

STUDY ON PROOF OF TYPE PRESERVATION IN

CPS TRANSFORMATION

CPS 変換における型保存の証明に関する研究

by

Yuki Watanabe

渡邊 裕貴

A Master Thesis

修士論文

Submitted to

the Department of Computer Science

the Graduate School of Information Science and Technology

the University of Tokyo

on February 8, 2011

in partial fulfillment of requirements

for the Degree of Master of Information Science and Technology

Thesis supervisor: Akinori Yonezawa 米澤 明憲

Professor of Computer Science

ABSTRACT

Approaches to proving type preservation property of call-by-value CPS transformation are in-

vestigated for various type systems and formalization methods. Firstly, Coq proof scripts of

simple type preservation are compared between four formalization methods: the unsorted

named, two-sorted named, two-sorted de Bruijn, and two-sorted locally nameless representa-

tions. It is shown that two-sorted representations make proofs of type preservation simpler

and that the locally nameless representation is more suitable than the other representations

when term substitution is involved in language definition and proofs. Next, a type system with

singleton types and subtyping is defined so that the semantics of CPS-transformed terms can

be denoted using singleton types. A proof sketch of type preservation is presented for the tar-

get language typed with singleton types. Lastly, it is shown that proving the preservation of

dependent types in the call-by-value CPS transformation is more difficult because it requires a

proof of term equivalence that is not required in the case of the call-by-name CPS transforma-

tion. Conveying the semantics of terms with singleton types is proposed to show the required

equivalence.

論文要旨

本論文では call-by-value の CPS 変換における型の保存を証明するためのアプローチを、様々

な型システムや形式化手法に対して追究する。初めに、単純な型の保存の Coq での証明に

関して四つの形式化手法 (the unsorted named, two-sorted named, two-sorted de Bruijn, and

two-sorted locally nameless representations) を比較する。Two-sorted な手法では証明が簡

単になり、また項の置換を取り扱う際には the locally nameless representation がより適して

いることを示す。続いて、シングルトン型およびサブタイピングを含む型システムを定義

し、シングルトン型を用いて CPS 変換後の項の意味論を表す。そして変換後の項がシング

ルトン型で型付けされるような型の保存を示すための証明の概略を示す。最後に、

call-by-value の CPS 変換で依存型の保存を示すためには、call-by-name の場合には不要な等

価関係を導く必要があり、そのために証明が難しくなっていることを示す。その等価関係

を導くためにシングルトン型を使って項の意味論を伝達するアプローチを提案する。

ACKNOWLEDGMENT

I thank Toshiyuki Maeda for useful discussions about type systems. I am also grateful to Akino-

ri Yonezawa for helpful guidance.

CONTENTS

1 Introduction ... 1

2 Background: CPS Transformation... 3

3 Simple Type Preservation and Coq Formalization Methods ... 4

3.1 Named Representations .. 6

3.1.1 Unsorted Named Representation .. 6

3.1.2 Two-Sorted Named Representation ... 8

3.2 Indexed Representations ... 10

3.2.1 Two-Sorted de Bruijn Index .. 11

3.2.2 Two-Sorted Locally Nameless Representation ... 14

3.3 Comparison of Coq Formalization Methods .. 19

4 Proving Semantics Preservation via Singleton Types ... 21

4.1 Encapsulating Semantics into Singleton Types .. 23

4.2 CPS Types ... 24

4.3 Type System of the New Target Language .. 24

4.4 Type Preservation in the CPS Transformation ... 28

5 Preservation of Dependent Types ... 31

5.1 Call-by-Name vs. Call-by-Value.. 32

5.2 Using Singleton Types to Convey Term Equivalence .. 33

6 Related Work .. 36

6.1 Typed Lambda Calculi ... 36

6.2 Representations of Lambda Calculi in Coq ... 36

6.3 Verification of CPS Transformation ... 37

6.4 Mechanized Verification of Compilers ... 38

7 Conclusion.. 38

References ... 39

Appendix 1. Definition of the Target Language with Singleton Types ... 43

A 1.1 Syntax .. 43

A 1.2 Opening .. 43

A 1.3 Context Well-formedness .. 43

A 1.4 Type Well-formedness ... 43

A 1.5 Term Typing ... 44

A 1.6 Subtyping ... 44

A 1.7 Term Reduction ... 45

A 1.8 Type Reduction ... 45

Appendix 2. Definition of the Dependently Typed Source Language ... 45

A 2.1 Syntax .. 45

A 2.2 Opening .. 45

A 2.3 Context Well-formedness .. 46

A 2.4 Kind Well-formedness .. 46

A 2.5 Type Kinding .. 46

A 2.6 Term Typing ... 46

A 2.7 Kind Equivalence .. 46

A 2.8 Type Equivalence ... 47

A 2.9 Term Equivalence ... 47

LIST OF FIGURES

Figure 1: Simply typed lambda calculus .. 4

Figure 2: Target language in the two-sorted named representation ... 8

Figure 3: Source language in the de Bruijn index representation ... 11

Figure 4: Target language in the two-sorted de Bruijn index .. 12

Figure 5: Typing rules of the source language in the locally nameless representation.................. 15

Figure 6: Target language in the two-sorted locally nameless representation 17

Figure 7: Opening operation in the target language with singleton types ... 25

Figure 8: Partial definition of the dependently typed target language.. 34

Figure 9: CPS transformation to the dependently typed target language .. 34

1

1 Introduction

Compilers are important programs in the sense that many other programs, or even compilers

themselves, depend on compilers to produce executable code from source code. For the ex-

ecutable code to work as expected, the compiler must produce code that behaves in the same

way as the source code. In other words, the semantics of the program must be preserved be-

tween the source and executable code.

Much research has been done to ensure that compilers preserve the semantics of code [8,

10, 18, 20, 25]. One of the standard ways to do that is to formally define the transformation al-

gorithm of the compiler from the source to the target language and then prove that any code

transformed by the algorithm has the equivalent semantics in the source and the target lan-

guage. Because such a formalization and proof are often complex and prone to human errors, it

is becoming more common to use proof assistant software such as Coq [7, 12].

Although using a proof assistant ensures strict correctness of the proof, it requires the

whole proof to be written in a way that can be accepted by the predefined axioms of the proof

assistant. Therefore, when proving semantics preservation using a proof assistant, we some-

times need to take an approach different from when doing a manual proof. Especially, the defi-

nitions of the language syntax and semantics should be so formalized that conditions that ap-

pear in proofs can be represented by simple expressions. Otherwise, the formalization and the

proof will be much more complex, tricky, and hard to follow than in a manual proof.

Alpha equivalence in lambda calculi is an instance of such a problem. In a manual proof,

typically, alpha equivalence between lambda terms is taken as implicit; alpha-equivalent terms

are considered syntactically equivalent and freely exchangeable with each other. In a proof us-

ing Coq, however, alpha equivalence cannot be treated implicitly because the logic used in Coq

does not allow extending the definition of syntactic equivalence so that alpha-equivalent terms

can be treated as if syntactically equivalent. Consequently, we need during the proof to main-

tain a property that shows alpha-equivalent terms can be safely considered syntactically

2

equivalent.

To overcome this difficulty, it has been proposed to formalize the syntax of lambda calculi

in special ways. In the de Bruijn index representation [16], variables are represented as natural

numbers that identify the corresponding variable bindings, making alpha-equivalent terms

syntactically equivalent. In the locally nameless representation [2, 9, 19], both usual named

variables and de Bruijn indices are used to make the formalization of term substitution easier

while maintaining the nice properties of the de Bruijn index representation. In the two-sorted

representation [13], two namespaces are used to distinguish variables introduced in transfor-

mation from those that have existed since before the transformation.

