next up previous
Next: Problem 2 - Differential Up: Mathematics Previous: Mathematics

Problem 1 - Characteristic Polynomials

For a $ 2 \times 2$ matrix $ A = \left( \begin{tabular}{cc} a & b \\  c & d \\  \end{tabular} \right)$, answer the following questions.

1.
Compute the characteristic polynomial $ f_A (x) = \vert xI - A\vert$, where $ \vert\vert$ is the determinant of a matrix, and $ I$ is a $ 2 \times 2$ unit matrix.
2.
Compute $ f_A (A)$.
3.
A polynomial $ f(x)$ is called a minimal polynomial of $ A$ if $ f(A)=0$, its coefficients are scalar, the coefficient of highest degree is 1, and the degree is minimum with respect to these properties. The minimal polynomial of $ A$ is denoted by $ \phi_A(x)$. Show that $ \phi_A(x)$ divides $ f_A (x)$.
4.
For an eigenvalue $ \lambda $ of $ A$, show $ \phi_A(\lambda) = 0$.

1.

$\displaystyle f_A(X) = \left\vert xI - A \right\vert = \left\vert \begin{tabula...
...\  $c$ & $x-d$ \end{tabular}\right\vert = (x-a)(x-d)-bc = x^2 - (a+d)x + ad -bc$

2.

$\displaystyle f_A(A) = \left\vert AI - A \right\vert = 0$

3.
$ f_A(x) = \phi_A(x)Q(x) + R(x), \; \hbox{with} \; \deg R(x) < \deg \phi_A(x)$.
$ f_A(A)=0$ and $ \deg f_A = 2$.
$ \phi_A$ is a minimal degree polynomial such that it has a zero value when applied to $ A$.
It means that $ deg \phi_A \leq \deg f_A$.
Let us first assume that $ deg \phi_A = 1$.
Then it means that $ \deg R = 0$.
Then, since $ f_A(A)=0$, it implies that $ R(A)=0$, and finally $ R=0$.
Thus, $ \phi_A$ divides $ f_A$.
Let us now assume that $ \deg f_A = 2$.
Then it means that $ \deg R = 1$.
For instance, $ R(x) = \alpha x + \beta$.
Since, $ f_A(A)=0$, then $ R(A)=0$.
Thus, $ R$ is a polynomial that has a zero value in $ A$ and whose degree
is inferior to the one of $ \phi_A$, which is not possible by definition.
Therefore, $ \deg R = -\infty$ and $ \phi_A$ divides $ f_A$.

4.
Let $ \phi_A$ be $ \phi_A(X) = X^2 + \alpha X + \beta$.
We have $ \phi_A(A) = A^2 + \alpha A + \beta = 0$.
$ \lambda $ is an eigenvalue of $ A$. Thus $ \exists X \in \mathcal{M}_{2,1}(K)$ so that:
$ X \neq 0$ and $ AX=\lambda X$, $ A^2X=\lambda^2 X$, etc.
Therefore, $ \phi_A(A)[X] = \lambda^2 X + \alpha \lambda X + \beta X = \left( \phi_A(\lambda) \right) X$.
Since $ \phi_A(A) = 0$ and $ X \neq 0$, we have $ \phi_A(\lambda) = 0$.


next up previous
Next: Problem 2 - Differential Up: Mathematics Previous: Mathematics
Reynald AFFELDT
2000-06-08