next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Norms

Problem 2 - Stirling's Formula

For an integer $ n\geq 2$, define $ a_n$ by

$\displaystyle a_n = \sum_{k=1}^{n-1}\log k + \frac{1}{2}\log n$

where $ \log$ is the natural logarithm and $ e$ below is the base of the natural logarithm.
1.
Show $ a_n < \int_1^n \log xdx$.
2.
Show $ \int_{\frac{3}{2}}^n \log xdx < a_n$.
3.
Setting $ \delta_n = 1 + a_n - \int_1^n \log x dx$, show that, when $ n\rightarrow\infty$, $ \delta_n$ converges to a constant.
4.
Denoting the converging value of $ \delta_n$ by $ \delta$, show

$\displaystyle \lim_{n\rightarrow\infty} \frac{n!}{e^\delta \sqrt{n}\left(\frac{n}{e}\right)^n}$

exists, and compute its value.


1.
$ \forall x>0, \frac{d^2\log x}{dx^2} = -\frac{1}{x^2} < 0$, that is $ :x\mapsto\log x$ is concave.
\includegraphics{log.ps}
We thus have the following inequality:

$\displaystyle \int_{k}^{k+1} \log x dx > \frac{1}{2}(\log k + \log k+1)$

From which we deduce the sequence below:
$ \int_1^2 \log x dx > \frac{1}{2}(\log 1 + \log 2)$
$ \int_2^3 \log x dx > \frac{1}{2}(\log 2 + \log 3)$
$ \int_3^4 \log x dx > \frac{1}{2}(\log 3 + \log 4)$
$ \vdots$
$ \int_{n-2}^{n-1} \log x dx > \frac{1}{2}(\log (n-2) + \log (n-1))$
$ \int_{n-1}^n \log x dx > \frac{1}{2}(\log (n-1) + \log (n))$
And therefore:

$\displaystyle \int_1^n \log x dx > \sum_{k=2}^n \log k + \frac{1}{2}(\log 1 + \log n) = a_n$

2.
$ \forall x>0, \frac{d^2\log x}{dx^2} = -\frac{1}{x^2} < 0$, that is $ :x\mapsto\log x$ is concave.
\includegraphics{log2.ps}
Thus, the area denoted 1 is larger than the one denoted 2 on the previous figure. We thus have the following inequality:

$\displaystyle \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \log x dx < \log k$

From which we deduce the sequence below:
$ \int_{\frac{3}{2}}^{\frac{5}{2}} \log x dx < \log 2$
$ \int_{\frac{3}{2}}^{\frac{7}{2}} \log x dx < \log 3$
$ \vdots$
$ \int_{n-\frac{3}{2}}^{n-\frac{1}{2}} \log x dx < \log (n-1)$
and
$ \int_{n-\frac{1}{2}}^n \log x dx < \frac{1}{2} \log n$
And therefore:

$\displaystyle \int_{\frac{3}{2}}^n \log x dx < \sum_{k=2}^{n-1} \log k + \frac{1}{2} \log n = a_n$

3.

$\displaystyle \forall n \geq 2, \int_{\frac{3}{2}}^n \log x dx < a_n < \int_1^n \log x dx $

$\displaystyle 1 - \int_1^\frac{3}{2} \log x dx < \delta_n < 1$

Thus, $ \delta_n$ has upper and lower limits. Let us determine whether $ \delta_n$ is increasing or decreasing:
$ \delta_{n+1} - \delta_n = a_{n+1} - a_{n} - \int_1^{n+1}\log xdx + \int_1^n \log xdx$
$ = \log (n) + \frac{1}{2}\log(n+1) - \frac{1}{2}\log n - \int_{n}^{n+1} \log x dx$
$ = \frac{1}{2}\left( \log (n) + \log (n+1) \right) - \int_n^{n+1} \log x dx $
$ <0$ as we saw above.

This means that $ \delta_n$ is decreasing with a lower limit, thus it converges to a constant we shall call $ \delta = \lim_{\infty} \delta_n$.

4.
$ \delta_n = 1 + \sum_{k=1}^{n-1}\log k + \frac{1}{2}\log n - \int_1^n \log xdx$
$ = 1 + \log n! -\frac{1}{2}\log n - \left[ x(\log x - 1)\right]_1^n $
$ = 1 + \log n! - \frac{1}{2}\log n - n(\log n - 1) - 1$
$ = \log n! - \left( n + \frac{1}{2}\right)\log n + n$
But, $ \delta_n\rightarrow_{\infty}\delta$. Which means that:
$ \log n! - \left( n + \frac{1}{2}\right)\log n + n \rightarrow_\infty \delta$
$ n! n^{-n-\frac{1}{2}} e^n \rightarrow_\infty e^\delta$
$ \frac{n!}{e^\delta \sqrt(n) \left( \frac{n}{e} \right)^n} \rightarrow_\infty 1$


next up previous
Next: Information Science I Up: Mathematics Previous: Problem 1 - Norms
Reynald AFFELDT
2000-06-08