next up previous
Next: Problem 2 - Determinants Up: Mathematics Previous: Mathematics

Problem 1 - Wallis

Consider $ I_n$ defined by

$\displaystyle I_n = \int_0^{\frac{\pi}{2}}\sin^n xdx \quad (n \in \mathbb{N})$

1.
Show the following: $ I_n \frac{n-1}{n} I_{n-2}\quad (n \geq 2)$.
2.
Find a general form of $ I_n$.
3.
Compute $ J_n = \int_0^{\frac{\pi}{2}}\cos^nxdx\quad (n\in
\mathbb{N})$.


1.
$ I_n = \int_0^{\frac{\pi}{2}} \sin^n xdx = \left[ -\cos x \sin^{n-1} x \right]_0^{\frac{\pi}{2}}
-\int_0^{\frac{\pi}{2}} -\cos x (n-1)\cos x \sin^{n-2} xdx$
$ I_n = 0 + (n-1)\int_0^{\frac{\pi}{2}}(1-\cos^2 x)\sin^{n-2} xdx = (n-1)(I_{n-2} - I_n)$
$ I_n = \frac{n-1}{n}I_{n-2}$
2.
$ I_{2n} = \frac{2n-1}{2n}I_{2n-2} = \frac{(2n-1)(2n-3)(2n-5)\cdots 1}{(2n)(2n-2)(2n-4)\cdots 2}I_0$
$ I_0 = \int_0^{\frac{\pi}{2}dx} = \frac{\pi}{2}$
$ I_{2n} = \frac{(2n)!}{(2^n n!)^2}\frac{\pi}{2}$
$ I_{2n+1} = \frac{2n}{2n+1}I_{2n-1} = \frac{(2n)(2n-2)(2n-4)\cdots 2}{(2n+1)(2n-1)(2n-3)\cdots 1}I_1$
$ I_1 = \int_0^{\frac{\pi}{2}} \sin x dx = [-\cos x]_0^{\frac{\pi}{2}} = 1$
$ I_{2n+1} = \frac{(2^n n!)^2}{(2n+1)!}$
3.
$ J_n = \int_0^{\frac{\pi}{2}}\cos^n dx = - \int_{\frac{\pi}{2}}^0 \left( \cos (\frac{\pi}{2} -t)\right)^n dt = \int_0^{\frac{\pi}{2}} \sin t dt = I_n$



Reynald AFFELDT
2000-06-08