In this thesis, we investigate and develop type-based verification techniques for CPS

transformation of simply and dependently typed lambda calculi. CPS transformation [31, 35] is

part of a typical compilation algorithm for a functional language. We verify CPS transformation

algorithms by showing that any well-typed term is transformed into a well-typed term.

This thesis chiefly makes three contributions. The first contribution is comparison be-

tween various ways of language formalization in the Coq proof assistant. It is shown how the

simply typed lambda calculus and CPS transformation algorithms can be formally defined in

Coq using each of the unsorted named, two-sorted named, two-sorted de Bruijn index, and

two-sorted locally nameless representations. We also examine how their differences affect the

Coq proof of the type preservation property of CPS transformation for simply typed source and

target language.

The second contribution is that a typed lambda calculus with singleton types [3, 4, 24, 34]

is introduced as the target language of CPS transformation. Singleton types are used to denote

the semantics of transformed terms. A proof sketch is presented to show type preservation of

the CPS transformation from the simply typed lambda calculus to the target language typed

with singleton types.

The third contribution is an approach to showing type equivalence that is necessary to

prove the type preservation property of the call-by-value CPS transformation on a dependently

3

typed lambda calculus. Dependent types [5, 17, 37] allow typing with more specific informa-

tion about terms than simple types do. To compile a dependently typed language to another

dependently typed language, CPS transformation must preserve the dependent typing. Howev-

er, proving dependent type preservation of the call-by-value CPS transformation is much hard-

er than that of the call-by-name CPS transformation because we need to show equivalence that

is not needed in the cases of simple type preservation or the call-by-name CPS transformation.

In this thesis, using singleton types is proposed to show the equivalence needed. The author

conjectures that the approach will make it possible to prove dependent type preservation of

the call-by-value CPS transformation.

2 Background: CPS Transformation

CPS transformation is a procedure that transforms a lambda term into the continua-

tion-passing style (CPS) [35]. In CPS, a function call never returns: a function is always called

with a continuation function given as an argument and then, instead of returning the result to

the caller, it calls the continuation giving the result as the argument. After CPS transformation,

the program is nearer to the assembly language in that the order of term evaluation is explicit.

Especially, return from a function is represented as a call to the continuation.

Before defining CPS transformation, we define the syntax of a lambda calculus:

The definition is much like the pure lambda calculus, but we have the unit constant value so

that the unit type, which is defined later, is inhabited. For now, we use this definition for both

the source and target languages.

On the basis of the definition above, the CPS conversion algorithm is defined as a function

 that maps source language terms to target language terms:

4

The definition simply follows Plotkin’s well-known algorithm that transforms a lambda term

into the call-by-value CPS [31]. Any transformed term is a function that takes as the argument a

continuation function that receives the evaluation result. The variable term is transformed

into a function that, when called with a continuation, calls the continuation with the variable

value passed to the continuation. The transformation of the unit value is analogous to that of a

variable. That of a lambda abstraction is also similar, but subterm is recursively trans-

formed. For the function application term , the transformed term is a function that, given

continuation , evaluates the term , that is, passes the continuation

 to the transformation of term . As a result, this continuation is called

with the evaluation result of term and evaluates the term . Likewise, the

continuation is called with the result of term . Finally, function application is

performed in the evaluation of term . Note that variable and are bound to the func-

tion and the argument values, respectively. The function is given continuation as well as the

original argument and this continuation receives the result of the function application.

3 Simple Type Preservation and Coq Formalization Methods

In this section, we define a CPS transformation algorithm for the simply typed lambda calculus,

then examine and compare four types of formalizations to prove type preservation property of

Figure 1: Simply typed lambda calculus

5

the transformation using the Coq proof assistant. We use the well-known definition of the

simply typed lambda calculus (Figure 1) for both the source and target languages.

The term syntax is defined as in Section 2. The function type is represented by an arrow as

usual. The unit type is the type of the unit value. In addition, the target language has the bot-

tom type that is the type of imaginary terms returned by continuation functions. A typing con-

text is defined as a finite partial function that maps variable names to types. The typing rules

are defined in the standard manner. Note that the only difference between the source and tar-

get languages is that the target language has the bottom type. There is no typing rule for the

bottom type because no term has the bottom type. Since we are focusing on the proof of type

preservation in this thesis, we simply assume the soundness of the type system and do not

elaborate on the proof of the soundness, which should be found in any textbook on typed

lambda calculi [21, 29].

We now define the CPS transformation of types and contexts:

The unit type is transformed into itself. For a function type, the types of the argument and the

result are recursively transformed and the result type becomes the argument type of the con-

tinuation that receives the result of the function. A typing context is transformed by simply

transforming the types in it.

The type preservation property states that, if a term in the source language is well-typed,

the transformation of the term in the target language is well-typed as well.

Theorem 1: (Type preservation) If the typing judgment is derivable in the source

language, then is derivable in the target language.

In the rest of this section, we look into how this theorem can be proved using the Coq

proof assistant with various formalizations of the source and target language syntaxes, typing

rules, and transformation algorithms.

6

For brevity, is abbreviated as in the rest of this thesis. Note that is

 .

3.1 Named Representations

In the CPS transformation of a term, a new lambda abstraction is introduced so that the con-

verted term can receive a continuation. For the transformation of a function term, two more

lambda abstractions are introduced that are passed as continuations to the recursively trans-

formed subterms. Then, what are the names of the variables bound in these new lambda ab-

stractions? The transformed term may have an undesired semantics if a variable name that is

already bound elsewhere is bound again in the new lambda abstractions. To avoid this problem,

the variable names for the new lambda abstractions must be fresh.

In the next two subsections, we introduce two formalization methods, that is, the unsorted

named representation and the two-sorted named representation, and see that the latter eases

the burden in proving the type preservation property. These methods differ in the way of

choosing variable names for lambda abstractions newly introduced in the transformation.

In the two methods, variables are distinguished by names as in usual lambda calculi (and

hence they are called “named representations”). The set of names may be any infinite set as

long as the equality of any two elements of the set is decidable. We use the set of natural num-

bers as the set of names in proofs using Coq because the proof of the decidability is provided in

Coq’s built-in library.

3.1.1 Unsorted Named Representation

In the unsorted named representation, the names of new variables are carefully chosen so that

the new variables do not override existing variable bindings. We compute the set of free va-

riables of the (sub)term and choose a fresh name that is not in the set. The set of the free va-

riables of a term is computed as follows:

7

We use an (ordered) list of natural numbers to represent a set of variables in Coq. Given a list of

natural numbers, we can yield a fresh name by calculating the maximum number in the list

plus one.

Now we redefine the term transformation algorithm with the choice of new variable

names taken into account:

We do not care about variables that do not occur free in the (sub)term. Such variables can be

safely re-bound even if they are bound outside the term. To allow re-binding of variables, we

assume that the mapping from names to types in a typing context can be redefined. For exam-

ple, if , then unless .

The statement of the type preservation property shown above (Theorem 1) is actually too

strong to prove in the current named representation setting. Since new lambda abstractions

are introduced in the transformation, the variables bound in those abstractions, which has no

corresponding counterparts in the source term, are added to the typing context when typing

subterms of a transformed term. The statement of the type preservation have to be so wea-

kened as to allow existence of such variables in the typing context of the target language (oth-

erwise, we cannot appeal to the induction hypothesis to show that a subterm is well-typed).

