next up previous
Next: Problem 5 - Lambda Up: Information Science I Previous: Problem 3 - Compilation

Problem 4 - Numerical Calculus

For $ n$-dimensional vectors $ a$,$ b$ $ (a\neq b)$ of the same length, an $ n \times n$ matrix $ P$ defined by

$\displaystyle P = I - 2 uu^T, \quad u = (a-b)/\vert\vert a-b\vert\vert$

is called a Householder matrix. Answer the following questions.
1.
Show $ b = Pa$, $ a = Pb$.
2.
Show $ P$ is an orthogonal matrix.
3.
Find all the eigenvalues of $ P$.
4.
Compute the determinant of $ P$.


1.
$ Pa = (I-2uu^T)a $
$ = a - 2 \frac{a-b}{\vert\vert a-b\vert\vert}\frac{a^T - b^T}{\vert\vert a-b\vert\vert}a$
$ = a - 2 (a - b)\frac{a^Ta - b^Ta}{\vert\vert a-b\vert\vert^2}$
$ = a - 2 (a - b)\frac{\vert\vert a\vert\vert^2 - b^Ta}{\vert\vert a\vert\vert^2 + \vert\vert b\vert\vert^2 - a^Tb - b^Ta}$
$ = a - (a - b)\frac{2\vert\vert a\vert\vert^2 - 2<a\vert b>}{\vert\vert a\vert\vert^2 + \vert\vert b\vert\vert^2 - 2<a\vert b>}$
$ = a - (a-b)$, since $ a$ and $ b$ have the same length.
$ = b$
We show that $ Pb = a$ is a similar way.
2.
$ P = I - 2 u u^T$ that we can also write:

$\displaystyle P = \left( \begin{tabular}{cccc}
$1-2u_1^2$ & $-2u_1u_2$ & $\cdot...
...\\
$-2u_nu_1$ & $-2u_nu_2$ & $\cdots$ & $1-2u_n^2$ \\
\end{tabular} \right)$

$ P$ is symmetric. To determine whether or not it is orthogonal, we form $ PP^T = P^2$.

Let $ \mathcal{L}_i$ be a line of $ P$ and $ \mathcal{C}_j$ be a column of $ P$. The $ k$th element of $ \mathcal{L}_i$ is equal to $ -2u_iu_k$ if $ i\neq k$ and to $ 1-2u_i^2$ if $ i=k$. The $ k$th element of $ \mathcal{C}_j$ is equal to $ -2u_ku_j$ if $ j\neq k$ and to $ 1-2u_j^2$ if $ i=k$.

Suppose we look for an element $ (i,i)$ of the matrix $ P^2$. This element is:

$\displaystyle \mathcal{L}_i.\mathcal{C}_i = 1 + 4u_i^4 - 4u_i^2 + \sum_{k=1; k\neq i}^n 4 u_i^2u_k^2$

$\displaystyle = 1 - 4 u_i^2 + \sum_{k=1}^n 4 u_i^2u_k^2$

$\displaystyle = 1 - 4 u_i^2 + 4 u_i^2 \sum_{k=1}^n u_k^2$

$\displaystyle = 1 - 4 u_i^2 + 4 u_i^2, \quad \hbox{since} \; \vert\vert u\vert\vert^2 = 1$

$\displaystyle = 1 $

Now, we look for an element $ (i,j)$ $ (i\neq j)$ of the matric $ P^2$. This element is:

$\displaystyle \mathcal{L}_i.\mathcal{C}_j = \sum_{k=1;k\neq i,j}^n 4 u_iu_ju_k^2 - 2(1-2u_i^2)u_iu_j - 2(1-2u_j^2)u_ju_i$

$\displaystyle = \sum_{k=1;k\neq i,j}^n 4 u_iu_ju_k^2 - (2u_iu_j - 4 u_i^3u_j)- (2u_ju_i - 4u_j^3u_i) $

$\displaystyle = 4 u_iu_j\sum_{k=1}^n u_k^2 - 2u_iu_j - 2u_ju_i $

$\displaystyle = 4 u_iu_j - 4u_iu_j$

$\displaystyle =0$

And thus $ PP^T=I$ and $ P$ is orthogonal.

3.
Let $ \lambda $ be an eigenvalue of $ P$. We have a vector $ x$ such that:
$ Px = \lambda x$
$ P^2 x = \lambda P x = \lambda^2 x = x$
Therefore, $ \lambda^2 = 1$ and $ \lambda \in \{ -1,+1 \}$
4.
Since $ PP^T=I$:
$ \det P \det P^T = (\det P)^2 = \det I = 1$
Then, $ \det P \in \{-1,+1\}$


next up previous
Next: Problem 5 - Lambda Up: Information Science I Previous: Problem 3 - Compilation
Reynald AFFELDT
2000-06-08