next up previous
Next: Problem 2 - Determinants Up: Mathematics Previous: Mathematics

Problem 1 - Geometry

Answer the following questions about the curve defined by

$\displaystyle x=a\cos^3 t, \quad y=a\sin^3 t,$

with a parameter $ t$ $ (0\leq t\leq 2\pi)$, where $ a>0$.
1.
Draw an outline of this curve.
2.
Compute the area of the region enclosed by the curve.
3.
Compute the length of this curve.


1.
2.

$\displaystyle S = 4\int_{0}^{\frac{\pi}{2}} -ydx$

$\displaystyle = -4a^2\int_{0}^{\frac{\pi}{2}} \sin^3 t d(\cos^3 t)$

$\displaystyle = 12a^2\int_{0}^{\frac{\pi}{2}} \sin^3 t \sin t \cos^2 t dt$


$\displaystyle = 12a^2\int_{0}^{\frac{\pi}{2}} \cos t \cos t \sin^4 t dt$

$\displaystyle = 12a^2\int_{0}^{\frac{\pi}{2}} (1-\sin^2 t)\sin^4 t dt$

$\displaystyle = 12a^2\int_{0}^{\frac{\pi}{2}} \sin^4 t - \sin^6 t dt$

$ \sin^4 t = \left(\frac{e^{it}-e^{-it}}{2i}\right)^4$
$ \cdots$
$ = \frac{1}{16}\left(6 + 2\cos 4t - 8\cos 2t \right)$
$ \sin^6 t = \left(\frac{e^{it}-e^{-it}}{2i}\right)^6$
$ \cdots$
$ = -\frac{1}{32}\left(-10 + \cos 6t + 15\cos 2t - 6\cos 4t\right)$
$ \cdots$
3.

$\displaystyle \frac{dx}{dt} = - 3 a \sin t \cos^2 t \quad \frac{dy}{dt} = 3 a \cos t \sin^2 t$

$\displaystyle l = 4\int_{0}^{\frac{\pi}{2}} \sqrt{9a^2(\sin^2 t\cos^4 t + \cos^2 t\sin^4 t)} dt $

$\displaystyle = 4\int_{0}^{\frac{\pi}{2}} \sqrt{9a^2\sin^2 t\cos^2 t(\cos^2 t + \sin^2 t)} dt $

$\displaystyle = 4\int_{0}^{\frac{\pi}{2}} \sqrt{9a^2\sin^2 t\cos^2 t} dt $

$\displaystyle = 12a\int_{0}^{\frac{\pi}{2}} \sin t\cos t dt $

$\displaystyle = 12a\int_{0}^{\frac{\pi}{2}} \frac{\sin 2t}{2}dt $

$\displaystyle = 12a\left[-\frac{1}{4}\cos 2t\right]_{0}^{\frac{\pi}{2}}$

$\displaystyle = 12a\left[\frac{1}{4} + \frac{1}{4}\right]$

$\displaystyle = 6a$



Reynald AFFELDT
2000-06-08