We define an auxiliary predicate that states that, for each variable in a specific list of variables,

if the variable is mapped to a type in the source typing context, then the variable is mapped to

the corresponding type in the target typing context:

Using this predicate, the type preservation property is restated:

Theorem 2: (Type preservation) If the typing judgment is derivable in the source

language and holds, then is derivable in the target lan-

guage.

8

This theorem can be proved in the Coq proof assistant by induction on the derivation of

the source typing judgment. The proof is straightforward; we sketch only the case of the abs

rule here.

In the case of the abs rule, where and and , the

goal is to derive

By applying applicable rules as follows, the goal is reduced to showing

 where :

By the definition of transformation algorithm, variable is either or not a free variable of

 and thus we have . This enables applying the induction

hypothesis to to obtain .

3.1.2 Two-Sorted Named Representation

In the two-sorted named representation, variables in the target language are categorized into

two namespaces: one is for variables that appear in source terms and the other for variables

 ’

 ’

Figure 2: Target language in the two-sorted named representation

9

that are introduced in the transformation. The names of variables introduced in the transfor-

mation never override variable bindings from source terms because they are in the different

namespaces. As a result, the names of new variables can be arbitrarily chosen without care

about conflict with existing names. This idea of using two namespaces in the target language

originated with Dargaye and Leroy [13].

Now we redefine the target language in the two-sorted manner as shown in Figure 2. The

syntax of terms contains two forms of the variable term and the lambda abstraction term. Va-

riables without a prime are used for variables that come from source terms and variables with

a prime are for variables introduced in the transformation. The syntax of types and typing

contexts are the same as in the unsorted representation. The typing judgment is of the new

form , which contains two typing contexts. The first context is for variables without

a prime and the second for variables with a prime. The typing rules of a variable and a lambda

abstraction term correspondingly have two forms.

The transformation algorithm for terms is redefined as follows (the definition of the

source language is just the same as in the previous unsorted representation):

Variables that appear in the source term are simply transformed into a variable with the same

name without a prime. Variables that are introduced in the transformation are all with a prime.

Before proving the type preservation property, we introduce an auxiliary lemma:

Lemma 3: If , then .

In the Coq formalization of the named representation, the relation is defined as:

The proof of Lemma 3 is by straightforward induction on the structure of the ordered list

representing the typing context.

10

Theorem 4: (Type preservation) If the typing judgment is derivable in the source

language, then is derivable in the target language.

The proof, similar to that of Theorem 2, is by induction on the derivation of the source

typing judgment. We sketch the case of the var and abs rules here.

 In the case of the var rule, where and , the goal is to derive

By applying applicable rules as follows, the goal is reduced to showing :

Applying Lemma 3 to gives .

 In the case of the abs rule, where and and , the

goal is to derive

By applying applicable rules, the goal is reduced to .

This is equivalent to because

by definition. This goal is sufficed by applying the induction hypothesis to .

This proof is more simplified than that of Theorem 2 because we do not have to prove a condi-

tion about the CC predicate before applying the induction hypothesis.

3.2 Indexed Representations

Lambda terms that differ only in the choice of bound variable names are alpha-equivalent

terms. For example, the terms , , and are all alpha-

equivalent to each other. Alpha-equivalent terms are often considered substitutable with each

other in manual proofs because those terms have the same semantics. In proofs using the Coq

proof assistant, however, equivalence and substitutability of such terms must be explicitly for-

malized and treated, which makes the statements of theorems more redundant and proofs

more complicated. To overcome this difficulty, in the following subsections, we introduce two

11

types of formalization of lambda calculus in which alpha-equivalent terms are all syntactically

equivalent. We also prove the type preservation property in each of the two formalizations as

well.

3.2.1 Two-Sorted de Bruijn Index

The formalization introduced in this subsection is the two-sorted version of the de Bruijn index

representation. The de Bruijn index representation, named after its inventor, uses natural

numbers instead of names to represent variables [16]. No explicit name is bound in a lambda

abstraction and each variable that occurs in a term is distinguished by its number that indi-

cates the corresponding binding. The named term , for example, is represented

as using de Bruijn indices. Variable 0 corresponds to the binding by the innermost

lambda abstraction (relative to the variable occurrence) and Variable 1 to the second inner-

most abstraction, and so on. If there is no abstraction that corresponds to a variable’s number,

the variable is considered a free variable. For example, the named term is

represented as with de Bruijn indices on the assumption that variable corresponds

to the variable first bound outside the term.

We first redefine the source language using the de Bruijn index representation (Figure 3).

Note that the variable term is represented by a natural number instead of a name and that the

lambda abstraction term has no name to bind. The typing context is defined as a finite ordered

list of types. We write the nth element of list as . Variable is well-typed if is the

Figure 3: Source language in the de Bruijn index representation

12

type of the variable (the var rule) because the types of free variables are stored in the context

in the order the variables are bound (the abs rule).

The new formalization of the target language combines the two-sorted representation, in-

troduced in the previous section, with the de Bruijn index representation (Figure 4). The new

definition of the syntax and typing rules resemble those of the two-sorted named representa-

tion except that the new definition uses the de Bruijn index representation.

The transformation algorithm of terms and typing contexts are also redefined according to the

de Bruijn index representation:

The proof of the type preservation property in the two-sorted de Bruijn representation

proceeds in the same way as in the two-sorted named representation. We first prove a lemma

corresponding to Lemma 3 used in the two-sorted named representation:

Lemma 5: If , then .

The proof is by a straightforward induction on the structure of the ordered list

 ’

 ’

Figure 4: Target language in the two-sorted de Bruijn index

13

representing the typing context.

Theorem 6: (Type preservation) If the typing judgment is derivable in the source

language, then is derivable in the target language.

The proof is by induction on the source typing derivation, similar to the proof of Theorem

4.

In the named representations, alpha conversion may be required to avoid variable cap-

tures in capture-avoiding substitution of a term. For example, the substitution of free variable

 in the term with yields where , in which bound va-

riable has been renamed to . Such renaming makes a proof that contains term substitution

more complicated because during the proof we need to track which variables are renamed,

ensure that alpha conversion is correctly done, etc. Moreover, the statement of the theorem

being proved often need to be carefully specified so that the induction hypothesis can be ap-

plied to conditions that contain alpha-converted terms in an inductive proof of the theorem.

In the de Bruijn index representation, such proof burden is eased because alpha-

equivalent terms are always syntactically equivalent [16]. However, the numbers that represent

free variables need to be adjusted during substitution so that the numbers continue to denote

the same variables as before the substitution. For example, substituting the free variable in the

term to the term results in , in which free variable 2 has been in-

cremented to 3 because the substituted free variable was in a lambda abstraction. In a proof

that contains term substitution, we need to ensure that variables are correctly adjusted during

substitution, track which numbers denote the same free variable, etc. As a result, we encounter

another difficulty in proving theorems in the de Bruijn index representation.

Using the de Bruijn index representation is a bad idea also if variables appear in types in

the language involved. An example of such a language is the dependently typed lambda calcu-

lus described in Section 5. In the dependently typed lambda calculus, typing such as

is possible. Note that variable appears in the type . With de Bruijn indices, this typing

14

judgment would be represented as

where the same two types and have different syntactic representations. To

type-check this judgment, we need to check if these two types are the same type, but the com-

parison of the types is much more complicated when the same two types are syntactically dif-

ferent.

A major cause of the drawbacks of the de Bruijn index representation is that the number

representing a free variable in a term depends on the context in which the variable appears;

the same free variables in a term may be represented by different numbers. As a result, free

variables’ number need to be adjusted when comparison, substitution, etc. happen in a differ-

ent context. The locally nameless representation, introduced in the next subsection, solves this

problem by using names for free variables while using de Bruijn indices for bound variables.

