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Abstract

We present λre , a minimal functional calculus with regular expression types for
strings, in order to establish a theoretical foundation of using regular expressions
as types of strings in text processing languages. The major technical novelties in
this paper (with respect to other work such as XDuce) are (1) the use of regular
expression effects to statically analyze the shape of the output of an even diverging
program and (2) the treatment of as-patterns in non-tail positions. We expect that
our approach will be of help for bringing the merits of static typing into scripting
languages such as Perl, Python, and Ruby without sacrificing too much of their
expressiveness and flexibility.

1 Introduction

Background

Scripting languages such as Perl [18], Python [10], and Ruby [11,17] are
widely believed to be useful for so-called rapid application development, in
particular for manipulating strings or text data as in web programming. How-
ever, while it may indeed be easier to just write programs in these languages,
it actually tends to be more difficult to debug and maintain such programs.
A typical experience of programming in those languages is as follows. (1) The
programmer writes code at a tremendous speed. (2) He or she runs the pro-
gram and gets a runtime error—or, worse, no output at all. (3) He/she spends
a lot of time in pain on debugging. Furthermore, it is also likely that bugs are
found only after the program is deployed because of some boundary cases that
were overlooked in testing. Under open environments, bugs of this kind can
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lead to critical security holes, a major example being cross-site scripting vul-
nerabilities [1] of CGI programs that forgot to escape HTML meta-characters
in the input (and the output).

In general, an effective approach to preventing such dynamic errors is static
typing. However, standard type systems as in ML are not so effective solutions
to the above problems, not only because they are often incompatible with
legacy programs (or legacy programmers), but also because all text data are
usually given a single type, string, in ordinary type systems. Of course,
it is also possible to write a program that parses the input into some more
structural data type, operates on values of that data type, and pretty-prints
the result into the output. However, doing so would spoil the ease of text
processing in such scripting languages as above.

Our Approach

In order to mitigate this dilemma between handiness and robustness, we
propose regular expression types for strings, that is, refining the type of strings
by the shape of the strings as regular expressions. For example, the string
constants a, aa, aaa can all have type a∗. For another example, the recursive
function f(n) = if n ≤ 0 then ε else aˆf(n− 1)ˆb, where ε denotes the empty
string (that is, the string of length 0) and ˆ denotes string concatenation, may
have type int → a∗b∗. We expect that, in more complex programs, this form
of information about the shape of strings would be of help to programmers
for debugging and maintenance of programs that process text data.

Why do we adopt regular expressions rather than, say, context-free gram-
mars? If we adopted “context-free grammar types,” then the codomain of the
function f in the above example could be a more precise type {anbn | n =
0, 1, 2, . . .}, for instance. One reason why we have chosen regular expressions
is that they have concise syntax and semantics with which people are just
familiar. A more important reason is that the class of regular languages is
closed for many basic operations such as intersection, union, difference, and
quotients. Also, most fundamental problems about regular languages—such
as equivalence and inclusion—are decidable. These good properties of reg-
ular languages are essential for effective type checking in our type system.
In contrast, other formal languages are not so nice – for instance, it is well-
known that equivalence (and therefore inclusion) of context-free languages is
undecidable [5].

Our Contributions

In order to present the above ideas in a formal yet concise manner, we
define a minimal functional calculus, λre , with regular expression types for
strings. Although this calculus is extremely small, we believe that many of the
results can be extended to more practical languages, thanks to the flexibility
of regular expressions. For instance, any expression that evaluates to a string
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can at worst be typed .∗ (meaning “any string”), and in many cases one can
do better.

It is not a new idea to use regular expressions or other formal languages to
describe shapes of data or behavior of programs. The most relevant work that
we know of is XDuce [8,6], a programming language for processing XML doc-
uments, which gives regular expression types to XML documents as (labeled)
trees. Theoretically, since strings are just a special case of trees (consider the
encoding of lists by cons cells in Scheme), their work may seem to subsume
ours. Nevertheless, we think that the present work deserves a separate paper
for the following two reasons. (1) Our focus on strings rather than trees in
general significantly simplifies the technicalities and thereby clarifies the pre-
sentation. (2) We also extend some of their results, as we shall see in detail in
the following sections. The major extensions are (i) regular expression types
for effects and (ii) as-patterns in non-tail positions.

This paper does not give a full type inference/reconstruction algorithm for
the type system (although Section 4 presents a partial type inference method
for variable bindings in regular expression pattern matching and Section 6
gives a rough idea toward a full type inference scheme), let alone its efficient
implementation. They are important in practice in order for programmers to
benefit from the type system without too much extra effort. However, these
are complex issues by themselves and left for future work at this moment.

Overview

The rest of this paper is organized as follows. Section 2 gives the syntax
of λre and Section 3 defines its operational semantics. Section 4 presents the
type system and Section 5 shows examples of programming in λre . Section 6
concludes with discussion of related work and future work.

Because of the limitation on length, details of some proofs are omitted.
They are available on the Web at http://www.yl.is.s.u-tokyo.ac.jp/

~tabee/xperl/.

