next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Geometry

Problem 2 - Determinants

Let

$\displaystyle A=\left(\begin{tabular}{ccc}
$a_{11}$ & $a_{12}$ & $a_{13}$ \\
...
... & $a_{22}$ & $a_{23}$ \\
$a_{31}$ & $a_{32}$ & $a_{33}$
\end{tabular}\right)$

be an orthogonal matrix of order 3 satisfying $ \vert A\vert=1$, where $ \vert A\vert$ is the determinant of the matrix $ A$.
1.
Prove the following equalities.

$\displaystyle a_{11}=\left\vert\begin{tabular}{cc} $a_{22}$ & $a_{23}$ \\  $a_{...
...lar}{cc} $a_{21}$ & $a_{22}$ \\  $a_{31}$ & $a_{32}$ \end{tabular}\right\vert.
$

2.
Prove that $ A$ has an eigenvalue $ \lambda = 1$.


1.
$ A$ is an orthogonal matrix. That means in particular that the system of its column vectors is an orthonormal base of the Euclidian space $ \mathbb{R}^3$. Let us call that base $ \mathcal{B}'$. $ A$ is the matrix that goes from the canonical base $ \mathcal{B}$ to the base $ \mathcal{B}'$: $ A=P_{\mathcal{B}\mathcal{B}'}$. We know that $ \det(A)=1>0$. It means moreover that the base is direct. Thus, we have the following property:

$\displaystyle \left(\begin{tabular}{c} $a_{11}$ \\  $a_{21}$ \\  $a_{31}$ \end{...
...left(\begin{tabular}{c} $a_{13}$ \\  $a_{23}$ \\  $a_{33}$ \end{tabular}\right)$

$\displaystyle \left(\begin{tabular}{c} $a_{12}$ \\  $a_{22}$ \\  $a_{32}$ \end{...
...left(\begin{tabular}{c} $a_{11}$ \\  $a_{21}$ \\  $a_{31}$ \end{tabular}\right)$

$\displaystyle \left(\begin{tabular}{c} $a_{13}$ \\  $a_{23}$ \\  $a_{33}$ \end{...
...left(\begin{tabular}{c} $a_{12}$ \\  $a_{22}$ \\  $a_{32}$ \end{tabular}\right)$

If we calculate explicitly the vectorial product for each of this property, then we could express the first coordinate of each right-hand vector in function of the coordinates of the corresponding left-hand vectors. That leads to the following relations:

$\displaystyle a_{13} = a_{21}a_{32} - a_{31}a_{22}$

$\displaystyle a_{11} = a_{22}a_{33} - a_{32}a_{23}$

$\displaystyle a_{12} = a_{23}a_{31} - a_{21}a_{33}$

which are the relations we are asking.
2.
We shall determine the characteristic polynomial of $ A$:

$\displaystyle \chi_A(x) = \left\vert \begin{tabular}{ccc}
$a_{11} - \lambda$ & ...
...$a_{23}$ \\
$a_{31}$ & $a_{32}$ & $a_{33} - \lambda$
\end{tabular}\right\vert$

$\displaystyle =(a_{11} - \lambda)(a_{22}a_{33} + \lambda^2 - \lambda(a_{22}+a_{...
...a a_{12} - a_{32}a_{13}) + a_{31}(a_{12}a_{23} + a_{13}a_{22} - \lambda a_{13})$

$\displaystyle =-\lambda^3 + \lambda^2\hbox{tr}(A) + \lambda(-a_{11}a_{22}+a_{11}a_{33}-a_{22}a_{33} + a_{32}a_{23} + a_{12}a_{21}-a_{31}a_{13}) + \det(A)$

In particular:

$\displaystyle \chi_A(1)=\hbox{tr}(A) -a_{11}a_{22}+a_{11}a_{33}-a_{22}a_{33} + a_{32}a_{23} + a_{12}a_{21}-a_{31}a_{13}$

From the calculus of the vectorial products in the question above, we can also deduce the following formulas:
$ a_{22} = a_{13}a_{31} - a_{33}a_{11}$
$ a_{33} = a_{11}a_{22} - a_{21}a_{12}$
We already know that:
$ a_{11} = a_{22}a_{33} - a_{32}a_{23}$
We can therefore eliminate the following terms (in bold below):

$\displaystyle \chi_A(1)=a_{11} + a_{22} \boldsymbol{+ a_{33}} \boldsymbol{-a_{1...
...{11}a_{33}-a_{22}a_{33} + a_{32}a_{23} \boldsymbol{+ a_{12}a_{21}}-a_{31}a_{13}$

$\displaystyle \chi_A(1)=\boldsymbol{a_{11}} + a_{22} +a_{11}a_{33} \boldsymbol{-a_{22}a_{33}} \boldsymbol{+ a_{32}a_{23}} -a_{31}a_{13}$

$\displaystyle \chi_A(1)=\boldsymbol{a_{22} +a_{11}a_{33} -a_{31}a_{13}}$

$\displaystyle \chi_A(1)=0$

Thus, $ \lambda = 1$ is an eigenvalue of $ A$.


next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Geometry
Reynald AFFELDT
2000-06-08