3.2.2 Two-Sorted Locally Nameless Representation

In the locally nameless representation [2, 9, 19], free variables are represented by names as in

the usual named representation and bound variables are represented by de Bruijn indices. The

locally nameless representation inherits the nice property of the de Bruijn index representa-

tion: alpha-equivalent terms are always syntactically equivalent. At the same time, the same

free variables have the same representation because they are represented by names.

In the locally nameless representation, term substitution can be done by simply replacing

free variables in a term with another term. Renaming bound variables is not required because

they are not represented by names unlike the named representation. Adjusting free variables’

numbers is not required either because they are distinguished by names rather than de Bruijn

indices. For example, the substitution of free variable in the term with yields

 .

The definition of the source language in the locally nameless representation is

straightforward:

15

The term syntax contains both the bound variable term and the free bound variable term . A

typing context is a mapping from names to types as in the named representation since free va-

riables are distinguished by names.

The notion of free and bound variables depends on the context in which the term that

contains the variables is interpreted. For example, the term contains a bound

variable represented as 1, but if we focus on the subterm , the variable should be con-

sidered free. Therefore, bound variables have to be converted to free variables depending on

the context, and vice versa. The term opening operation , which converts bound vari-

able to free variable , is defined as

and is abbreviated as . The definition of the opposite closing operation, which

converts a free variable to a bound variable, is omitted in this thesis because it is not needed to

prove type preservation property.

The typing rules of the source language in the locally nameless representation are defined

using the opening operation (Figure 5). Note that the rules other than the abs rule are identical

to those in the named representation. In the abs rule, the lambda abstraction term is

well-typed if the subterm is well-typed. The subterm is opened with some variable when it

Figure 5: Typing rules of the source language in the locally nameless representation

16

is typed. The variable name can be arbitrarily chosen as long as the subterm is well-typed be-

cause the semantics of the term does not depend on the choice of the name. Typically, the va-

riable name is chosen from the set of fresh variables that are not in the domain of the typing

context. Moreover, it is known that, if the subterm is well-typed when opened with some varia-

ble name, there are infinitely many names such that the subterm is well-typed when opened

with any of the names. Therefore, the typing prerequisite is prefixed with

 stating that the prerequisite should hold for all (infinite many) names that are not in

the finite set of names with which the prerequisite does not hold. The universal quantification

allows more flexible application of induction hypothesis in proofs [2].

The two-sorted target language is redefined using the locally nameless representation as

well (Figure 6). Note that free variables as well as bound variables have two forms: one without

a prime for variables from the source term and the other with a prime for variables introduced

in transformation. The opening operation is also redefined for each of the two variable sorts.

The typing rules are analogous to those in the previous representations.

The term transformation algorithm is the same as in the two-sorted de Bruijn index re-

presentation except that the transformation of the free variable has been added:

The transformation of types and contexts is the same as defined previously.

To prove the type preservation property in the two-sorted locally nameless representation,

we need some lemmas.

Lemma 7: .

The proof is by a straightforward induction on the structure of term .

Lemma 8:

This is a corollary of the generalized lemma , which is shown by a

straightforward induction on the structure of term .

17

Theorem 9: (Type preservation) If the typing judgment is derivable in the source

language, then is derivable in the target language.

The proof is by the induction on the source typing derivation, which is mostly analogous to

that of Theorem 4:

 In the case of the var rule, where and , the goal is to derive

This can be derived by the abs’ rule if

 ’

 ’

Figure 6: Target language in the two-sorted locally nameless representation

18

can be derived for some . We choose the domain of context for , changing the goal to

By the definition of the opening operation, this is equivalent to

This can be derived by applying the app rule. We then have two subgoals:

Showing the first subgoal is obvious from the var’ rule. The second can be obtained by ap-

plying Lemma 3 and the var rule to the condition .

 The proof in the case of the unit rule is analogous to that of the var rule. The unit rule in

the target language is used to show the final subgoal.

 In the case of the abs rule, where , and
 ,

the goal is to derive

where . The proof is halfway analogous to that in the case of the

var rule. The subgoal we need to prove in this case is

This can be derived by the abs rule if

can be derived for some . We choose for , changing the goal to

By Lemma 7, Lemma 8, and the definition of the context transformation, this is equivalent

to

which can be shown by applying the induction hypothesis to the condition

 .

19

 In the case of the app rule, where and and , the goal

is to derive

By applying the abs’ rule as in the other cases, the goal is changed to

which is, by Lemma 7 and the definition of the opening operation, equivalent to

Two subgoals remain after applying the app rule:

The first subgoal is immediate from the induction hypothesis. For the second, we apply the

abs’ rule to change the subgoal to

which is, by Lemma 7 and the definition of the opening operation, equivalent to

Again, two subgoals remain after applying the app rule:

The first subgoal is immediate from the induction hypothesis. We again apply the abs’ rule

to change the second subgoal to

which is equivalent to

This subgoal can be derived by the var’ and app rules straightforwardly.

3.3 Comparison of Coq Formalization Methods

The author constructed a Coq proof script of the type preservation property for each of the

four formalizations introduced in the previous subsections. The four scripts shared the same

20

structure on the whole. The language syntax and typing rules were inductively defined and the

type preservation was proved by induction on the typing derivation in the source language.

The major difference between the four scripts lies in the number of supporting functions

and lemmas used. In the named representations, a set of variable names had to be defined that

is used in the language definition and proof. Moreover, a function had to be defined that pro-

duces a fresh variable name. That cost about 50 lines of Coq proof script including the proof

that the function indeed returns a fresh name (the “Name lemmas” row in Table 1). In the

two-sorted locally nameless representation, a set of names had to be defined but such a func-

tion was not needed.

In the unsorted named and two-sorted locally nameless representations, the author de-

fined and used proof automation tactics to show properties about ordered lists representing

typing contexts, which resulted in longer proof scripts (the “List manipulation” row in Table 1).

Another reason for a longer proof script in the unsorted named representation is that the

freshness of the name had to be verified each time a name-to-type mapping was added to the

typing context. In the two-sorted locally nameless representation, more lemmas had to be

proved than in the other representations as shown in the previous subsections and that also

made the proof script longer (the “Proof of preservation” row in Table 1).

As shown in Table 1, the two-sorted de Bruijn index representation resulted in the short-

est proof script. This should be because the typing context was represented as a list of types

Table 1: Lines of Coq proof scripts for simple type preservation

Unsorted

named
Two-sorted

named
Two-sorted

de Bruijn index
Two-sorted

locally nameless

Definition 194 230 160 251

Name lemmas 57 57 0 12

List manipulation 134 12 18 151

Proof of type
preservation

120 83 57 124

Total 505 382 235 538

21

rather than a list of name-and-type pairs and comparisons of names were not needed in the

proof.

Although the two-sorted locally nameless representation resulted in the longest proof

script, that should not be interpreted as evidence that the locally nameless representation is

less suitable for Coq formalization. The proofs in the named and de Bruijn index representa-

tions were relatively simple because term substitution was irrelevant to the proofs. If term

substitution were involved in the CPS transformation algorithm, the proofs in those represen-

tations would be much more complicated for the reasons stated in the previous subsections. In

the next two sections, we deal with type systems containing dependent function types. Such

type systems include term substitution in the typing rules. To keep definitions and proofs as

simple as possible in spite of term substitution, we use the two-sorted locally nameless repre-

sentation in the next sections.