2 Syntax

The syntax of terms in λre is given in Figure 1, assuming a countably infi-
nite number of variables x, y, z, f , g, h, etc. The first three forms, where
fix(f, x,M) denotes a possibly recursive function f defined as f(x) = M , are
standard. We write λx.M for fix(f, x,M) where f does not appear free in
M and let x = M1 in M2 for (λx.M2)M1. We furthermore write M1;M2 for
let x = M1 in M2 where x does not appear free in M2. The definition of free
variables is also standard and therefore omitted.

As primitives for string manipulation, we take the following four con-
structs: (1) constant strings s for having strings at all, (2) string concatena-
tion M1ˆM2 for constructing a new string from old ones, (3) pattern matching
match M with P1 ⇒ M1 | . . . | Pn ⇒ Mn over strings by regular expressions
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M (term) ::=

x (variable)

| fix(f, x,M) (recursive function)

| M1M2 (function application)

| s (constant string)

| M1 ˆM2 (string concatenation)

| match M with P1 ⇒M1 | . . . | Pn ⇒Mn (pattern matching)

| print M (output)

P (pattern) ::=

s (constant string)

| (P1 | P2) (choice)

| x as P (variable binding)

| P ∗ (repetition)

| P1P2 (sequence)

Fig. 1. Syntax of Terms and Patterns

for destructing strings, and (4) printing print M of strings to the output as
a side effect. As we shall see in Section 4, this is the target of our regular
expression effect system.

The syntax of patterns is similar to that of standard regular expressions
except for variable bindings x as P . Like as-patterns in ML, it first matches
an input string s against the pattern P and then binds s to the variable x.
We write var(P ) for the set of all variables that appear in P .

Standard data structures such as lists and pairs can easily be encoded in
this language. See section 5 for examples of such encoding.

3 Operational Semantics

The meaning of terms in λre is defined in Figure 2 as a small-step, reduc-
tion semantics—rather than big-step, evaluation semantics—in order to treat
effects of diverging programs as well as terminating ones. It is given by a re-
lation M1

s→M2, meaning “term M1 reduces to term M2 in one step, printing
string s to the output.” The evaluation order is fixed to be call-by-value and
left-to-right for simplifying the treatment of effects.

Rules (R-App), (R-Cat), and (R-Ctx) represent standard meanings of (pos-
sibly recursive) function application, string concatenation, and evaluation con-
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v (value) ::= fix(f, x,M)

| s

C[ ] (evaluation context) ::= [ ]M

| v[ ]

| [ ] ˆM

| v ˆ [ ]

| match [ ] with P1 ⇒M1 | . . . | Pn ⇒Mn

| print [ ]

fix(f, x,M)v
ε→ [v/x][fix(f, x,M)/f ]M

(R-App)

s1 ˆ s2
ε→ s1 + s2

(R-Cat)
print s

s→ ε
(R-Print)

∀i < m. s� Pi ⇒ ⊥ s� Pm ⇒ θ θ 6= ⊥
match s with P1 ⇒M1 | . . . | Pn ⇒Mn

ε→ θMm

(R-Match)

M1
s→M2

C[M1]
s→ C[M2]

(R-Ctx)

Fig. 2. Operational Semantics of Terms

texts. Rule (R-Print) says that the term print s prints the string s to the output
and reduces to a dummy value (the empty string ε). Rule (R-Match) defines
the meaning of pattern matching in λre , using the relation s � P ⇒ θ. Intu-
itively, s�P ⇒ θ means that matching the string s against the pattern P either
fails (if θ = ⊥) or yields the substitution θ from variables to strings (if θ 6= ⊥).
Thus, (R-Match) says that the term match s with P1 ⇒ M1 | . . . | Pn ⇒ Mn

reduces to θMm where Pm is the first pattern that matches the string s (and
yields a substitution θ).

The pattern matching relation s�P ⇒ θ is defined in Figure 3. We write
s � P if s � P ⇒ θ for some θ 6= ⊥. Intuitively, the rules describe a (naive)
pattern matching algorithm in a bottom-up manner. Basically, it is defined
by structural induction on the syntax of the pattern P . Rules (M-Const-Succ)
and (M-Const-Fail) are for constant strings s, (M-Choice-Fst) and (M-Choice-
Snd) are for choices P1 | P2, (M-Bind) is for variable bindings x as P , and
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s� s⇒ ∅(M-Const-Succ)
s 6= s′

s� s′ ⇒ ⊥(M-Const-Fail)

s� P1 ⇒ θ θ 6= ⊥
s� P1 | P2 ⇒ θ

(M-Choice-Fst)

s� P1 ⇒ ⊥ s� P2 ⇒ θ

s� P1 | P2 ⇒ θ
(M-Choice-Snd)

s� P ⇒ θ

s� x as P ⇒ θ ] {x 7→ s}(M-Bind)
s� PP ∗ | ε⇒ θ

s� P ∗ ⇒ θ
(M-Rep)

s−1
2 s1 � P ⇒ θ

s1 � s2P ⇒ θ
(M-Seq-Const-Succ)

s−1
2 s1 not exist

s1 � s2P ⇒ ⊥ (M-Seq-Const-Fail)

s� P1P3 | P2P3 ⇒ θ

s� (P1 | P2)P3 ⇒ θ
(M-Seq-Choice)

y 6∈ var(P1P2) s1 � P1(y as P2)⇒ θ ] {y 7→ s2}
s1 � (x as P1)P2 ⇒ θ ] {x 7→ s1s

−1
2 }

(M-Seq-Bind)

s� (P1P1
∗ | ε)P2 ⇒ θ

s� P1
∗P2 ⇒ θ

(M-Seq-Rep)
s� P1(P2P3)⇒ θ

s� (P1P2)P3 ⇒ θ
(M-Seq-Seq)

