An Implementation of
Transparent Migration on
Standard Scheme
Eijiro Sumii
University of Tokyo




ldea

0005t @ shift (revaly,, o tdpeyg ()




ldea

gO,h.¢ @ shift (reval ;. © tdpeo® ())

Delimited Continuation
+ Type-Directed Partial Evaluation
+ Remote Evaluation
® Transparent Migration




Outline

« What Is transparent migration?

 What are
—Delimited continuation
—Type-directed partial evaluation

and how do they enable
transparent migration?




Transparent Migration
(or "Strong Mobllity™)

A program moves from one host to
another, keeping its execution state

(cf. Telescript [White 95])




Transparent Migration
(or "Strong Mobllity™)

A program moves from one host to
another, keeping its execution state

(cf. Telescript [White 95])
> (begin (system "host nane")

(go "renotehost")

(system "host nane") )

| ocal host
Irenntehost




Naive Approach

(defi ne (go rhost)

(call/cc (Ik.
somehow send k tor host ) ) )




Problem:
Unnecessary Continuation

(let ([v (make-vector 100000)])
(go "renotehost")
(di splay "hell o")
(go "l ocal host")
(di splay v))




Problem:
Unnecessary Continuation

(let ([v (make-vector 100000)])
(go "renotehost")
(di splay "hell o")
(go "l ocal host")
(di splay v))




Problem:
Unnecessary Continuation

(Il et (

(go "renotehost")
(di splay "hell o")
(go "l ocal host")
(di splay v))




Delimited Continuation
[Danvy & Filinski 89, 90]

The rest of the computation up to
some point




Delimited Continuation
[Danvy & Filinski 89, 90]

The rest of the computation up to
some point
(+ 1 (reset (+ 2 (shift (IKk.
(k (k 3)))))))




Delimited Continuation
[Danvy & Filinski 89, 90]

The rest of the computation up to
some point

(+ 1 (reset (+ 2 (shift (IKk.
(k (k 3)))))))
P (+ 1 (k (k 3))))
where k = (+ 2 )




Delimited Continuation
[Danvy & Filinski 89, 90]

The rest of the computation up to
some point

(+ 1 (reset (+ 2 (shift (IKk.
(k (k 3)))))))
P (+ 1 (k (k 3))))
where k = (+ 2 )
b (+1 (+2 (+ 2 3)))
p 8




Transparent Migration Using
Delimited Continuations
(let ([v (make-vector 100000)])
(reset (go "renotehost")
(di splay "hell o"))
(di splay v))




Transparent Migration Using
Delimited Continuations
(let ([v (make-vector 100000)])
(reset (go "renotehost")
(di splay "hell o"))
(di splay v))

(define (go rhost)
(shift (IKk.
somehow send k tor host ) ) )




Transparent Migration Using
Delimited Continuations
(let ([v (make-vector 100000)])
(reset (go "renotehost")
(di splay "hell o"))
(di splay v))

defl ne (d‘llll")

(shift (IK.
somehow send k tor host ) ) )




Type-Directed Partial Evaluation
[Danvy 96, 98]

Given a compiled value and its type,
"reconstruct” its source code
(in long bh-normal form)




Type-Directed Partial Evaluation
[Danvy 96, 98]

Given a compiled value and its type,
"reconstruct” its source code
(in long bh-normal form)

> (define (f x)
((lamoda (y) y) X))

> (tdpe 'a®a f)

(I ambda (z0) zO)




Type-Directed Partial Evaluation
[Danvy 96, 98]

Residualizes "non-trivial' computations
by set ! -Ing primitive operators

to code generating functions




Type-Directed Partial Evaluation
[Danvy 96, 98]

Residualizes "non-trivial' computations
by set ! -Ing primitive operators

to code generating functions

> (define (g Xx)
(display (+ x 1)))
> (tdpe "Int®() 9)
(Il anbda (z1)
(display (+ z1 1))




Transparent Migration
Using TDPE

(define (go rhost)
(shift (IKk.

(let ([e (tdpe "()®() K)])
(reval rhost e))))




Limitations

» "go" doesn't terminate If "k" has

no normal form (e.qg. because of
recursion)

—Workaround: use a special fixed-point
operator

* "go" duplicates some data

? set!, set-car!, set-vector!, eq?, etc.
may not work




Conclusion

0005t @ shift (revaly,, o tdpeyg ()




Conclusion

gO,h.¢ @ shift (reval ;. © tdpeo® ())

Scheme Is so flexible!
e call/cc + set! b shift & reset

* dynamic typing + set! p TDPE
with ease