4 Proving Semantics Preservation via Singleton Types

In the previous section, we proved that the CPS transformation preserves simple typing in var-

ious formalization methods. However, simple types are not so strong as to show the preserva-

tion of the full semantics: even if a transformed term is well-typed, it does not necessarily

mean that the term has the same semantics as the original term. To show semantics preserva-

tion through type preservation, we need to enhance the type system of the target language.

In this section, we define a new target language and a type system that has mainly three

features the previous simple type system does not have: subtyping, singleton types, and CPS

types. The new type system is defined by adding CPS types (and the unit and the bottom type)

to System [3], which already has subtyping and singleton types.

The syntax of the new language and type system is similar to that of System :

22

The syntax is defined using the two-sorted locally nameless representation so that term subs-

titution can be easily handled in the type system.

A new syntax category “sort” is introduced to distinguish the two namespaces instead of

using primes. Sort “s” is for variables that come from the source term and sort “c” for variables

introduced in the transformation. The bound variable term and the free variable term are

now prefixed by a sort. The lambda abstraction term also has a sort to indicate which

sort of a variable is bound in the abstraction. Variables in a typing context are each prefixed by

a sort as well. We use only one typing context in a typing judgment and the context contains a

mapping for variables of the both namespaces. This is because a type mapped from a variable

in the context may depend on another variable that possibly has the other sort. For example, in

the typing context

variable is mapped to the type , which depends on variable .

Compared to the simply typed lambda calculus, the definition of types is notably different:

the function type is defined in the dependent manner and the singleton type

and the CPS type are added. The dependent function type is similar to the

normal function type , but it binds a new variable of sort that can be used in to

denote the argument of the function. The singleton and the CPS types are detailed in the next

subsections.

Now that the function type has been redefined dependently, we use the notation “ ” as

an abbreviation for “ ” for the rest of this thesis.

The term transformation algorithm from the locally nameless source language (Section

3.2.2) to the two-sorted locally nameless target language is defined analogously to the one in

the previous section:

23

4.1 Encapsulating Semantics into Singleton Types

Singleton types [3, 4, 24, 34] are types that denote the semantics of terms by specifying a term

to which terms that have the singleton type are equivalent. We write singleton types using

braces. For example, the singleton type is the type of terms that are equivalent to

the unit value of the unit type. The typing judgment

holds because the term is beta-equivalent to the unit value (note that

is the identity function). The term specified in a singleton type need not to be a value. The sin-

gleton type is a valid type and the typing judgment

holds as well.

Singleton types can also be used to define the behavior of a function. For example, the

identify function for the unit type has the type , which is more

specific than the simple type . The singleton type is used as the return

type of the function to denote that the return value has the unit type and is equivalent to the

argument value. Note that variable , bound by “ ”, denotes the function argument.

The statement of the type preservation property can be enhanced with singleton types.

We use a singleton type for the argument type of a continuation to indicate what value the con-

tinuation will receive. For example, the transformation of the unit value is a function that rece-

ives a continuation and passes the unit value to the continuation. This can be indicated in the

typing judgment using a singleton type:

The typing ensures the continuation will receive the unit value. A similar typing is possible for

the transformation of a variable: if holds in the source language, then

 holds in the target language. These observations might lead one to conjecture

that, if holds in the source language, then holds in the target lan-

guage, but it is not true. Subterm of the lambda abstraction term has been recursively

24

transformed when the term is passed to a continuation. In such a case, if holds in

the source language, the correct typing in the target language is .

Generally, we can obtain the value that will be passed to the continuation by passing the iden-

tity function as the continuation to the transformed term, that is, any continuation will be

passed a value equivalent to when applied to the term . Thus, if holds

in the source language, then holds in the target language, en-

suring that any continuation will receive the same value. We will examine the proof of this type

preservation property in Section 4.4.

For brevity, the identify function is written as “ ” in the rest of this thesis.

4.2 CPS Types

Recall the typing judgment in the previous section:

In this typing, the term being typed appears in the type. We use a CPS type to write the type

without writing such a term in the type. The CPS type denotes a CPS-transformed term

that passes a value of type to the continuation. Using a CPS type, the typing judgment above

can be rewritten as

The motivation to add CPS types to the type system is that we need them to define the

type transformation algorithm. The return type of a function type is transformed into a func-

tion type that receives a continuation. The resultant function type needs to be expressed using

a CPS type to denote the value the continuation will receive. Now the type transformation is

redefined using a CPS type:

4.3 Type System of the New Target Language

The new type system has four types of judgments:

25

To define the derivation rules for these judgments, the opening operation need to be defined in

advance as in Section 3.2.2. The opening operation is defined for types as well as terms because

terms may appear in types (Figure 7). The opening operation defined here is more general

than the previous definition in that it substitutes a bound variable with a term instead of a free

variable. The generalized opening operation corresponds to the term substitution operation in

the usual named representation. We abbreviate as where is a term or a

type.

The derivation rules are defined mutually recursively as in Appendix 1, resembling those

of System . Notable differences from System are that the syntax has been adapted to

two-sorted locally nameless representation and that the rules for CPS types have been added.

The context well-formedness rules ensure that all types in the context are well-formed

and that the variable names in the domain of the context are all unique. The uniqueness of

names is useful in rejecting a problematic typing such as

Figure 7: Opening operation in the target language with singleton types

26

where variable has either the unit type or the singleton type depend-

ing on the context in which it appears. The rules of type well-formedness, term typing, and

subtyping are analogous to those of System except for the new rules about the CPS type.

The well-formedness of a CPS type is defined straightforwardly.

 s

The ≤-cpsintro rule converts a singleton type of a specific form to a CPS type.

The ≤-cpselim and ≤-cpselimmin rules convert a CPS type to a normal type.

No rules have been added for term typing with a CPS type because a term can have a CPS type

from the subtyping with the CPS type.

Lemma 10: (t-cpsintro) If , then .

Proof:

Lemma 11: (t-cpselim) If , then .

Proof:

An inversion lemma about well-formedness is yet to be proved.

Conjecture 12: (Inversion)

1. If , then .

2. If , then .

3. If , then and .

27

Lemma 13: (Inversion on T-sing) If , then .

Proof: Obvious.

Some typing rules about singleton types are defined as lemmas.

Lemma 14: (t-singsym) If , then .

Proof:

where and are from Conjecture 12 and Lemma 13.

Lemma 15: (t-singtrans) If and , then .

Proof:

where is from Conjecture 12 and Lemma 13.

Lemma 16: (t-singbeta) If

 and , then

 .

Proof:

Note that by definition.

The soundness of the type system is a corollary of the following two conjectures, which

are yet to be proved. (The reduction rules are defined in Appendix 1.)

Conjecture 17: (Progress) If , then either

1. term is the unit value,

2. term is a lambda abstraction term, or

28

3. there exists such term that .

Conjecture 18: (Subject reduction)

1. If and , then .

2. If and
 , then

 .

3. If and
 , then

 .

4.4 Type Preservation in the CPS Transformation

Lemmas proved in Section 3.2.2 also hold for the new type system with singleton types.

Lemma 19:

1.

2.

3.

Proof: By straightforward induction.

We postulate that bottom types denoting the result values that are returned by continua-

tions can be instantiated with concrete types:

Axiom 20: If and , then ≤ .

This axiom is used in the proof of the type preservation property. If the type system of the

target language allowed parametric polymorphism, the axiom would not be needed.

Because only one typing context containing the both sorts of names is used in a typing

judgment, we need an auxiliary predicate as in Section 3.1.1.

Using this predicate, the type preservation property is stated as follows.

Conjecture 21: (Type preservation) The typing is derivable in the target

language if all of the following conditions hold:

 The typing judgment is derivable in the source language where variable names

in context are all unique.

 holds, that is, if , then .