Fig. 3. Operational Semantics of Patterns

(M-Rep) is for repetitions P ∗. The notation θ]{x 7→ s} in (M-Bind) denotes
the extension θ′ of θ such that θ′(x) = s and θ′(y) = θ(y) for y 6= x (with
⊥ ] {x 7→ s} being ⊥), while ∅ denotes the identity substitution.

Note that the rule (M-Choice-Snd) applies only when (M-Choice-Fst) does
not, which leads to the so-called first-match policy. Note also that (M-Rep)
expands P ∗ to PP ∗ | ε rather than ε | PP ∗. In combination with the first-
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match policy above, this leads to the so-called longest-match policy.

When P is a sequence P1P2, the rules furthermore separate into six cases
(M-Seq-. . . ) according to the form of P1, in order to circumvent non-determin-
istically dividing the input string s (into two strings s1 and s2, so that s1

matches P1 and s2 matches P2). Each of the six rules rewrites a sequence
pattern P1P2 according to the meaning of its first half P1, so that P1 becomes
“smaller” in the premise than in the conclusion (except for the case of repeti-
tion). The notations s−1

1 s2 and s1s
−1
2 in (M-Seq-Const-. . . ) and (M-Seq-Bind)

denote the string s (if there is any) such that s1s = s2 or s1 = ss2, respectively.

Example 3.1 Matching the string a against pattern (x as a∗)a∗ yields a sub-
stitution x 7→ a as below. Note how the first- and longest-match policies are
working in the derivation.

ε� a(a∗(y as a∗))⇒ ⊥ (M-Seq-Const-Fail)

ε� (aa∗)(y as a∗)⇒ ⊥ (M-Seq-Seq)

ε� aa∗ ⇒ ⊥ (M-Seq-Const-Fail)
ε� ε⇒ ∅ (M-Const-Succ)

ε� aa∗ | ε⇒ ∅ (M-Choice-Snd)

ε� a∗ ⇒ ∅ (M-Rep)

ε� y as a∗ ⇒ y 7→ ε
(M-Bind)

ε� ε(y as a∗)⇒ y 7→ ε
(M-Seq-Const-Succ)

ε� (aa∗)(y as a∗) | ε(y as a∗)⇒ y 7→ ε
(M-Choice-Snd)

ε� (aa∗ | ε)(y as a∗)⇒ y 7→ ε
(M-Seq-Choice)

ε� a∗(y as a∗)⇒ y 7→ ε
(M-Seq-Rep)

a � a(a∗(y as a∗))⇒ y 7→ ε
(M-Seq-Const-Succ)

a � (aa∗)(y as a∗)⇒ y 7→ ε
(M-Seq-Seq)

a � (aa∗)(y as a∗) | ε(y as a∗)⇒ y 7→ ε
(M-Choice-Fst)

a � (aa∗ | ε)(y as a∗)⇒ y 7→ ε
(M-Seq-Choice)

a � a∗(y as a∗)⇒ y 7→ ε
(M-Seq-Rep)

a � (x as a∗)a∗ ⇒ x 7→ a
(M-Seq-Bind)

2

By the way, there is a possibility that the above pattern matching algo-
rithm falls into an “infinite loop” because of empty repetition patterns, that
is, patterns of the form P ∗ where P matches ε. To put it formally, it is im-
possible in the above (inductive) rules to derive, say, ε� ε∗ ⇒ ∅. Fortunately,
such repetition patterns can be precluded by pre-processing without changing
their meanings. This technique is already studied in the literature. See [4,
Section 4], for example. Thus, in the rest of this paper, we assume a priori
that such patterns never appear.

A careful reader may also wonder why we did not define s�P ⇒ ⊥ just as
“there exists no substitution θ such that s�P ⇒ θ.” However, doing so makes
it impossible to distinguish non-termination and failure of pattern matching.
In addition, it even makes the relation ill-defined at all, since the rule (M-
Choice-Snd) becomes non-inductive because of the premise s � P1 ⇒ ⊥. (In
fact, the definition of pattern matching in [6] has this problem.)
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τ (type) ::= τ1
T→ τ2 | T

T (string type) ::= s | (T1 | T2) | T ∗ | T1T2

| T1 ∩ T2 | T1 ∩ T2 | T−1
1 T2 | T1T

−1
2

[[s]] = {s}
[[T1 | T2]] = [[T1]] ∪ [[T2]]

[[T ∗]] = {s1 + · · ·+ sn | si ∈ [[T ]] (i = 1, . . . , n), n ≥ 0}
[[T1T2]] = {s1 + s2 | s1 ∈ [[T1]] ∧ s2 ∈ [[T2]]}

[[T1 ∩ T2]] = [[T1]] ∩ [[T2]]

