next up previous
Next: Problem 2 - Probability Up: Mathematics Previous: Mathematics

Problem 1 - Matrices

For an $ n \times n$ square matrices $ X$, $ Y$, define $ [X,Y]$ by

$\displaystyle [X,Y] = XY -YX.$

Prove the following:
1.
When $ X$, $ Y$ are alternating matrices, $ [X,Y]$ is also an alternating matrix, where $ X$ is an alternating matrix if $ X^T + X = 0$ is satisfied.
2.

$\displaystyle [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0$


1.
$ X$ and $ Y$ are alternating matrices, that is:

$\displaystyle X=-X^T,\quad Y=-Y^T.$

We want to check whether we have $ [X,Y]=-[X,Y]^T$ or not.

$ [X,Y]^T = (XY-YX)^T,$
$ =(XY)^T - (YX)^T,$
$ =Y^TX^T - X^TY^,$
$ =YX - XY,\quad \hbox{since $X$\ and $Y$\ are alternating matrices},$
$ =-[X,Y]$
2.
The terms we eliminate at each step are in bold.
$ [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]$
$ = X(YZ-ZY) - (YZ-ZY)X + Y(ZX-XZ) - (ZX-XZ)Y + Z(XY-YX) - (XY-YX)Z$
$ =\boldsymbol{XYZ} - XZY - (YZ-ZY)X + Y(ZX-XZ) - (ZX-XZ)Y + Z(XY-YX) \boldsymbol{-XYZ} - YXZ,$
$ = - XZY - (YZ - ZY)X + YZX \boldsymbol{-YXZ} - (ZX-XZ)Y + Z(XY-YX) \boldsymbol{-YXZ}$
$ = - XZY \boldsymbol{- YZX} + ZYX \boldsymbol{+YZX} - (ZX-XZ)Y + Z(XY-YX)$
$ = \boldsymbol{-XZY} + ZYX + - ZXY \boldsymbol{+XZY} + Z(XY-YX)$
$ = \boldsymbol{ZYX} - ZXY + ZXY \boldsymbol{-ZYX}$
$ = \boldsymbol{- ZXY + ZXY}$
$ = 0$



Reynald AFFELDT
2000-06-08