 Context is well-formed, that is, is derivable in the target language.

29

The author has not completed the proof of this property. The proof is more complicated

than those for the previous target languages are because we need to show term equivalence

using singleton types. Here we sketch the point of the proof. The proof is by induction on the

source typing derivation .

In the case the source typing is derived by the var rule, we need to derive

on the assumption . The derivation advances as

where . The remaining subgoals are:

1.

2.

For the first subgoal, we apply the t-var rule, which leaves another subgoal

By applying applicable derivation rules repeatedly, we eventually reach the subgoal ,

which is sufficed by the assumptions and . For the second subgoal, we can-

not directly apply the t-var rule. We proceed the derivation as

where . After applying Lemma 19, two subgoals remain:

We apply the t-singbeta rule for each of the two subgoals, which yields another four subgoals in

total:

30

The derivations of these subgoals are straightforward.

The cases of the unit and abs rules are similar to the above. The case of the app rule is

much more complex because the transformed term contains more lambda abstractions and the

type well-formedness has to be shown each time a name-and-type pair is added to the typing

context to type a lambda abstraction. Moreover, the well-formedness of a singleton type re-

quires typing of the term in the singleton type.

The goal we need to derive in the app rule case is

on the assumptions and . In the course of the derivation, it is re-

quired to type the innermost subterm:

where

We can show that the term has the type by straightforward deriva-

tion. Then, variable has to have the type , which means that the type

 has to be a supertype of . Applying applicable rules to

leads to the subgoal

We divide the subgoal into two using the t-singtrans rule:

31

We then continue the proof by applying applicable rules to the subgoals.

5 Preservation of Dependent Types

We used the simply typed lambda calculus as the source language in the previous sections. In

this section, we consider the case where the source language is typed with dependent types.

A dependent type is a type that contains (or depends on) a term [5, 17, 37]. For example,

consider a typed lambda calculus with primitive natural numbers and lists.

In the simply typed lambda calculus, all lists have the same type List.

In a dependently typed lambda calculus, the type of a list can contain a number that denotes

the length of the list. The type of lists is of the form where denotes the list length.

The cons function has the dependent function type . When

applied to natural number , the cons function returns another function of the type

 . For example, the term has the type

 . This is justified by the typing rule for application.

This rule differs from that of the simply typed lambda calculus in that a bound variable is subs-

tituted with the argument term in the return type.

The definition of the dependently typed source language is in Appendix 2. The source

32

language uses the locally nameless representation as in the previous section. The definition is

based on the standard definition of λLF [5].

5.1 Call-by-Name vs. Call-by-Value

The CPS transformation introduced in Section 2 is the call-by-value version: in the evaluation

of a transformed term, terms that correspond to function arguments in the source term are

evaluated before they are passed to functions. In the call-by-name version of CPS transforma-

tion, however, function arguments are directly passed to functions without evaluation:

Although the difference between the two versions of transformation is very little, it has a great

impact on the proof of the type preservation property.

For the call-by-name version of CPS transformation, the type preservation property can be

proved by the usual induction on the source typing derivation. Assume we are proving the type

preservation property with the target language defined as an extension of the dependently

typed source language (Appendix 2) with the bottom type in the two-sorted locally nameless

representation. In the case where the last derivation of the source typing is by the t-app rule

we need to derive the following judgment in the target language (for some and appro-

priately corresponding to and).

We carry the proof forward by applying applicable typing rules to derive this judgment. In the

course of the derivation, we need to derive the following judgment to type the innermost sub-

term .

This can be derived as

33

where contexts are omitted for brevity. The type is equal to

(and is equal to) if the opening operation and the type transformation are prop-

erly defined. Thus, the dependent type preservation of the call-by-name CPS transformation

can be proved by straightforward induction (though the proof is more complicated than in the

simply typed case).

For the call-by-value version of CPS transformation, on the other hand, the dependent type

preservation cannot be proved in the same way. In the t-app rule case, we need to derive

which requires the derivation of

to type the innermost subterm. The derivation of this judgment will be as follows.

To validate this derivation, we need to show that the type is equal to

 , which requires showing that variable is equivalent to term . To show that, we need to

know what value variable is bound to, but now we only know that the variable has the type

 . As a result, we cannot validly derive the required judgment above.

5.2 Using Singleton Types to Convey Term Equivalence

The author conjectures that the equivalence above can be shown using singleton types. As

shown in Section 4, a singleton type can be used to denote what value is passed to the continu-

ation that is passed to a transformed term. Suppose that the target language is extended with

singleton types and CPS types and that the conclusion of the type preservation property is res-

tated as . Then, the judgment that is required to type the innermost subterm

above becomes

Now we know that variable is equivalent to from the typing in the

34

context, we can show that the type is equal to .

The author has not yet fully settled the definition of the target language that is suitable for

proving the type preservation. Of course, the target language needs to have not only dependent

types but also singleton types. To the best of the author’s knowledge, no research has been

done about type systems that have both dependent and singleton types. Giving a full definition

of the target language with such a type system and examining properties of the type system is

Figure 8: Partial definition of the dependently typed target language

Figure 9: CPS transformation to the dependently typed target language

35

left for future work.

In the rest of this section, a brief summary is given of how to show the equivalence above.

First, the syntax of terms and types in the target language and the opening operation are de-

fined as in Figure 8 and the CPS transformation to the target language as in Figure 9. Then, an

axiom is assumed that corresponds to Axiom 20:

Axiom 22: If and , then ≤ .

Next, we show some lemmas assuming that the typing and kinding rules of the target lan-

guage are defined analogously to those of the source language.

Lemma 23: If and , then

 .

The proof is by induction on the derivation of . The other as-

sumption is used in the case when is a variable term.

Lemma 24: If and , then

 .

The proof is by induction on the derivation of . Lemma 23 is

used to show the equivalence of terms contained in the type.

Lemma 25: If and , then

 .

The proof is by induction on the derivation of .

Lemma 26: If and and

 , then .

The proof is immediate from the lemmas above. This lemma establishes the equivalence

required for the derivation in the proof of the type preservation property.

Lemma 26 has three assumptions. The first assumption is sufficed by the typing

 and the inversion lemma from typing to kinding:

36

Conjecture 27: (Inversion) If , then and .

The second assumption is satisfied from the typing in the context as

mentioned earlier. For the third assumption to be met, we need a stronger induction hypothe-

sis. The type preservation property is restated again:

Conjecture 28: (Type preservation) If the typing judgment is derivable in the

source language and and holds, then

is derivable in the target language where

The new conclusion of the property states not only that the transformed term is

well-typed in the target language but also that the term is equivalent to . The

equivalence would suffice the third assumption of Lemma 26 in the inductive proof of the

property.

6 Related Work

6.1 Typed Lambda Calculi

The definition of the target language with singleton types introduced in Section 4 is based on

Aspinall’s simple type system with singleton types and subtyping [3]. In this type system, the

notion of term equivalence is integrated with typing with singleton types. Stone and Harper

created another type system with singleton types in which the notion of term equivalence is

separated from typing [34]. Their type system is more complex than Aspinall’s due to the se-

parated notion, but is capable of handling extensional equivalence. The target language in this

thesis is based on Aspinall’s type system in favor of simplicity. Extensional equivalence is not

needed to show the type preservation property of CPS transformation.