[[T1 ∩ T2]] = [[T1]] \ [[T2]]

[[T−1
1 T2]] = {s′ | s ∈ [[T1]] ∧ s+ s′ ∈ [[T2]]}

[[T1T
−1
2 ]] = {s | s+ s′ ∈ [[T1]] ∧ s′ ∈ [[T2]]}

Fig. 4. Syntax and Semantics of Types

4 Type System

Types τ in λre are defined as in Figure 4. A function type τ1
T→ τ2 denotes

functions that take an argument of type τ1, prints a string of type T to the
output, and possibly returns a result of type τ2. A string type T denotes a
set [[T ]] of strings. It is either regular expressions such as a constant string
s, choice T1 | T2, repetition T ∗, and sequence T1T2, or operations on them
such as intersection T1 ∩ T2, difference T1 ∩ T2, left quotient T−1

1 T2, and right
quotient T1T

−1
2 . It is known that the set of regular languages are closed with

respect to these operations [5]. Nevertheless, it is useful to have them in the
syntax of types in order to give the typing rules. Note that the syntax of types
subsumes that of patterns except for variable bindings. We write novar(P )
for the type obtained by removing all variables in P . That is, novar(s) =
s, novar(P1 | P2) = novar(P1) | novar(P2), novar(x as P ) = novar(P ),
novar(P ∗) = novar(P )∗, and novar(P1P2) = novar(P1)novar(P2). We also
extend the intersection ∩ and choice | operations from strings types T to types

τ in general, by defining those operations on function types τ1
T→ τ2 as follows.

(Note that they do not necessarily mean a union or intersection of sets – they
are merely operations on types, defined as below.)

(τ1
T1→ τ ′1) | (τ2

T2→ τ ′2) = (τ1 ∩ τ2)
T1|T2→ (τ ′1 | τ ′2)

(τ1
T1→ τ ′1) ∩ (τ2

T2→ τ ′2) = (τ1 | τ2)
T1∩T2→ (τ ′1 ∩ τ ′2)

Alternatively, one can think of introducing τ1 ∩ τ2 and τ1 | τ2 in the syntax
of types and thereby having real intersection types (that is, overloading) and
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[[T1]] ⊆ [[T2]]

T1 ≤ T2

(S-Str)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 T1 ≤ T2

τ1
T1→ τ2 ≤ τ ′1

T2→ τ ′2
(S-Fun)

Γ(x) = τ

Γ ` x : τ, ε
(T-Var)

Γ, f : τ1
T→ τ2, x : τ1 `M : τ2, T

′ T ′ ≤ T

Γ ` fix(f, x,M) : τ1
T→ τ2, ε

(T-Fix)

Γ `M1 : τ2
T→ τ1, T1 Γ `M2 : τ ′2, T2 τ ′2 ≤ τ2

Γ `M1M2 : τ1, T1T2T
(T-App)

Γ ` s : s, ε
(T-Const)

Γ `M1 : T1, T
′
1 Γ `M2 : T2, T

′
2

Γ `M1 ˆM2 : T1T2, T ′1T
′
2

(T-Cat)

Γ `M : T1, T
′

Tm ; Pm ⇒ Γm

Γ,Γm `Mm : τm, T
′
m

Tm+1 = Tm ∩ novar(Pm)




m = 1, . . . , n

Tn+1 ≤ ∅
Γ ` match M with P1 ⇒M1 | . . . | Pn ⇒Mn :

τ1 | . . . | τn, T ′(T ′1 | . . . | T ′n)

(T-Match)

Γ `M : T, T ′

Γ ` print M : ε, T ′T
(T-Print)

Fig. 5. Typing Rules for Terms

union types. A similar idea is already studied in [3]. It may be possible to
incorporate their work into ours, but we refrain from doing so for now in favor
of simplicity.

The typing rules are given in Figure 5 and 6. For the sake of expressiveness
and precision, we define a subtyping relation T1 ≤ T2 between string types T1

and T2 by inclusion between their denotations as in rule (S-Str). Thanks to
their regularity, this inclusion is decidable (although its efficient implemen-
tation is beyond the scope of the present paper). This subtyping relation
between string types is extended to τ1 ≤ τ2 for types in general by a standard
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([[T ]], P ) ∈ Π ∀x ∈ dom(Γ) = var(P ).Γ(x) = ∅
Π ` T ; P ⇒ Γ

(P-Mem)

Π ` T ; s⇒ ∅(P-Const)

Π ` T ; P1 ⇒ Γ1 Π ` T ∩ novar(P1) ; P2 ⇒ Γ2

∀x ∈ dom(Γ) = dom(Γ1) = dom(Γ2).Γ(x) = Γ1(x) | Γ2(x)

Π ` T ; P1 | P2 ⇒ Γ
(P-Choice)

Π ` T ; P ⇒ Γ

Π ` T ; x as P ⇒ Γ ] {x : Γ(P ) ∩ T}(P-Bind)

Π ] {([[T ]], P ∗)} ` T ; PP ∗ | ε⇒ Γ

Π ` T ; P ∗ ⇒ Γ
(P-Rep)

Π ` s−1T ; P ⇒ Γ

Π ` T ; sP ⇒ Γ
(P-Seq-Const)

