next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Probability

Problem 2 - Algebra

For subspaces $ U$, $ W$ of $ n$-dimensional real vector space $ V_n$, define $ U \cap W$, $ U+W$ by

$\displaystyle U \cap W = \{ \boldsymbol{a} \; \vert \; \boldsymbol{a} \in U, \;\boldsymbol{a}
\in W \}
$

$\displaystyle U + W = \{ \boldsymbol{b} \; \vert \; \boldsymbol{b} = \boldsymbol{a}_1 +
\boldsymbol{a}_2, \;\boldsymbol{a}_1 \in U, \; \boldsymbol{a}_2 \in W \}
$

1.
Show that $ U \cap W$ and $ U+W$ are real vector spaces.
2.
Suppose that $ V_n$ is the 3-dimensional space with $ (x,y,z)$-coordinate.
(a)
When $ U$ is the $ (x,y)$-plane and $ W$ is the $ (y,z)$-plane, whate are $ U \cap W$, $ U+W$ ? Also, give the dimensions of $ U \cap W$ and $ U+W$.
(b)
When $ U$ is the $ (x,y)$-plane and $ W$ is the $ z$-axis, whate are $ U \cap W$, $ U+W$ ? Also, give the dimensions of $ U \cap W$ and $ U+W$.
3.
Denote the dimension of real vector space $ V$ by $ \dim (V)$. Prove the following equality:

$\displaystyle \dim (U \cap W) + \dim (U+W) = \dim(U) + \dim(W)$

1.
$ U \cap W$ and $ U+W$ are they real vector spaces?
(a)
$ U \cap W$ is a real vector space because:
i.
$ U \cap W$ is an abelian group because:
a.
$ U$ and $ W$ are subspaces, therefore $ \boldsymbol{0} \in U$ and $ \boldsymbol{0} \in W$, therefore $ \boldsymbol{0} \in U \cap W$;
b.
$ \forall (\boldsymbol{x}, \boldsymbol{y}) \in (U \cap W)^2$, $ \boldsymbol{x} \in U$ and $ \boldsymbol{x} \in W$ and $ \boldsymbol{y} \in U$ and $ \boldsymbol{y} \in W$, therefore $ \boldsymbol{x}+\boldsymbol{y} \in U$ and $ \boldsymbol{x}+\boldsymbol{y} \in W$ (since $ U$ and $ W$ are vector spaces), therefore $ \boldsymbol{x}+\boldsymbol{y} \in U\cap W$;
c.
$ \forall \boldsymbol{x} \in U\cap W$, $ \boldsymbol{x} \in U$ and $ \boldsymbol{y} \in W$, therefore $ -\boldsymbol{x} \in U$ and $ -\boldsymbol{y}
\in W$ (since $ U$ and $ W$ are vector spaces), therefore $ -\boldsymbol{x} \in
U\cap W$.
ii.
$ (\forall (\lambda_1, \lambda_2) \in
\mathbb{R}^2)(\forall
(\boldsymbol{x},\boldsymbol{y} \in (U\cap W)^2))$ we have (since these properties are already true for both $ U$ and $ W$):
a.
$ (\lambda_1 + \lambda_2)\boldsymbol{x} = \lambda_1 \boldsymbol{x} +
\lambda_2 \boldsymbol{y}$;
b.
$ \lambda_1 (\boldsymbol{x} + \boldsymbol{y}) = \lambda_1 \boldsymbol{x}
+ \lambda_1 \boldsymbol{y}$.
iii.
$ (\forall \boldsymbol{x} \in U\cap W) 1 \boldsymbol{x}=\boldsymbol{x}$ (since this property is already true for both $ U$ and $ W$).
iv.
$ (\forall (\lambda, \mu) \in
\mathbb{R}^2)(\forall \boldsymbol{x} \in
U\cap W)\lambda(\mu \boldsymbol{x} = (\lambda \mu)\boldsymbol{x}$ (since these property is already true for both $ U$ and $ W$).
(b)
$ U+W$ is also a real vector space for the same reasons.
This is raw check of the definition of a vector space. It is better to apply the theorem saying that a set included in a vector space is a subspace iff it is stable for the addition and for the scalar multiplication.
2.
Can you explicit $ U \cap W$ and $ U+W$ and their dimensions in a practical case study?
(a)
i.
$ U\cap W = \{ \boldsymbol{x} \; \vert \; \boldsymbol{x} \in
(
\mathbb{R}\boldsy...
...mathbb{R}\boldsymbol{j}+
\mathbb{R}\boldsymbol{k})\} =
\mathbb{R}\boldsymbol{j}$ because $ (\boldsymbol{i}, \boldsymbol{j},
\boldsymbol{k})$ is a set of basis vectors. Therefore, $ \dim (U\cap W) = 1$.
ii.
$ U+W = \{ \boldsymbol{x} \; \vert \; (\exists (\boldsymbol{a},
\boldsymbol{b}) ...
...thbb{R}\boldsymbol{k})\;
\boldsymbol{x}=\boldsymbol{a} + \boldsymbol{b}\} = V_n$. Therefore, $ \dim
(U+W) = 3$.
(b)
i.
$ U \cap W = \{ \boldsymbol{0} \}$ and $ \dim (U\cap W)=0$.
ii.
$ U+W = V_n$ and $ \dim
(U+W) = 3$.
3.
Can you show that $ \dim (U\cap W) + \dim (U+W) = \dim (U) + \dim (W)$?

Let us consider the application $ f : U \times W \rightarrow V_n; (x,y) \mapsto
x+y$. $ \Im (f) = U+W$. $ \ker (f) = \{ (x,y) \; \vert \; f(x,y)=x+y=0 \} = \{ x \;
\vert \; (x \in U)\wedge (-x \in W) \} = \{ x \; \vert \; (x \in U)\wedge (x \in W)\}
= U \cap W$ (remember that W is a vector space). The rank formula gives us the following equality:

$\displaystyle \dim (U \times W) = \dim (U+W) + \dim (U\cap W).
$

Since we know that $ \dim (U\times W) = \dim (U) + \dim(W)$, we have shown that the following equality holds:

$\displaystyle \dim (U\cap W) + \dim (U+W) = \dim (U) + \dim (W).
$


next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Probability
Reynald AFFELDT
2000-06-08