6.2 Representations of Lambda Calculi in Coq

The basic idea of the locally nameless representation already appeared in de Bruijn’s paper

that first introduced the de Bruijn index representation [16]. He used numbers for bound va-

37

riables while using names for free variables. Leroy demonstrated a practical proof of the

soundness of a type system using the locally nameless representation [19]. Aydemir [2] and

Charguéraud [9] investigated properties of the locally nameless representation. Charguéraud

also showed an approach to proving the semantics preservation of a CPS transformation algo-

rithm in the (unsorted) locally nameless representation. With the unsorted representation, he

had to track the correspondence of variables between before and after the transformation and

thus had to prove many lemmas.

Formalization methods other than the de Bruijn index and the locally nameless represen-

tations include higher-order abstract syntax (HOAS) [22, 28] and nominal logic [30]. Neither

HOAS nor nominal logic is known to be fully compatible with the calculus of inductive con-

structions (CIC), which is Coq’s fundamental type system [14]. Chlipala proposed a variation of

HOAS that is suitable for Coq formalization [11]. Aydemir et al. presented a set of axioms to

allow formalization using nominal logic in Coq [1], but it is not based on the induction prin-

ciples of CIC. Westbrook et al. proposed an extension of CIC to allow formalization using no-

minal logic within the type system [36]. Formalizations using the de Bruijn index and the lo-

cally nameless representations, on the other hand, are feasible within CIC.

6.3 Verification of CPS Transformation

The idea of using two namespaces in the target language of CPS transformation was coined by

Dargaye and Leroy [13]. They used two-sorted de Bruijn index representation to prove seman-

tics preservation of CPS transformation with the Coq proof assistant. Minamide and Okuma

proved the semantics preservation of several CPS transformation algorithms using Isa-

belle/HOL [23]. They used different sets of variable names for the source and target languages

to avoid the difficulty about the naming of new variables. Both of these dealt with an untyped

language and did not discuss type preservation in CPS transformation.

Barthe et al. showed type preservation property of CPS transformation in typed lambda

calculi (including dependently typed lambda calculi) [6]. They emphasized that transformed

terms should not contain types so that the term transformation algorithm does not depend on

38

the type transformation. They dealt with the call-by-name version of Plotkin’s CPS transforma-

tion, but not with the call-by-value version. Shao et al. showed the type preservation of the

call-by-value transformation of a dependently typed lambda calculus where terms appearing

types are translated into types [32].

6.4 Mechanized Verification of Compilers

The research in this thesis was originally aiming to create a certified compiler that compiles a

dependently typed language such as Hoare Type Theory [26, 27] into a dependently typed as-

sembly language such as Certified Assembly Programming [15, 38]. A certified compiler is a

compiler that is verified to produce a correct assembly code in the sense that the assembly

code preserves the semantics of the source code.

Chlipala created certified compilers that translate typed lambda calculi into typed assem-

bly [10]. He used higher-order abstract syntax to prove the semantics preservation property of

the compilers with Coq formalization. Although his compiler preserves typing as well as se-

mantics, he did not use types to denote the semantics of terms.

The CompCert project aims to create a certified and realistic compiler from a subset of C to

PowerPC assembly [8, 18, 20]. The CompCert compiler is accompanied by a large amount of

Coq proof script that shows its semantics preservation property. Since C is not a type-safe lan-

guage, the compiler does not ensure the safety of output assembly code.

Neither of Chlipala’s compiler and CompCert deals with dependently typed source and

target languages.

7 Conclusion

This study investigated type preservation property of CPS transformation with various type

systems and formalization methods. We first examined four types of formalization for the

simply typed lambda calculus: the unsorted named, two-sorted named, two-sorted de Bruijn

index, and two-sorted locally nameless representations. We then compared Coq proof scripts of

the type preservation property of the CPS transformation that were written in those formaliza-

39

tions. It was shown that the two-sorted representations make the proofs simpler and that the

locally nameless representation is more suitable than the named or de Bruijn index represen-

tations when term substitution is involved in the language definition and proofs.

A type system with singleton types and subtyping was defined in the two-sorted locally

nameless representation. The semantics of CPS-transformed terms were expressed using sin-

gleton types. We saw that it is much more complicated to prove the type preservation property

in the CPS transformation from the source language typed with simple types to the target lan-

guage typed with singleton types than that to the simply typed target language. Although the

proof is not yet finished, a sketch of the proof was presented.

It was shown that a proof of dependent type preservation in the call-by-value CPS trans-

formation requires a proof of term equivalence that is not required in the case of the

call-by-name CPS transformation. Conveying the semantics of terms with singleton types was

proposed to prove the required equivalence.

References

1. Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. “Nominal Reasoning Techniques

in Coq.” In Electron. Notes Theor. Comput. Sci. Vol. 174, No. 5, 2007, pp. 69–77.

2. Brian Aydemir, et al. “Engineering formal metatheory.” In Proceedings of the 35th annual

ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL ’08). ACM,

New York, 2008, pp. 3–15.

3. David Aspinall. “Subtyping with singleton types.” In Proceedings of the Computer science

logic (CSL ’94), Leszek Pacholski and Jerzy Tiuryn (Eds.). Springer-Verlag, Berlin, 1995,

LNCS, Vol. 933, pp. 1–15.

4. David Aspinall. “Type systems for modular programs and specifications.” Ph. D. thesis, De-

partment of Computer Science, University of Edinburgh, 1997.

5. David Aspinall and Martin Hofmann. “Dependent Types.” In Advanced topics in types and

programming languages, Benjamin C. Pierce (Ed.). The MIT Press, 2005, pp. 45–86.

40

6. Gilles Barthe, John Hatcliff, and Morten H.B. Sørensen. “CPS transformations and applica-

tions: The cube and beyond.” In Higher-Order and Symbolic Computation. Springer, Neth-

erlands, 1999, Vol. 12, No. 2, pp. 125–170.

7. Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:

Coq'Art: the calculus of inductive constructions. Springer-Verlag, New York, 2004.

8. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. “Formal verification of a C compiler

front-end.” In Proceedings of the 14th international symposium on Formal methods (FM ’06),

Jayadev Misra et al (Eds.). Springer-Verlag, Berlin, 2006, LNCS, Vol. 4085, pp. 460–475.

9. Arthur Charguéraud. “The locally nameless representation.” To appear in Journal of auto-

mated reasoning. 2011.

10. Adam Chlipala. “A certified type-preserving compiler from lambda calculus to assembly

language.” In Proceedings of the 2007 ACM SIGPLAN conference on Programming language

design and implementation (PLDI ’07). ACM, New York, 2007, pp. 54–65.

11. Adam Chlipala. “Parametric higher-order abstract syntax for mechanized semantics.” In

Proceeding of the 13th ACM SIGPLAN international conference on Functional programming

(ICFP '08). ACM, New York, 2008, pp. 143–156.

12. The Coq development team. The Coq proof assistant. 1989–2010. http://coq.inria.fr/.

13. Zaynah Dargaye and Xavier Leroy. “Mechanized verification of CPS transformations.” In

Proceedings of the 14th international conference on Logic for programming, artificial intelli-

gence and reasoning (LPAR ’07), Nachum Dershowitz and Andrei Voronkov (Eds.). Sprin-

ger-Verlag, Berlin, 2007, pp. 211–225.

14. Joëlle Despeyroux, Amy Felty, and André Hirschowitz. “Higher-order abstract syntax in

Coq.” In Typed lambda calculi and applications, Mariangiola Dezani-Ciancaglini and Gordon

Plotkin (Eds.). Springer-Verlag, Berlin, 1995, LNCS, Vol. 902, pp. 124–138.

15. Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni. “Modular ve-

rification of assembly code with stack-based control abstractions.” In Proceedings of the

2006 ACM SIGPLAN conference on Programming language design and implementation

http://coq.inria.fr/

41

(PLDI ’06). ACM, New York, 2006, pp. 401–414.

