next up previous
Next: Problem 2 - Stirling's Up: Mathematics Previous: Mathematics

Problem 1 - Norms

$ 1$-norm and $ \inf$-norm of a real $ n$-component vector are defined as follows:

$\displaystyle \vert\vert\boldsymbol{x}\vert\vert _1 = \sum_{i=1}^n \vert x_i\vert,$

$\displaystyle \vert\vert\boldsymbol{x}\vert\vert _{\infty} = \max_{i=1, \dots, n} \vert x_i\vert.$

Let $ A = \{ a_{ij} \}$ be a real square matrix of order $ n$. Answer the following questions.
1.
Prove the following triangular inequalities:

$\displaystyle \vert\vert\boldsymbol{x}+\boldsymbol{y}\vert\vert _1 \leq \vert\vert\boldsymbol{x}\vert\vert _1 + \vert\vert\boldsymbol{y}\vert\vert _1,$

$\displaystyle \vert\vert\boldsymbol{x}+\boldsymbol{y}\vert\vert _{\infty} \leq ...
...ldsymbol{x}\vert\vert _{\infty} + \vert\vert\boldsymbol{y}\vert\vert _{\infty}.$

2.
Show

$\displaystyle \vert\vert A\boldsymbol{x}\vert\vert _1 \leq \vert\vert\boldsymbol{x}\vert\vert _1 \max_{k=1,\dots,n} \sum_{i=1}^n \vert a_{ik}\vert$

3.
For a given $ A$, give an example of $ \boldsymbol{x}$ for which the equal sign holds in the previous inequality.
4.
Show

$\displaystyle \vert\vert A\boldsymbol{x}\vert\vert _{\infty} \leq \vert\vert\boldsymbol{x}_{\infty} \max_{i=1,\dots,n} \sum_{k=1}^n \vert a_{ik}\vert\vert\vert$

5.
For a given $ A$, give an example of $ \boldsymbol{x}$ for which the equal sign holds in the previous inequality.


1.

$\displaystyle \vert\vert x+y\vert\vert _1 = \sum_{i=1}^n \vert x_i + y_i\vert \...
...+\vert y_i\vert \right) = \vert\vert x\vert\vert _1 + \vert\vert y\vert\vert _1$

$\displaystyle \vert\vert x+y\vert\vert _\infty = \max_{i=1,\dots,n} \vert x_i +...
...eft( \max_{i=1,\dots,n}\vert x_i\vert + \max_{i=1,\dots,n}\vert y_i\vert\right)$

$\displaystyle =\max_{i=1,\dots,n}\vert x_i\vert + \max_{i=1,\dots,n}\vert y_i\vert = \vert\vert x\vert\vert _\infty + \vert\vert y\vert\vert _\infty$

2.

$\displaystyle \vert\vert Ax\vert\vert _1 = \sum_{i=1}^n \left\vert \sum_{j=1}^n a_{ij}x_j\right\vert \leq \sum_{i=1}^n \sum_{j=1}^n \vert a_{ij}x_j\vert$

$\displaystyle = \sum_{j=1}^n \sum_{i=1}^n\vert a_{ij}\vert\vert x_j\vert \leq \...
...rt = \vert\vert x\vert\vert _1 \max_{k=1,\dots,n}\sum_{i=1}^n \vert a_{ik}\vert$

3.
With $ x=0$, $ \vert\vert Ax\vert\vert _1 = 0$ and $ \vert\vert x\vert\vert _1\max_{k=1,\dots,n}\sum_{i=1}^n\vert a_{ik}\vert = 0$, and the equality in 2. holds.
4.

$\displaystyle \vert\vert Ax\vert\vert _\infty = \max_{i=1,\dots,n}\left\vert \s...
... a_{ij}x_j\right\vert \leq \max_{i=1,\dots,n} \sum_{j=1}^n \vert a_{ij}x_j\vert$

$\displaystyle \leq \max_{i=1,\dots,n} \sum_{j=1}^n \vert a_{ij}\vert\max_{j=1,\...
...vert\vert x\vert\vert _\infty \max_{i=1,\dots,n} \sum_{k=1}^n \vert a_{ik}\vert$

5.
With $ x=0$, $ \vert\vert Ax\vert\vert _\infty = 0$ and $ \vert\vert x\vert\vert _\infty\max_{i=1,\dots,n}\sum_{k=1}^n\vert a_{ik}\vert = 0$, and the equality in 4. holds.



Reynald AFFELDT
2000-06-08