next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Vector

Problem 2 - Taylor Expansion

For a function $ f(x)$ on the closed interval $ [a,b]$ which is differentiable $ n+1$ times, there exists the Taylor expansion

$\displaystyle f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \cdots + \frac{(b-a)^n}{n!}f^{(n)}(a) + R_{n+1}.$

1.
Compute $ F'(x)$ for $ F(x) = f(b) - \sum_{k=0}^n \frac{(b-x)^k}{k!}f^{(k)}(x).$
2.
Show $ R_{n+1} = \frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(\xi_1)$, $ (a < \xi_1 < b)$.
3.
Show $ R_{n+1} = \frac{(b-a)(b-\xi_2)^n}{n!}f^{(n+1)}(\xi_2)$, $ (a < \xi_2 < b)$.
4.
Prove, by induction concerning $ n$, $ R_{n+1} = \frac{1}{n!}\int_a^b (b-x)^n f^{(n+1)}(x)dx$.


1.

$\displaystyle F(x) = f(b) - f(x) - \sum_{k=1}^n \frac{(b-x)^k}{k!}f^{(k)}(x)$

$\displaystyle F'(x) = - f'(x) + \sum_{k=1}^n \left( \frac{(b-x)^{k-1}}{(k-1)!}f^{(k)}(x) - \frac{(b-x)^k}{k!}f^{(k+1)}(x)\right)$

$\displaystyle F'(x) = - \frac{(b-x)^n}{n!}f^{(n+1)}(x)$

2.
We first notice that $ R_{n+1} = F(a)$. Let us assume that we are given the following function:

$\displaystyle \phi(x) = F(x) - \frac{(b-x)^{n+1}}{(n+1)!}\frac{F(a)(n+1)!}{(b-a)^{n+1}}$

We have both $ \phi(a)=0$ and $ \phi(b)=0$ (because $ F(b)=0$). Thus, by the Rolle theorem, $ \exists \xi_1$ such that $ a<\xi_1<b$ and $ \phi(\xi_1) = 0$.

$\displaystyle \phi'(x) = F'(x) + \frac{(b-x)^n}{n!}\frac{F(a)(n+1)!}{(b-a)^{n+1}}$

$\displaystyle \phi'(\xi_1) = - \frac{(b-\xi_1)^n}{n!}f^{(n+1)}(\xi_1) + \frac{(b-\xi_1)^n}{n!}\frac{F(a)(n+1)!}{(b-a)^{n+1}} = 0$

$\displaystyle f^{(n+1)}(\xi_1) = R_{n+1}\frac{(n+1)!}{(b-a)^{n+1}}$

$\displaystyle R_{n+1} = \frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(\xi_1)$

3.
$ F$ is differentiable because $ f$ is $ n+1$ times differentiable, which means $ \exists \xi_2 \in ]a,b[$ such that:

$\displaystyle \frac{F(b) - F(a)}{b-a} = F'(\xi_2)$

$\displaystyle R_{n+1} = \frac{(b-a)(b-\xi_2)^n}{n!}f^{(n+1)}(\xi_2)$

4.
For $ n=0$, we have by definition $ f(b) = f(a) + R_1$ and $ \int_a^b f'(x)dx = f(b)-f(a)$, and the property is true for $ n=0$. Let us assume that the property is true for $ n=k-1$, i.e. we have:

$\displaystyle R_{k} = \frac{1}{(k-1)!}\int_a^b (b-x)^{k-1}f^{(k)}(x)dx$

By definition, we have:

$\displaystyle R_{k+1} = R_k - \frac{(b-a)^k}{k!}f^{(k)}(a)$

which is merely the decomposition of the following integral:

$\displaystyle \frac{1}{k!}\int_a^b (b-x)^kf^{(k+1)}(x)dx = \frac{1}{k!}\left( \left[(b-x)^kf^{(k)}(x)\right]_a^b + \int_a^b n(b-x)^{k-1}f^{(k)}dx\right)$

Therfore:

$\displaystyle R_{k+1} = \frac{1}{k!}\int_a^b (b-x)^kf^{(k+1)}(x)dx$

and the property has been proved by induction.


next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Vector
Reynald AFFELDT
2000-06-08