next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Wallis

Problem 2 - Determinants

Let $ a_1, a_2, \dots, a_n$ be $ n$ real numbers, and $ A$ be an $ n \times n$ matrix defined by

$\displaystyle A = \left( \begin{tabular}{cccc} 1 & 1 & $\cdots$ & 1 \\
$a_1$ ...
...
$a_1^{n-1}$ & $a_2^{n-1}$ & $\cdots$ & $a_n^{n-1}$ \\
\end{tabular} \right)$

1.
Compute the determinant of $ A$.
2.
Give a necessary and sufficient condition that there exists $ \boldsymbol{x} \neq \boldsymbol{0}$ satisfying $ A \boldsymbol{x} =
\boldsymbol{0}$.


1.
We shall use the following polynomial:

$\displaystyle \Pi_{i=1}^{n-1}(x-a_i) = x^{n-1} + \sum_{k=1}^{n-2}\lambda_k x^k$

Without changing the value of the determinant, we can make the following transformation:

$\displaystyle \det(A) = \left\vert \begin{tabular}{cccc} 1 & 1 & $\cdots$ & 1 \...
... & $a_n^{n-1} + \sum_{k=1}^{n-2}\lambda_k a_n^k$ \\
\end{tabular} \right\vert$

that we can also write as follows:

$\displaystyle \det(A) = \left\vert \begin{tabular}{cccc} 1 & 1 & $\cdots$ & 1 \...
..._2-a_i)$ & $\cdots$ & $\Pi_{i=1}^{n-1}(a_n-a_i)$ \\
\end{tabular} \right\vert$

On the last line, the first $ n-1$ elements are 0 and we are in fact given the following determinant:

$\displaystyle \det(A) = \left\vert \begin{tabular}{cccc} 1 & 1 & $\cdots$ & 1 \...
...0$ & $0$ & $\cdots$ & $\Pi_{i=1}^{n-1}(a_n-a_i)$ \\
\end{tabular} \right\vert$

We can develop the determinant according to the last line:

$\displaystyle \det(A) = \det(A_{n-1})\Pi_{i=1}^{n-1}(a_n - a_i)$

where $ A_{n-1}$ is the same matrix as $ A$ but without the last line and the rightmost column. We can operate the same transformations on $ A_{n-1}$ leading to:

$\displaystyle \det(A) = \det(A_{n-2})\Pi_{i=1}^{n-2}(a_{n-1} - a_i)\Pi_{i=1}^{n-1}(a_n - a_i)
$

Inductively:

$\displaystyle \det(A) = (a_2-a_1)\Pi_{i=1}^2(a_3-a_i) \cdots \Pi_{i=1}^{n-2}(a_{n-1} - a_i)\Pi_{i=1}^{n-1}(a_n - a_i)
$

that we can also written:

$\displaystyle \det(A) = \Pi_{1\leq i<j\leq n}(a_j-a_i)
$

2.
$ Ax=0$ with $ x\neq 0$ means the linear application that $ A$ represents is not a one-to-one mapping and thus $ \det(A)=0$ which occurs iff $ \exists i,j,
i\neq j, x_i = x_j$.


next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Wallis
Reynald AFFELDT
2000-06-08