Π ` T ; P1P3 | P2P3 ⇒ Γ

Π ` T ; (P1 | P2)P3 ⇒ Γ
(P-Seq-Choice)

∀([[T ]], P ) ∈ Π. y 6∈ var(P ) y 6∈ var(P1P2)

Π ` T1 ; P1(y as P2)⇒ Γ ] {y : T2}
Π ` T1 ; (x as P1)P2 ⇒ Γ ] {x : Γ(P1) ∩ T1T

−1
2 }

(P-Seq-Bind)

Π ] ([[T ]], P1
∗P2) ` T ; (P1P1

∗ | ε)P2 ⇒ Γ

Π ` T ; P1
∗P2 ⇒ Γ

(P-Seq-Rep)

Π ` T ; P1(P2P3)⇒ Γ

Π ` T ; (P1P2)P3 ⇒ Γ
(P-Seq-Seq)

Fig. 6. Typing Rules for Patterns
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subtyping rule (S-Fun) for functions.

A typing judgment Γ ` M : τ, T means that “under type environment Γ,
term M has type τ and effect T .” The typing rules are standard except for
conditions about effects and pattern matching. As for effects, consider rule (T-
Print) for example. The term print M first evaluatesM to a string s, prints s to
the output, and then returns the empty string ε. Thus, if M has a string type
T and effect T ′, then print M has the string type ε and effect T ′T . Conditions
about effects in other rules are also based on similar reasoning. (The condition
T ′ ≤ T in rule (T-Fix) may seem unnecessary, but it is actually necessary for
the typing of almost all recursive functions—either terminating or diverging—

with effects. Consider ` fix(f, x, print a; f x) : ε
a∗→ ∅, for instance. 2 )

As for pattern matching, see rule (T-Match). First, the input string M
must have a string type T1. Then, this input string of type T1 is matched
against the first pattern P1. If this pattern matching succeeds, it will yield
some variable bindings. In order to calculate the type of those bound variables,
we introduce an auxiliary relation T ; P ⇒ Γ, meaning that “if a string of
type T matches pattern P , then each variable x thus bound will have type
Γ(x).” In this way, the type environment Γ1 is calculated from T1 and P1 as
T1 ; P1 ⇒ Γ1, according to which the first body M1 is typed as Γ,Γ1 `M1 :
τ1, T

′
1. (By the way, if there is no string of type T1 that matches P1 at all,

that is, if the intersection T1 ∩ novar(P1) of T1 with the type of strings that
match P1 is empty, then this pattern matching never succeeds and is therefore
redundant. Although this does not affect type soundness, we may choose to
warn of such redundancy in the implementation for the sake of programmers’
convenience. We can not take it as a type error, however, because doing so
would break the type preservation property below.) Furthermore, because of
our first-match policy, an input string that matched the first pattern P1 will
not be an input string for the second pattern P2. Thus, the type T2 of input
strings for P2 is calculated as the difference T1∩novar(P1) of T1 and (the type
of strings that match) P1. This line of typing is repeated for each pattern Pm
and each body Mm for m = 1, . . . , n. Last, in order for the pattern matching
to be exhaustive, the type Tn+1 of input strings that matched no patterns
must be empty. Note that an empty type (that is, a type whose denotation
is an empty set) is different from type ε (that is, a type whose denotation is
the singleton set of the empty string). We write ∅ for an empty type. It never
matters which empty type we choose, but ε ∩ ε is one.

The typing relation T ; P ⇒ Γ for patterns is defined similarly to their
operational semantics s�P ⇒ θ. Again, the rules can be read in a bottom-up
manner as an algorithm that takes a pattern P with the type T of input strings
and calculates the resulting type environment Γ. Since a string type denotes
a (regular) set of strings, these typing rules for patterns are indeed similar

2 In this example, by the way, a∗ does not match the actual effect a∞ (the infinite sequence
of a). This does not break the effect soundness property stated below, since it is defined in
terms of each finite prefix of an infinite reduction sequence.
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to the operational semantics of patterns (cf. Figure 3). However, besides the
obvious distinction that those rules deal with string types instead of individual
strings, there are the following two major differences.

One is that a “memoization” technique is necessary for guaranteeing termi-
nation of this type inference algorithm. Specifically, we generalize the relation
to Π ` T ; P ⇒ Γ where Π is a set of pairs ([[T ]], P ) of (the denotation of)
a string type T and a pattern P . We abbreviate this relation to T ; P ⇒ Γ
when Π = ∅. Intuitively, Π remembers repetition patterns that have “already
appeared” during the typing, along with the corresponding input string type.
This is represented by rules (P-Rep) and (P-Seq-Rep). Then, if the derivation
comes across such a pair again, it can give a type environment with the type
of all variables empty, as represented by rule (P-Mem). Without these, typing
of any pattern that contains a repetition would diverge. 3

