(level,optname)

IdCond → uidEq(idnum) | gidEq(idnum)
| euidEq(idnum) | egidEq(idnum)

MemoryCond → memProtEq(protections) | memFlagsEq(memflags)
CurrIdCond → uidEq(idnum) | gidEq(idnum)

| euidEq(idnum) | egidEq(idnum)

Figure A.1: Security policy syntax in ShadowVox
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fies the response action taken for a system call in a particular module that does not match
any pattern.

Next, the “SysCallSpec” section indicates how each discrete system call is controlled.
The syscallName field specifies the name of a system call. The default: field in “SysCall-
Spec” signifies the response action taken for a case that does not match any pattern of sys-
tem call arguments. The “ControlExpr” label specifies patterns of system call arguments
that ShadowVox controls (“Cond”) and the response actions taken for cases matching the
specified patterns (“Action”).

The argument patterns (“Cond”) include patterns of process-related system calls (“Pro-
cessCond”), of file-related system calls (“FileCond”), of network-related system calls
(“NetworkCond”), of ID-related system calls (“IdCond”), and of memory-related sys-
tem calls (“MemoryCond”). The “currIdCond” label represents a pattern of the current
user, group ID, effective user, or effective group ID. The argEq pattern is used to specify
an arbitrary pattern with a pair consisting of an argument number argnum and a value
value.

In the response action (“Action”), allow and skip permit execution of the system
call. For allow, the SV-core notifies a control program in the control VM. For skip,
on the other hand, it does not notify the control program. For deny, the execution of
an intercepted system call fails with an error code name errno. For ask, the user deter-
mines a response action at runtime, from among those other than ask. For killProc
and killThread, the target process and target thread, respectively, receive the signal
signame. Finally, for policyChange, the current policy is replaced with the policy of the
policyfile file.

ShadowVox provides three types of policy options. The first option is execByPtrac-
ingProc, a rule for when the execve system call is executed by a target process that
controls the behavior of child processes by using the ptrace system call. Systems and
programs using ptrace (e.g., Systrace [86] and the strace command-line program) mon-
itor arbitrary programs specified by their users. Thus, the policies for systems and pro-
grams using ptrace also depend on the system calls executed by the programs moni-
tored by ptrace. To address this, ShadowVox provides execByPtracingProc, which
enables the user to describe policies that are independent of the behavior of programs
monitored by ptrace. The user specifies detachProc or createNewMonitor as the
execByPtracingProc response action. When detachProc is specified, ShadowVox
does not control the program monitored by ptrace. When createNewMonitor is
specified, ShadowVox launches a new control program for the program monitored by
ptrace. Note that the user needs to register the security policy for the program moni-
tored by ptrace beforehand using the sv vstart command. The second policy option,
signalMask, specifies which signals sent to a target program from other programs have
to be disabled. signames indicates the names of signals to be disabled. Even if an attacker
sends a SIGKILL signal to a target program, ShadowVox can prevent the sending of
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SIGKILL by specifying signalMask(SIGKILL) in the security policy for the target pro-
gram. Unlike ShadowVox, systems using ptrace cannot disable signals from processes
that the security systems do not target, since these systems monitor only the system calls
executed by the target program. The third policy option, controlChild : detachProc,
indicates the child processes that are not controlled.
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Appendix B

A Part of Security Policy for Apache
in ShadowVox

B.1 For IA-32

### apache.pol
includeMacro("asm-generic/fcntl.h")
includeMacro("linux/socket.h")
...
default: allow
processMod default: ask

execve default: deny(EPERM)
fileEq(1,"demo-cgi.cgi") and currUidEq(33)

policyChange("cgi.pol")
clone skip
...

fileMod default: ask
open default: ask

filePrefixEq(1,"/etc/apache2/") and fileFlagsEq(O_RDONLY)
allow

fileEq(1,"/etc/apache2/conf.d")
and fileFlagsEq(O_NONBLOCK|O_LARGEFILE

|O_DIRECTORY|O_NDELAY)
allow

...
poll default: skip
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...
networkMod default: ask

socket default: ask
socketDomainEq(AF_INET)
and socketTypeEq(SOCK_STREAM) allow

...
bind default: ask

sockaddrFamilyEq(AF_INET) and portEq(80) allow
...

