next up previous
Next: Problem 2 - Determinants Up: Mathematics Previous: Mathematics

Problem 1 - Analysis

Concerning the transformation between the orthogonal coordinates and polar coordinates, answer the following questions.

1.
Represent $ \frac{\partial f}{\partial x}$ and $ \frac{\partial f}{\partial y}$ in terms of $ \frac{\partial f}{\partial r}$ and $ \frac{\partial f}{\partial \theta}$.
2.
Represent $ \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}$ in terms of the partial derivatives of $ f$ with respect to $ r$ and $ \theta$.


1.

$\displaystyle f(x,y)=f(r\cos \theta,r\sin \theta)$

$\displaystyle \frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}\fra...
...rac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$

$\displaystyle \frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x...
...c{\partial f}{\partial x}r\sin\theta + \frac{\partial f}{\partial y}r\cos\theta$


$\displaystyle r\sin\theta\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}r\sin\theta\cos\theta + \frac{\partial f}{\partial y}r\sin^2\theta$

$\displaystyle \cos\theta\frac{\partial f}{\partial \theta} = -\frac{\partial f}{\partial x}r\sin\theta\cos\theta + \frac{\partial f}{\partial y}r\cos^2\theta$


$\displaystyle \boxed{\frac{\partial f}{\partial y} = \sin\theta\frac{\partial f}{\partial r} + \frac{\cos\theta}{r}\frac{\partial f}{\partial \theta}}$


$\displaystyle r\cos\theta\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}r\cos^2\theta + \frac{\partial f}{\partial y}r\cos\theta\sin\theta$

$\displaystyle -\sin\theta\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x}r\sin^2\theta - \frac{\partial f}{\partial y}r\sin\theta\cos\theta$


$\displaystyle \boxed{\frac{\partial f}{\partial x}=\cos\theta\frac{\partial f}{\partial r}-\frac{\sin\theta}{r}\frac{\partial f}{\partial \theta}}$

2.

$\displaystyle \frac{\partial^2 f}{\partial r^2} = \cos\theta\left(\frac{\partia...
...ial x\partial y}\cos\theta + \frac{\partial^2 f}{\partial y^2}\sin\theta\right)$

$\displaystyle \frac{\partial^2 f}{\partial r^2} =\cos^2\theta\frac{\partial^2 f...
...{\partial y^2} + 2\sin\theta\cos\theta\frac{\partial^2 f}{\partial x\partial y}$

$\displaystyle r^2\frac{\partial^2 f}{\partial r^2} =r^2\left(\cos^2\theta\frac{...
...y^2}\right) + 2r^2\sin\theta\cos\theta\frac{\partial^2 f}{\partial x\partial y}$


$\displaystyle \frac{\partial^2 f}{\partial \theta^2} = -\left(-\frac{\partial^2...
...al y^2}r\cos\theta\right)r\cos\theta - r\sin\theta\frac{\partial f}{\partial y}$

$\displaystyle \frac{\partial^2 f}{\partial \theta^2} = r^2\left(\sin^2\theta\fr...
...s\theta\frac{\partial f}{\partial x} - r\sin\theta\frac{\partial f}{\partial y}$


$\displaystyle r^2\frac{\partial^2 f}{\partial r^2} + \frac{\partial^2 f}{\parti...
...s\theta\frac{\partial f}{\partial x} - r\sin\theta\frac{\partial f}{\partial y}$

$\displaystyle r^2\frac{\partial^2 f}{\partial r^2} + \frac{\partial^2 f}{\parti...
...^2} + \frac{\partial^2 f}{\partial y^2}\right) - r\frac{\partial f}{\partial r}$

$\displaystyle \boxed{\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\p...
...\frac{\partial^2 f}{\partial \theta^2} + r\frac{\partial f}{\partial r}\right)}$



Reynald AFFELDT
2000-06-08