The other is that the typing relation itself does not mean success of pattern
matching; it just tells what strings are bound to each variable when the pattern
matching succeeds. This is most apparent in rule (P-Const), which implies
∅ ` a∗ ; b ⇒ ∅, for example. It means “matching a string of type a∗

against the (constant string) pattern b yields no variable binding,” but this
pattern matching never succeeds, of course. This may seem unpleasant but is
inevitable, in particular for the typing (P-Choice) of choice patterns P1 | P2,
where it is too restrictive to always require that the input string really matches
the first pattern P1. Consider, for instance, the use of an “any” pattern .∗ for
default cases like match M with P ⇒ M1 | x as .∗ ⇒ M2, where . is an
abbreviation of a | b | . . . with {a, b, . . .} being the set of all characters.
Even though the input string for .∗ can not be an arbitrary string, it is quite
natural to use the “any” pattern here, so we should not take it as a type
error. Nevertheless, we do want the type of x to reflect the fact that it is never
bound to strings that match P1. This is achieved in rule (P-Bind) by taking
the intersection of the input string type T and the range Γ(P ) of the pattern
P under the type environment Γ, where Γ(P ) is a type defined as Γ(s) = s,
Γ(P1 | P2) = Γ(P1) | Γ(P2), Γ(x as P ) = Γ(x) ∩ Γ(P ), Γ(P ∗) = Γ(P )∗,
and Γ(P1P2) = Γ(P1)Γ(P2). The same idea is also adopted in (P-Seq-Bind).
(In previous work [6], by contrast, it was not possible to give a precise type
to as-patterns in such non-tail positions. Since the theory of regular trees is
quite similar to that of regular strings, we conjecture that our approach is also
applicable to that work.) Note that these rules extend type environments only
conservatively by using ] and thus require linearity of variables in a pattern.

For the sake of convenience, we may implicitly substitute a type T with
another type T ′ when [[T ]] = [[T ′]]. This never affects the result of typing.

3 Formally, even when (P-Mem) is applicable, we do not actually forbid applying the other
rules, because the typing rules are inductively defined and each type derivation is anyway
guaranteed to be finite. This choice does not affect the result of typing. Of course, from an
implementation viewpoint, it would be reasonable to apply (P-Mem) whenever possible.
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Example 4.1 Matching strings of type aa∗ against pattern (x as a∗)(y as a∗)
binds x to a string of type aa∗ and y to ε. That is, the judgment aa∗ ;

(x as a∗)(y as a∗) ⇒ x : aa∗, y : ε can be derived as below. Note how the
typing reflects our first-match and longest-match policies.

∆

Π1 ` aa∗ ; (aa∗)(z as (y as a∗))⇒ y : ε, z : ε
(P-Seq-Seq)

...

Π1 ` ∅; a∗ ⇒ ∅ (P-Rep)

Π1 ` ∅; y as a∗ ⇒ y : ∅ (P-Bind)

Π1 ` ∅; z as (y as a∗)⇒ y : ∅, z : ∅ (P-Bind)

Π1 ` ∅; ε(z as (y as a∗))⇒ y : ∅, z : ∅ (P-Seq-Const)

Π1 ` aa∗ ; (aa∗)(z as (y as a∗)) | ε(z as (y as a∗))⇒ y : ε, z : ε
(P-Choice)

Π1 ` aa∗ ; (aa∗ | ε)(z as (y as a∗))⇒ y : ε, z : ε
(P-Seq-Choice)

∅ ` aa∗ ; a∗(z as (y as a∗))⇒ y : ε, z : ε
(P-Seq-Rep)

∅ ` aa∗ ; (x as a∗)(y as a∗)⇒ x : aa∗, y : ε
(P-Seq-Bind)

where ∆ is the following derivation:

Π2 ` a∗ ; a∗(z as (y as a∗))⇒ y : ∅, z : ∅ (P-Mem)

Π2 ` a∗ ; a(a∗(z as (y as a∗)))⇒ y : ∅, z : ∅ (P-Seq-Const)

Π2 ` a∗ ; (aa∗)(z as (y as a∗))⇒ y : ∅, z : ∅ (P-Seq-Seq)

..

.

Π2 ` ε ; a∗ ⇒ ∅ (P-Rep)

Π2 ` ε ; y as a∗ ⇒ y : ε
(P-Bind)

Π2 ` ε ; z as (y as a∗)⇒ y : ε, z : ε
(P-Bind)

Π2 ` ε ; ε(z as (y as a∗))⇒ y : ε, z : ε
(P-Seq-Const)

Π2 ` a∗ ; (aa∗)(z as (y as a∗)) | ε(z as (y as a∗))⇒ y : ε, z : ε
(P-Choice)

Π2 ` a∗ ; (aa∗ | ε)(z as (y as a∗))⇒ y : ε, z : ε
(P-Seq-Choice)

Π1 ` a∗ ; a∗(z as (y as a∗))⇒ y : ε, z : ε
(P-Seq-Rep)

Π1 ` aa∗ ; a(a∗(z as (y as a∗)))⇒ y : ε, z : ε
(P-Seq-Const)

with Π1 = {([[aa∗]], a∗(z as (y as a∗)))} and Π2 = Π1∪{([[a∗]], a∗(z as (y as a∗)))}.
2

Soundness of the above type system is proved as follows by standard ar-
guments with a few properties about pattern matching.

Theorem 4.2 (Type and Effect Soundness) If ` M : τ, T and M
s1→

M1
s2→ M2

s3→ . . .
sn→ Mn, then s1s2s3 . . . sn is a prefix of some s ∈ [[T ]].