### cgi.pol (xxx.xxx.xxx.xxx : IP address)
includeMacro("asm-generic/fcntl.h")
includeMacro("linux/socket.h")
includeMacro("asm-generic/mman.h")

default: ask
fileMod default: ask

open default: ask
fileEq(1,"demo-cgi.cgi")

and fileFlagsEq(O_LARGEFILE)
and currUidEq(33) allow

...
networkMod default: ask

connect default: ask
socketDomainEq(AF_INET)

and ipaddrEq(xxx.xxx.xxx.xxx)
and portEq(53)
and currUidEq(33) allow

...
...

memoryMod default: ask
mmap default: ask

memProtEq(PROT_READ|PROT_EXEC)
and memFlagsEq(MAP_PRIVATE)
and currUidEq(33) allow

...
...

timeMod default: ask
gettimeofday default: skip
time skip
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...

B.2 For AMD64

### apache.pol
includeMacro("asm-generic/fcntl.h")
includeMacro("linux/socket.h")
...

default: allow
processMod default: ask

execve default: deny(EPERM)
fileEq(1,/home/koichi/htdocs/cgi-bin/demo-cgi.cgi)

and currUidEq(33)
policyChange(cgi_skip.pol,log.cgi_skip)

clone default: allow
cloneFlagsEq(CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID)
allow
cloneFlagsEq(CLONE_VM|CLONE_FS|CLONE_FILES

|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM
|CLONE_SETTLS|CLONE_PARENT_SETTID
|CLONE_CHILD_CLEARTID|CLONE_DETACHED)

and currUidEq(33)
allow

set_tid_address default: skip
arch_prctl default: skip
...

fileMod default: ask
open default: ask

filePrefix(1,/etc/apache2/) and fileFlagsEq(O_RDONLY)
allow

fileEq(1,/etc/apache2/conf.d/)
and fileFlagsEq(O_NONBLOCK|O_DIRECTORY|O_NDELAY)
allow

...
poll default: skip
...
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fsMod default: ask
chdir default: ask
fileEq(1,/home/koichi/htdocs/cgi-bin/) and currUidEq(33) allow

networkMod default: ask
socket default: ask

socketDomainEq(AF_INET)
and socketTypeEq(SOCK_STREAM) allow
...

bind default: ask
sockaddrFamilyEq(AF_INET) and portEq(80) allow

...

### cgi.pol (xxx.xxx.xxx.xxx : IP address)
includeMacro("asm-generic/fcntl.h")
includeMacro("linux/socket.h")
includeMacro("asm-generic/mman.h")

default: ask
fileMod default: ask

open default: ask
fileEq(1,/home/koichi/htdocs/cgi-bin/demo-cgi.cgi) allow

networkMod default: ask
connect default: ask

sockaddrFamilyEq(AF_INET)
and ipaddrEq(xxx.xxx.xxx.xxx)
and portEq(53) allow

...
...

memoryMod default: ask
mmap default: ask

memProtEq(PROT_READ|PROT_EXEC)
and memFlagsEq(MAP_PRIVATE) allow

...
...

timeMod default: ask
gettimeofday default: skip
time skip

...
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Appendix C

A Part of Security Policy for netstat
in ShadowXeck

defAction : allow log
currIP: 0xffffffff8010bd6d
(destIP: 0xffffffff8010bdfc, memLoc: *, action: allow)
(destIP: 0xffffffff8010c420, memLoc: *, action: allow) ...

...
currIP: 0xffffffff8018f4b8 # do lookup()

(destIP: *, memLoc: 0xffffffff80366f48,
action: fix(0xffffffff801b8280)) # proc root lookup()
(destIP: *, memLoc: 0xffffffff8036a528,
action: fix(0xffffffff801bbad0)) # proc lookup()
(destIP: *, memLoc: 0xffffffff803671a8,
action: fix(0xffffffff801cd280)) # ext3 lookup()

...
currIP: 0xffffffff801a38f1 # seq read()
# udp4 seq show()
(destIP: 0xffffffff802cf740, memLoc: *, action: allow)
# tcp4 seq show()
(destIP: 0xffffffff802c82b0, memLoc: *, action: allow)
# raw seq show()
(destIP: 0xffffffff802ce380, memLoc: *, action: allow)
# unix seq show()
(destIP: 0xffffffff802e4920, memLoc: *, action: allow)
(destIP: *, memLoc: *, action: raiseException)

...
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The fix response actions are specified at the function pointer do lookup() (currIP:
0xffffffff8010bd6d) because the destination addresses are uniquely determined.
On the other hand, the raiseException response action is specified at the function
pointer (seq read (currIP: 0xffffffff801a38f1) because the destination address
cannot be uniquely determined.
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