next up previous
Next: Problem 2 - Algebra Up: Mathematics Previous: Mathematics

Problem 1 - Probability

1.
For $ t>0$, prove $ \log t \geq 1 - \frac{1}{t}.$
2.
For functions $ p(x)$, $ q(x)$ defined over $ -\infty < x < \infty$ such that

$\displaystyle p(x)>0,\quad q(x)>0,$

$\displaystyle \int_{-\infty}^\infty p(x)dx = \int_{-\infty}^\infty q(x)dx = 1,$

prove the following equality holds:

$\displaystyle I(p,q)=\int_{-\infty}^\infty p(x)\log \frac{p(x)}{q(x)}dx \geq 0.$

3.
For functions $ p(x)$ and $ q(x)$ defined by

$\displaystyle p(x)=\frac{1}{\sigma_1\sqrt{2\pi}}\exp\left( -\frac{(x-x_1)^2}{2\sigma_1^2} \right),$

$\displaystyle q(x)=\frac{1}{\sigma_2\sqrt{2\pi}}\exp\left( -\frac{(x-x_2)^2}{2\sigma_2^2} \right),$

compute $ I(p,q)$. Here, $ x_1, x_2, \sigma_1, \sigma_2$ are constants.


1.
For $ t>0$, we study the function defined by $ f(t)=\log t + \frac{1}{t} - 1$ whose first derivative is $ f'(t)= \frac{t-1}{t^2}$. This function is $ <0$ for $ 0<t<1$ and $ >0$ for $ t>1$. This means, $ f$ is decreasing on the way to 1 and increasing afterwards. It reaches its minimum in 1 and this minimum has 0 as a value. From this, we conclude $ \forall t > 0, f(t)\geq 0$ which is equivalent to the statement we're asked about.
2.

$\displaystyle \forall x\in \mathbb{R}, p(x)\log \frac{p(x)}{q(x)} \geq p(x)\left( 1 - \frac{q(x)}{p(x)}\right) = p(x) - q(x)$

We integrate the inequality and get:

$\displaystyle \int_{-\infty}^\infty p(x)\log \frac{p(x)}{q(x)}dx \geq \int_{-\infty}^\infty p(x) dx - \int_{-\infty}^\infty q(x)dx = 1 - 1 = 0$

since $ p$ and $ q$ are probability density functions.
3.

$\displaystyle \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}\sigma_1}\exp\left(-\fr...
...gma_2}{\sigma_1}\exp \frac{\sigma_2^2}{\sigma_1^2}\frac{(x-x_1)^2}{(x-x_2)^2}dx$

TODO: What am I suppose to find?



Reynald AFFELDT
2000-06-08