16. Nicolaas Govert de Bruijn. “Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser theorem.” In In-

dagationes Mathematicae (Proceedings). Elsevier, Vol. 75, No. 5, 1972, pp. 381–392.

17. Robert Harper, Furio Honsell, and Gordon Plotkin. “A framework for defining logics.” J. ACM.

Vol. 40, No. 1, 1993, pp. 143–184.

18. Xavier Leroy. “Formal certification of a compiler back-end or: programming a compiler

with a proof assistant.” In Conference record of the 33rd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages (POPL ’06). ACM, New York, 2006, pp. 42–54.

19. Xavier Leroy. “A locally nameless solution to the POPLmark challenge.” Technical report

6098, INRIA, 2007.

20. Xavier Leroy. “Formal verification of a realistic compiler.” In Commun. ACM. 2009, Vol. 52,

No. 7, pp. 107–115.

21. Ralph Loader. “Notes on simply typed lambda calculus.” Technical report 381, LFCS, Uni-

versity of Edinburgh, 1998.

22. Dale Miller. “Abstract syntax for variable binders: An overview.” In Computational Logic —

CL 2000, John Lloyd et al. (Eds.). Springer-Verlag, Berlin, 2000, LNCS, Vol. 1861, pp.

239–253.

23. Yasuhiko Minamide and Koji Okuma. “Verifying CPS transformations in Isabelle/HOL.” In

Proceedings of the 2003 ACM SIGPLAN workshop on Mechanized reasoning about languages

with variable binding (MERLIN ’03). ACM, New York, 2003, pp. 1–8.

24. Stefan Monnier and David Haguenauer. “Singleton types here, singleton types there, sin-

gleton types everywhere.” In Proceedings of the 4th ACM SIGPLAN workshop on Program-

ming languages meets program verification (PLPV ’10). ACM, New York, 2010, pp. 1–8.

25. Magnus O. Myreen. “Verified just-in-time compiler on x86.” In Proceedings of the 37th an-

nual ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL ’10).

ACM, New York, 2010, pp. 107–118.

42

26. Aleksandar Nanevski and Greg Morrisett. “Dependent type theory of stateful higher-order

functions.” Technical report TR-24-05, Harvard University, 2005.

27. Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. “Polymorphism and separation in

hoare type theory.” In Proceedings of the 11th ACM SIGPLAN international conference on

Functional programming (ICFP ’06). ACM, New York, 2006, pp. 62–73.

28. F. Pfenning and C. Elliot. “Higher-order abstract syntax.” In Proceedings of the ACM SIG-

PLAN 1988 conference on Programming Language design and Implementation (PLDI ’88), R.

L. Wexelblat (Ed.). ACM, New York, 1988, pp. 199–208.

29. Benjamin C. Pierce. Types and programming languages. The MIT Press, London, 2002.

30. Andrew M. Pitts. “Nominal logic, a first order theory of names and binding.” In Inf. Comput.

Vol. 186, No. 2, 2003, pp. 165–193.

31. Gordon Plotkin. “Call-by-name, call-by-val a d h λ-calculus.” In Theoretical Computer

Science, 1975, Vol. 1, No. 2, pp. 125–159.

32. Zhong Shao, Valery Trifonov, Bratin Saha, and Nikolaos Papaspyrou. “A type system for

certified binaries.” In ACM Trans. Program. Lang. Syst. Vol. 27, No. 1, 2005, pp. 1–45.

33. Christopher A. Stone. “Singleton kinds and singleton types.” Ph. D. Thesis, School of Com-

puter Science, Carnegie Mellon University, 2000.

34. Christopher A. Stone and Robert Harper. “Extensional equivalence and singleton types.” In

ACM Trans. Comput. Logic. ACM, New York, Vol. 7, No. 4, 2006, pp. 676–722.

35. Gerald Jay Sussman and Guy L. Steele, Jr. “Scheme: An interpreter for extended lambda

calculus.” In Higher-Order and Symbolic Computation. Springer, Netherlands, 1998, Vol. 11,

No. 4, pp. 405–439.

36. Edwin Westbrook, Aaron Stump, and Evan Austin. “The calculus of nominal inductive con-

structions: an intensional approach to encoding name-bindings.” In Proceedings of the

Fourth International Workshop on Logical Frameworks and Meta-Languages: Theory and

Practice (LFMTP ’09). ACM, New York, 2009, pp. 74–83.

37. Hongwei Xi and Frank Pfenning. “Dependent types in practical programming.” In Proceed-

43

ings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages

(POPL ’99). ACM, New York, 1999, pp. 214–227.

38. Dachuan Yu, Nadeem A. Hamid and Zhong Shao. “Building certified libraries for PCC: dy-

namic storage allocation.” In Science of Computer Programming (ESOP 2003). Elsevier, Vol.

50, No. 1–3, 2004, pp. 101–127.

Appendix 1. Definition of the Target Language with Singleton Types

A 1.1 Syntax

A 1.2 Opening

A 1.3 Context Well-formedness

A 1.4 Type Well-formedness

 d

44

 s

 s

A 1.5 Term Typing

 s l

A 1.6 Subtyping

45

A 1.7 Term Reduction

A 1.8 Type Reduction

Appendix 2. Definition of the Dependently Typed Source Language

A 2.1 Syntax

A 2.2 Opening

46

A 2.3 Context Well-formedness

This judgment is of the form .

A 2.4 Kind Well-formedness

This judgment is of the form .

A 2.5 Type Kinding

This judgment is of the form .

 d

A 2.6 Term Typing

This judgment is of the form .

A 2.7 Kind Equivalence

This judgment is of the form .

47

A 2.8 Type Equivalence

This judgment is of the form .

A 2.9 Term Equivalence

This judgment is of the form .

	1 Introduction
	2 Background: CPS Transformation
	3 Simple Type Preservation and Coq Formalization Methods
	3.1 Named Representations
	3.1.1 Unsorted Named Representation
	3.1.2 Two-Sorted Named Representation

	3.2 Indexed Representations
	3.2.1 Two-Sorted de Bruijn Index
	3.2.2 Two-Sorted Locally Nameless Representation

	3.3 Comparison of Coq Formalization Methods

	4 Proving Semantics Preservation via Singleton Types
	4.1 Encapsulating Semantics into Singleton Types
	4.2 CPS Types
	4.3 Type System of the New Target Language
	4.4 Type Preservation in the CPS Transformation

	5 Preservation of Dependent Types
	5.1 Call-by-Name vs. Call-by-Value
	5.2 Using Singleton Types to Convey Term Equivalence

	6 Related Work
	6.1 Typed Lambda Calculi
	6.2 Representations of Lambda Calculi in Coq
	6.3 Verification of CPS Transformation
	6.4 Mechanized Verification of Compilers

	7 Conclusion
	References
	Appendix 1. Definition of the Target Language with Singleton Types
	A 1.1 Syntax
	A 1.2 Opening
	A 1.3 Context Well-formedness
	A 1.4 Type Well-formedness
	A 1.5 Term Typing
	A 1.6 Subtyping
	A 1.7 Term Reduction
	A 1.8 Type Reduction

	Appendix 2. Definition of the Dependently Typed Source Language
	A 2.1 Syntax
	A 2.2 Opening
	A 2.3 Context Well-formedness
	A 2.4 Kind Well-formedness
	A 2.5 Type Kinding
	A 2.6 Term Typing
	A 2.7 Kind Equivalence
	A 2.8 Type Equivalence
	A 2.9 Term Equivalence