Furthermore, if Mn is irreducible (that is, Mn
s→ M ′ for no s and M ′), then

Mn is a value of a subtype of τ (that is, Mn = v with ` v : τ ′, ε and τ ′ ≤ τ
for some v and τ ′) and s1s2s3 . . . sn ∈ [[T ]].

Proof. Immediate from the progress and type preservation lemmas below.2

Lemma 4.3 (Progress) If ` M : τ, T and M is not a value, then M is
reducible (that is, M

s→M ′ for some s and M ′).

Proof. Induction on the derivation of ` M : τ, T with the following two
lemmas for the case of (T-Match). 2

Lemma 4.4 (Determinacy and Termination of Pattern Matching) If
s � P ⇒ θ1 and s � P ⇒ θ2, then θ1 = θ2. In addition, if s ∈ [[novar(P )]],
then s� P . Conversely, if s 6∈ [[novar(P )]], then s� P ⇒ ⊥.
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Lemma 4.5 (Exhaustiveness of Pattern Matching) If Γ ` match s with
P1 ⇒M1 | . . . | Pn ⇒Mn : τ, T , then s� Pi for some 1 ≤ i ≤ n.

Lemma 4.6 (Type Preservation) If Γ ` M : τ, T and M
s→ M ′, then

Γ `M ′ : τ ′, T ′ for some τ ′ and T ′ with τ ′ ≤ τ and sT ′ ≤ T .

Proof. Induction on the derivation of Γ ` M : τ, T with the following two
lemmas for the cases of (T-App) and (T-Match), respectively. 2

Lemma 4.7 (Substitution) If Γ, x : τ ′ ` M : τ, T and Γ ` v : τ ′, ε, then
Γ ` [v/x]M : τ, T .

Lemma 4.8 (Soundness and Completeness of Type Inference for Pat-
tern Matching) If T ; P ⇒ Γ, then [[Γ(x)]] = {θ(x) | s ∈ [[T ]] ∧ s � P ⇒
θ ∧ θ 6= ⊥} for any x ∈ var(P ) = dom(Γ).

The last lemma is much trickier than it may seem (the ⊇ direction, in
particular). For instance, if we allowed (possibly) empty repetition patterns
such as ε∗, this property would not hold with a counterexample being a ;

ε∗(y as a) ⇒ y : ∅, which could break type soundness (though it actually
does not, fortunately, because we have precluded such patterns in Section 3
without loss of generality). Accordingly, the proof is far from trivial, involving
auxiliary inductive relations to state the invariant which Π keeps. Details of
the proof are given in the aforementioned manuscript.

5 Programming Examples

This section gives a few tiny examples of programming (and typing) in λre .

Booleans

By using the strings t and f (of length 1) as true and false, the boolean alge-
bra can be encoded into λre , where a conditional expression if M0 then M1 else M2

is encoded by a pattern matching match M0 with t ⇒ M1 | f ⇒ M2. Thus,
type bool can be defined to be t | f. In combination with recursive functions,
this makes λre Turing-complete.

Lists

Let T be any string type whose denotation contains no string that includes
the character , (comma). Then, lists of strings of this type can be represented
by strings of type (T ,)∗ as follows: the empty list is represented by ε; the
cons of an element s and (the representation of) a list ` is represented by
s ˆ , ˆ `; destruction of a list ` can be implemented by pattern matching like
match ` with ε ⇒ M1 | (x as T ),(y as .∗) ⇒ M2, where x is the head (“car”)
and y is the tail (“cdr”) of `. Even though the pattern for y is written as
.∗, its type is automatically and precisely inferred as (T ,)∗ provided that ` is
typed (T ,)∗. Note that this is an example of the use of as-patterns in non-tail
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positions, which is one of the technical advantages of the present type system
to previous work [6].

Filtering of List

Simple filtering like “grep” over (the above encoding of) lists can be im-
plemented in the following obvious way, as far as the filtering pattern T ′ is
static (that is, given at compile-time).

fix(f, x,match x with

ε⇒ ε | (y as T ′),(z as .∗)⇒ ,ˆy ˆf(z) | T ,(z as .∗)⇒ ,ˆf(z))

As expected, this filtering function can be typed as (T ,)∗ ε→ ((T ∩ T ′),)∗.

Parsing and Pretty-Printing

Let us assume (without formal definitions, just for the sake of brevity)
that we have natural numbers and standard operations on them as primitives.
Then, the conversion between natural numbers and their string representations
can be programmed as terms

let dig2chr =

λd. if d = 9 then 9 else if d = 8 then 8 else . . . if d = 1 then 1 else 0 in

fix(nat2str , n,

if n < 10 then dig2chr(n) else nat2str(n div 10) ˆ dig2chr(n mod 10))

and

let chr2dig = λc.match c with 9⇒ 9 | . . . | 0⇒ 0 in

fix(str2int , s,match s with

(d as .)⇒ chr2dig(d)

| (d as .)(t as .∗)⇒ chr2dig(d)× 10 + str2int(t))

of types nat
ε→ ιι∗ and ιι∗

ε→ nat, respectively, where ι = 0 | . . . | 9. Note,
however, that our type system is not strong enough to type the codomain of
nat2str as 0 | (ι∩0)ι∗ excluding actually impossible results such as 00. Doing
so would require dependent types over nat.

