next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Characteristic

Problem 2 - Differential Equations

Solve each of the following differential equations:
1.
$ \frac{dy}{dx} = \frac{xy}{x^2 + y^2}$;
2.
$ y\frac{dy}{dx} + \frac{d^2 y}{dx^2} = 0$.

$\displaystyle \frac{dy}{dx} = \frac{xy}{x^2 + y^2} = \frac{u}{1 + u^2} \; \hbox{with} \; u=\frac{y}{x}$

$\displaystyle \frac{du}{dx} = \frac{y'}{x} - \frac{y}{x^2} = \frac{y'}{x} - \frac{u}{x} \; \hbox{and therefore} \; y' = x\frac{du}{dx} + u$

$\displaystyle x\frac{du}{dx} = \frac{u}{1+u^2} - u$

$\displaystyle \frac{du}{\frac{-u^3}{1+u^2}} = \frac{dx}{x}$

$\displaystyle - \int_{x_0}^{x} \frac{1}{u^3}du - \int_{x_0}^{x} \frac{1}{u}du = \int_{x_0}^x \frac{1}{x}dx$

$\displaystyle \left[ \frac{1}{2u^2} - \ln u \right]_{x_0}^x = \ln t - \ln t_0$

$\displaystyle \frac{x^2}{2y(x)^2} - \ln \frac{y(x)}{x} = \ln x + \ln k_0$

$\displaystyle \frac{x^2}{2y(x)^2} = \ln y(x) + \ln k_0$


$\displaystyle y\frac{dy}{dx} + \frac{d^2 y}{dx^2} = 0$

$\displaystyle \int_{x_0}^x y\frac{dy}{dx}dx + \int_{x_0}^x \frac{d^2 y}{dx^2}dx = \int_{x_0}^x 0 dx$

$\displaystyle \left[ \frac{y(x)^2}{2} \right]_{x_0}^x + \left[ \frac{dy}{dx} \right]_{x_0}^x = 0$

$\displaystyle \frac{y(t)^2}{2} + \frac{dy}{dx}(t) = k_0 $

$\displaystyle 2 k_0 - y^2 = 2 \frac{dy}{dx}$

$\displaystyle \frac{2dy}{2k_0 - y^2} = dx$

1.
if $ k_0 > 0$ then

$\displaystyle \frac{1}{\sqrt{2k_0}}\left( \frac{1}{\sqrt{2k_0} - y} + \frac{1}{\sqrt{2k_0} + y} \right) = dx $

$\displaystyle \frac{1}{\sqrt{2k_0}} \left( \int_{x_1}^x \frac{1}{\sqrt{2k_0} - y}dx + \int_{x_1}^x \frac{1}{\sqrt{2k_0} + y}dx \right) = \int_{x_1}^x dx$

$\displaystyle \frac{1}{\sqrt{2k_0}} \left[ -\ln (\sqrt{2k_0} - y) +\ln (\sqrt{2k_0} + y) \right]_{x_1}^x = [ x ]_{x_1}^x$

$\displaystyle \frac{k_1}{\sqrt{2k_0}}\ln \frac{\sqrt{2k_0} + y}{\sqrt{2k_0} - y} = x$

2.
if $ k_0 = 0$ then

$\displaystyle -\frac{2dy}{y^2} = dx $

$\displaystyle \frac{2}{y} = x + k_1$

3.
if $ k_0 < 0$ then

$\displaystyle -2\frac{dy}{(\sqrt{2k_0})^2 + y^2} = dx $

$\displaystyle -\frac{2}{\sqrt{2 k_0}} \arctan \frac{y}{\sqrt{2k_0}} = x + k_1$



Reynald AFFELDT
2000-06-08