next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Matrices

Problem 2 - Probability

1.
Let $ \ln$ by the natural logarithm. Show that $ \ln x \leq x - 1$ for $ x>0$.
2.
For probability density functions $ p$ and $ q$ of random variable $ x$ on a domains $ I$, $ D(p\vert\vert q)$ is defined by

$\displaystyle D(p\vert\vert q) \equiv \int_I p \ln \frac{p}{q} dx.
$

Show that $ D(p\vert\vert q)\geq 0$ holds. When does this inequality hold by equality?
3.
For probability density functions $ p_1$, $ p_2$, $ q_1$, $ q_2$ of random variable $ x$, show

$\displaystyle D(p_1\vert\vert q_1) + D(p_2\vert\vert q_2) \geq 2D\left(\frac{p_1+p_2}{2}\vert\vert\frac{q_1+q_2}{2}\right)
$

4.
Let $ p$,$ q$ be normal distributions with mean $ \mu_p$, $ \mu_q$ and standard deviation $ \sigma_p$, $ \sigma_q$, respectively (i.e. $ p=p(x)$ is given by

$\displaystyle p(x)=\frac{1}{\sqrt{2\pi}\sigma_p}\exp\left(-\frac{(x-\mu_p)^2}{2\sigma_p^2}\right)
$

and similar for $ q$). Compute $ D(p\vert\vert q)$.


1.
Let us consider the following function $ f(x)=\ln x - x + 1$. Its first derivative is $ f'(x)=\frac{1}{x}-1$. This function is positive if $ 0<x<1$, negative is $ x>1$ and is 0 if $ x=1$. Thus $ f$ is increasing from $ x>0$ to $ x<1$, it reaches 0 in 1 and then decreases for $ x>1$. Thus, $ \forall x>0$, $ f(x)\leq 0$. That is:

$\displaystyle \forall x > 0, \quad \ln x \leq x - 1$

2.
$ D(p\vert\vert q)=\int_I p\ln \frac{p}{q}dx$
$ =\int_I p\left( -\ln\frac{q}{p}\right)dx$
$ \geq \int_I p\left( \frac{q}{p} - 1 \right)dx$
$ = \int_I (q - p)dx$
$ = \int_I q dx - \int_I p dx$
$ = 0$ since both $ \int_I q dx$ and $ \int_I p dx$ are equal to 1.
3.
$ D(p_1\vert\vert q_1) + D(p_2\vert\vert q_2) - 2D\left(\frac{p_1+p_2}{2}\vert\v...
...+ \int_I p_2\ln\frac{p_2}{q_2}dx - \int_I (p_1+p_2)\ln\frac{p_1+p_2}{q_1+q_2}dx$
$ = \int_I p_1\ln\frac{p_1(q_1+q_2)}{q_1(p_1+p_2)}dx + \int_I p_2\ln \frac{p_2(q_1+q_2)}{q_2(p_1+p_2)}dx$
$ \geq \int_I p_1\left(\frac{q_1(p_1+p_2)}{p_1(q_1+q_2)} - 1\right)dx + \int_I p_2\left( \frac{q_2(p_1+p_2)}{p_2(q_1+q_2)} - 1\right)dx$
$ = \int_I \left( q_1\frac{p_1+p_2}{q_1+q_2} - p_1 + q_2\frac{p_1+p_2}{q_1+q_2} - p_2 \right) dx$
$ = 0$
4.
$ D(p\vert\vert q) = \int_I \frac{1}{\sqrt{2\pi}\sigma_p} \exp\left(-\frac{(x-\m...
...p}\exp\left(\frac{(x-\mu_p)^2\sigma_q^2}{(x-\mu_q)^2\sigma_p^2}\right)\right)dx$

TODO: What am I supposed to find?


next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Matrices
Reynald AFFELDT
2000-06-08