Verification of User Input

Suppose that a string instr is typed .∗ and stands for some user input,
and that the programmer expects it to be the representation of a date in the
format of DD/MM/YYYY. Then, a partial verification of this input string
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can be implemented by the following function with ι = 0 | . . . | 9.

let verify input = λs.match s with ιι/ιι/ιιιι⇒ s | .∗ ⇒ print ERR in

verify input instr

The function verify input is typed .∗
ε|ERR→ ιι/ιι/ιιιι | ε. This tells us that

verify input returns only a string of the correct format or an empty string,
and that it may also output the message ERR as an effect. In addition, the
rule (T-Match) prevents the programmer from forgetting error handling (the
“default” case).

Filtering of Infinite Stream

Let us assume that a function read line of type ε
ε→ .∗ inputs one line from

an infinite stream. (Its effect is ε because our present effect system concerns
only the output of a program.) Then, a filtering program that escapes HTML
meta-characters (< and >) can be implemented as follows:

let escline = fix(el , s,match s with

(s1 as .∗)<(s2 as .∗)⇒ (el s1) ˆ &lt; ˆ (el s2)

| (s1 as .∗)>(s2 as .∗)⇒ (el s1) ˆ &gt; ˆ (el s2)

| .∗ ⇒ s) in

fix(main, x, print (escline (read line ε)); main x)

The functions el and main can be typed as .∗
ε→ (. ∩< | >)

∗
and ε

(.∩<|>)
∗

→ ∅
respectively. This is an example of typing of diverging programs.

6 Conclusions

We have presented λre , a tiny text-processing language with a regular expres-
sion type (and effect) system for strings.

Besides XDuce, Igarashi and Kobayashi’s resource usage analysis [9] (and
its predecessors) is also relevant to our work. It is a generic framework to
statically analyze (and verify) the pattern of access in a program to various
kinds of resources such as files and memory regions. Our regular expression
effect system can be seen as a simple instance of their framework. However,
type checking in their system is undecidable in general because their access
pattern language has recursion, with which equivalence and inclusion become
undecidable. On the other hand, if explicit type annotations are given for
bound variables in fix, type checking in our system is decidable because our
string types are regular. There is also plenty of work in the context of type
systems for concurrent programs which makes use of regular expression-like
type languages that (more or less) resemble our effect language. Nierstrasz
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proposed regular types to infer and check the behavior of objects [16]. A
similar idea is adopted by Nielson and Nielson in their study on concurrent
ML [14,15].

Other relevant work is refinement types [2], which allow a kind of subtyping
among data types in ML. While the relationship between our regular expres-
sion types and refinement types is not clear yet, we conjecture that neither
subsumes the other since refinement types require declaration of data types
and insertion of tags by the programmer (as in ordinary ML). More accurate
comparison of these type systems is left for future work.

In CDuce [3] and a recent version of XDuce [7], the problem of calculating
the precise types of non-tail pattern-variables has been solved independently.
However, it seems that their settings are different from ours in several points.
In CDuce, types and patterns are represented as trees, not strings. Although it
is straightforward to encode strings as trees, strings require more equivalence
than their encodings in trees, which differentiates the problem. For example,
((a, b), c) and (a, (b, c)) are different as trees but (ab)c and a(bc) are the same
strings. In XDuce, a precise type inference algorithm is recently implemented
that directly calculates the intersection of a pattern and an input type au-
tomaton. However, the current version of XDuce employs non-deterministic
pattern matching rather than first-match, which would require modifications
to the algorithm [Haruo Hosoya, personal communication, January 2003].

This work is far from complete yet. In particular, an efficient algorithm
for type checking and—more importantly—type reconstruction in λre is es-
sential in practice but unavailable at present. A major technical problem here
is that standard type reconstruction by constraint solving introduces recur-
sion and thereby requires more expressive solutions than regular expressions
(context-free grammars, at least). Recall, for example, the recursive function
f(n) = if n ≤ 0 then ε else a ˆ f(n− 1) ˆb in Section 1. From its type recon-
struction, we obtain a constraint like ε | aαb ≤ α, which has no least solution
within regular expressions because all of a∗b∗ ≥ (ε | aa∗b∗b) ≥ (ε | ab |
aaa∗b∗bb) ≥ (ε | ab | aabb | aaaa∗b∗bbb) ≥ . . . are valid solutions. We are
currently working on a type reconstruction algorithm which gives “modest”
approximate solutions, incorporating similar work [12,13] from the domain of
natural language processing.

Another direction of future work is to incorporate input effects in a “dual”
manner to the output effects. A typing judgment will then be like Γ ` M :
τ, Ti, To, meaning that “under type environment Γ, the term M evaluates to
a value of type τ and outputs a string of type To, provided that the input is a
string of type Ti.” For example, letting input() be the primitive for input, the
input effect Ti of the program match input() with y⇒ print YES | n⇒ print NO
would be y | n with its output effect To being YES | NO. That is, this program
does not “go wrong” as far as its input is either y or n. In this way, the input
effect of a program represents the form of input with respect to which the
program runs without an error such as match failure.
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